Biometrika style 1

A. TECHNICAL PROOFS.

Proof of Theorem 1. According to the loss function L7,
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Consequently,
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For ease of notation, we drop the subscript ”i” in the proof. Recall that p(s?|o?) is the density function of
s2|0? and g(0?) is the prior distribution of 0. Note that
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Take the derivative of f(s?) with respect to s2, we know that
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Take the second order derivative of f(s%) with respect to s2, we have
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Combining (A1) and (A2), we know that
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Proof of Theorem 2. For ease of notation, we drop the subscript

function is defined as
ag
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Consequently,
ELsy(0?,6%|s%) = 6°E [(6®)7"|s*] —=Iné6? + E(Ino?[s?) — 1.

Therefore, the estimator c}%t «in, Which minimizes the above expression is
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20 According to the proof of Theorem 1,
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Proof of Theorem 3. For ease of notation, we drop the subscript
is the density function of s?|c% and g(c0?) is the prior distribution of 0. Note that p(s?|o?) is given as
N
. (2> s2 > 0. (A3)
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and
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Note that f(s?) is the marginal distribution of s2. Then
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By differentiating n(s2)(s%)~(2 =1 with respect to 52, we have
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Namely,
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for some constant C.
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On the other hand, from (AS5), the left hand side of (A8) can be expressed as
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0

From (A8) and (A9), as s> approaches to zero,
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since, for j = 1, 2,
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We can calculate h(s2) in the similar way. Take the first and second order derivatives of h(s2)(s2)~(z 1)

with respect to s2, we then have
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for some constants C and Cs.
From (A10) and (A12), as s2 approaches to zero, similar argument shows that
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Similarly, combine equations (A11) and (A13) and let s2 approach to zero,
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Proof of Theorem 4. We restate one of the momumental theorems in the empirical process, on which
our proof is based (Blum, 1955; DeHardt, 1971).
Let F be a set of measurable function. The bracket [a, b] is the set of all the functions [ € F with
s a <1 <b. An e-bracket is a bracket with ||b — a|| < e. The bracketing number Ny (¢, F, L1(P)) is the
minimum number of e-brackets with which F can be covered.
Theorem (Blum-DeHardt) Let F be a class of measurable functions such that Ny (e, F, L1(P)) < oo,
for every € > 0. Then F is P-Glivenko-Cantelli.
We only prove the part for the numerator and the denominator can be similarly done.
n Let F={ly:li(s*u)=(s)""2"D(s*> > u), u>0} and Ply(s?,u) = [~ l1(s? u) dF(s*) =
[ g2 (k/272) dF(s?). It sufﬁces to show that F is a P-Glivenko-Cantelli class of functions. Since
F' is continuous and f ~(k/2=2) 4F(s?) < 0o, for any € >0, a collection of real numbers
O=vy<v1<vy<---< vm = oo can be found such that

le(s“‘,vj_l)—le(s?,vj):/ (32)4’6/2*2)(11:(52)—/ (52)=(/2-2) gp(s2)

Vj—1 vj

Vi
75 = / (82)_(k/2_2) dF(SQ)
Vj—1

-

IN

€

forall 1 < j < m, with

Pli(s%,v,,) = lim Pli(s* v,) = lim (52)_(’“/2_2) dF(s%) = 0.
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Consider the collection of brackets {[a;,b;],1 <j <m}, with a;(s?) = 2 k272 g2 ;)

and b;(s?) = §27 202 5 vj—1). Now each [ € F is in at least one bracket and
o |aj —bj|lp = Pli(s®,vj_1) — Pll(527v;) <e€ for all 1< j<m. Thus, by Blum-DeHardt theo-
rem , F is a P-Glivenco-Cantelli Class of functions.

Proof of Theorem 5. Let
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and

Bu(s?) = / Th(2, ) dF(),  B(s?) = / L2, $2)dF (s2).

According to the proof of Theorem 4, sup,:cp|An(s?) — A(s?)] — 0 and sup,ecp|Bn(s?) —

B(s?)] = 0 a.s.. Let L = inf 2 ps { B(s?)}. Then for any € > 0, when N is sufficiently large

521226 Bn(s?)>L—¢€ a.s.,

and sup2c Apn(s?) < C, a.s. for some constant C. Then
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Setting | a | % 57 ELJS TW  Smyth mSmyth Vash mVash REBayes Proposed
1% | 253 -0.13 -0.57 -0.67 -0.87 -0.56  -0.87 -0.68 -0.87
I 6 |5% | 195 -040 -0.70 -0.66 -0.87 -0.59  -0.87 -0.82 -0.87
all | 0.74 -070 -0.71 -0.66 -0.87 -0.66  -0.87 -0.78 -0.86
1% | 244 1.01 041 -0.06 -0.24 0.81 -0.17 -0.07 -0.22
I 6| 5% | 1.88 057 0.10 -0.08 -0.26 0.64  -0.19 -0.17 -0.26
all | 0.77 -0.09 -0.11 0.02 -0.49 0.12  -0.51 -0.44 -0.54
1% | 233 102 057 -0.14 -0.47 072  -0.22 -0.36 -0.49
I 3|15% | 178 057 020 -0.14 -0.42 0.57 -0.22 -0.34 -0.44
all | 0.70 -0.05 -0.04 0.10 -0.44 0.17  -047 -0.44 -0.61
1% | 232 1.06 055 -0.22 -0.29 0.69  -0.12 -0.27 -0.34
v 3(15% | 1.77 0.62 023 -0.14 -0.28 0.61 -0.13 -0.24 -0.31
all | 073 0.02 0.03 0.17 -0.40 0.25 -0.45 -0.38 -0.56

Table 1. The log,(risk) associated with the loss function (13) of the different estimators for
the variances under different simulation settings. For each setting, we consider three selection
rule: (i) the parameters corresponding to the 1% smallest sample variances; (ii) the parameters
corresponding to the 5% smallest sample variances; and (iii) all the parameters.

B. ADDITIONAL SIMULATION RESULTS

In this section, we include additional simulation results which are not listed in the paper due to the
page limit. The numerical results consist of four parts: (a) results of variance estimation post-selection;
and (b) results of Finite Bayes inference problem.

(a) Results of variance estimation post-selection.

To help the readers, we restate the simulation settings here. Let 02’s be the parameters, and the sample
variances s?’s are generated according to Model 1 where the degrees of freedom k is chosen as 5. We
consider the following different choices of the prior g(o?):

Setting I: 02 ~ inverse gamma distribution: IG(a, 1) where a = 10 and 6;

Setting II: 0 ~ Mixture of inverse gamma distributions: 0.2/G (a, 1) + 0.4IG(8,6) + 0.41G(9,19),
where ¢ = 10 and 6;

Setting I1I: o7 = a with 0.4 probability and 1/a with 0.6 probability, where a = 3 and 4;

Setting IV: o? ~ Mixture of inverse Gaussian distributions: 0.4InvGauss(1/a,1) +
0.6InvGauss(a,a*), where a = 2 and 3.

After generating the data, order the sample variances increasingly. We consider three different selection
rules: (i) select the parameters corresponding to the 1% smallest sample variances; (ii) select the parame-
ters corresponding to the 5% smallest sample variances; and (iii) all the parameters. We report log,(risk)
in Table 1.

(b) Results of finite Bayes inference problem.

Next, we consider the finite Bayes inference problem. Namely, for each generated data set s2 and a
new observation s3, we calculate the estimated values based on different approaches and calculate the
loss according to the loss function (9). We calculate the risk based on 500 replications and reported the
results in Table 2.
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Setting | (a,b) | s> ELJS TW  Smyth mSmyth Vash mVash REBayes Proposed
| 6 0.3 0.07 -0.86 -0.81 -1 -0.8 -1 -0.91 -0.98
11 6 0.64 043 -0.18 -0.04 -0.53 -0.02  -0.54 -0.52 -0.59
I 3 092 0.72 -0.02 0.06 -0.46 0.18 -0.48 -0.54 -0.61
v 3 043 0.21 -0.08 0.08 -0.43 0.16 -0.46 -0.44 -0.59

Table 2. The log,o(risk) associated with the loss function (9) of the different estimators for the
finite Bayes inference problem.



