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In this Supplement, we describe a few supplemental Lemmas used in our proofs to results in the main
paper in Appendix A. We then give proofs to results in the main paper in Appendix B and proofs to the
supplemental Lemmas in Appendix C. We provide details of the construction of the dissimilarity measure
d(., .) used in this paper and the automatic choice of h in Appendix D. 10

Without loss of generality, we always assume that V1 ≤ V2 ≤ . . . ≤ Vn in this Supplement. We useE[.]
to represent the expectation of a given variable and we refer to conformal prediction as CP and localized
conformal prediction as LCP for convenience.

A. A COLLECTION OF SUPPLEMENTAL LEMMAS

Lemma A.1 describes the elementary relationship used in the proof from previous work on weighted 15

conformal prediction (Barber et al., 2019), and we state it here for the reader’s convenience. Lemma A.2
states the monotone dependence of Q(α̃; F̂i(v)) on α̃ or v. Lemma A.3 is a core Lemma on the marginal
coverage guarantee for LCP with strategically chosen α̃. Lemma A.4 collects basic bounds used in the
proofs of Theorem 3.

Lemma A.1. For any α and sequence {V1, . . . , Vn+1}, we have 20

Vn+1 ≤ Q(α;

n∑
i=1

wiδVi + wn+1δVn+1
)⇔ Vn+1 ≤ Q(α;

n∑
i=1

wiδVi + wn+1δ∞),

where
∑n
i=1 wiδVi + wn+1δVn+1

and
∑n
i=1 wiδVi + wn+1δ∞ are some weighted empirical distributions

with weights wi ≥ 0 and
∑n+1
i=1 wi = 1.

Lemma A.2. Suppose {Vi, i = 1, . . . , n}, the target level α, and empirical weights pHij are given. Then,

(i) Given Vn+1, Q
(
α̃; F̂i(Vn+1)

)
for i = 1, . . . , n+ 1 and Q

(
α̃; F̂

)
are non-decreasing, right-

continuous and piece-wise constant on α̃, and with value changing only at the cumulative probabilities at 25

different Vi.
(ii) Given α̃, Q

(
α̃; F̂i(v)

)
is non-decreasing on v for i = 1, . . . , n+ 1.

(iii) If Vn+1 = v is accepted in the CV (Xn+1) in Lemma 1, then v′ is accepted for any v′ ≤ v.
Lemma A.3. Let Vi = V (Zi;Z) be the score for sample i, and Zi is i.i.d generated for i = 1, . . . , n+

1. For any event 30

T := {{Zi, i = 1, . . . , n+ 1} = {zi := (xi, yi), i = 1, . . . , n+ 1}} ,

we have

P{Vn+1 ≤ Q(α̃;

n+1∑
i=1

pHn+1,iδVi)|T } = E

[
1

n+ 1

n+1∑
i=1

1vi≤v∗i |T

]
,
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where vi = V (zi; (z1, . . . , zn, zn+1)), v∗i = Q(α̃;
∑n+1
j=1 p

H
i,jδvj ) for i = 1, 2, . . . , n+ 1, and α̃ can be

random but is independent of the data conditional on T . The expectation on the right side is taken over
the randomness of α̃ conditional on T .

Lemma A.4. Suppose that Assumption 1 holds and V (.) is a fixed function. For any x0, define B(x0) =35 ∑n+1
j=1 H(x0, Xi), ∆(x0, X) = H(x0, X) maxv |PV |X(v)− PV |x0(v)| and ∆(x0) =

∑n
i=1 ∆(x0, Xi). Then,

(i) There exists a constant C > 0 such that, for all x0 ∈ [0, 1]p, we have

P

{
B(x0) ≤ nhβn

2eL

}
≤ exp(−nh

β
n

8L
),

∆(x0)

B(x0) ∨ (nhβn)
≤ Chn ln(h−1

n ).

(ii) Set Bi = B(Xi), Ri =

∑
j 6=i

(
1Vj<Vi

−PV |Xj (Vi)
)

Bi
. Then, for all Vi and i = 1, . . . , n+ 1, we have

P

{
|Ri| ≥

√
lnn

Bi
|X , Vi

}
≤ 2

n2
.

B. PROOFS PROPOSITIONS, LEMMAS AND THEOREMS

In this section, we provide proofs omitted from the main paper. We first give arguments to Proposition40

1 and Proposition 2 for the counterexamples. We then present proofs to Theorem 1, Theorem 2, Lemma
1, Lemma 2 that characterize the marginal behavior of LCP and our implementation. After that, we prove
Theorem 3 - 4 on the asymptotic and local behaviors of LCP-type procedures.

PROOFS OF THE COUNTER EXAMPLES

B.1. Proof of Proposition 145

Proof. When
∑n+1
i=1 H(Xn+1, Xi) <

1
1−α , by definition, we have

n∑
i=1

pHn+1,i =

∑n
i=1Hn+1,i∑n+1
i=1 Hn+1,i

<
1

1−α − 1
1

1−α
= α.

We thus have Q(α; F̂) =∞, and consequently,

P(Q(α; F̂) =∞) = P(

n∑
i=1

pHn+1,i < α) = P(

n+1∑
i=1

H(Xn+1, Xi) <
1

1− α
) ≥ ε.

P(Yn+1 ∈ C(Xn+1)) ≥ P(Q(α; F̂) =∞) ≥ ε.

B.2. Proof of Proposition 250

Proof. For Xn+1 ∈ {±ej , j = 1, . . . , p}, let n0 is the number of samples with Xi = 0 and n1 is the
number of samples with Xi = Xn+1. The achieved conditional coverage at α̃ = α given X = X1:(n+1)

can be upper bounded as below:

P

{
Vn+1 ≤ Q(α; F̂)|X

}
= P

Vn+1 ≤ Q(α;
1

n1 + n0 + 1

∑
i:Xi∈{0,Xn+1}

δVi +
1

n1 + n0 + 1
δ∞)

∣∣∣∣X


(a)

≤ 1

n1 + 1
+
n0 + n1 + 1

n1 + 1
[α− n0

n0 + n1 + 1
]+, (B.1)55

Step (a) holds because:

– When α ≤ n0

n1+n0+1 , the α quantile of the weighted empirical distribution is 0, and we will have 0
coverage for Xn+1 6= 0 and (B.1) is true.
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– When α > n0

n1+n0+1 , the α quantile of the weighted empirical distribution in (B.1) is the

d(n1 + n0 + 1)αe − n0 largest value in {Vi : Xi = Xn+1} ∪ V∞, which is the d(n1+n0+1)αe−n0

n1+1 60

quantile of the unweighted empirical distribution formed by {Vi : Xi = Xn+1} ∪ V∞. By
Lemma A.1, {Vn+1 ≤ Q(t; {Vi : Xi = Xn+1} ∪ V∞)} ⇔ {Vn+1 ≤ Q(t; {Vi : Xi = Xn+1} ∪
Vn+1)}. Hence, we have

P

{
Vn+1 ≤ Q(α; F̂)|X

}
= P

{
Vn+1 ≤ Q(

d(n1 + n0 + 1)αe − n0

n1 + 1
; {Vi : Xi = Xn+1} ∪ Vn+1)}

∣∣∣∣X}
(b)
=
d(n1 + n0 + 1)αe − n0

n1 + 1
≤ 1

n1 + 1
+
n0 + n1 + 1

n1 + 1
(α− n0

n0 + n1 + 1
), 65

where step (b) uses the fact that Vi ∼ Unif[−1, 1] for all i with Xi = Xn+1. Hence, (B.1) holds.
�

Next, we marginalize over X1:n but conditional on m = n0 + n1 (the total number of samples with Xi ∈
{0, Xn+1}). From (B.1):

P

{
Vn+1 ≤ Q(α; F̂)|m,Xn+1

}
≤ E[

1

n1 + 1
|m] +E

[
[α
m+ 1

n1 + 1
− n0

n1 + 1
]+|m

]
, 70

= E[
1

n1 + 1
|m] +E

[
[α
m+ 1− n0

n1 + 1
− (1− α)

n0

n1 + 1
]+|m

]
,

= E[
1

n1 + 1
|m] + (1− α)E

[
[
α

1− α
− n0

n1 + 1
]+|m

]
. (B.2)

Notice that conditional on m, Xi falls at 0 or Xn+1 following an independent Bernoulli law:

Xi =

{
0 w.p. q0

q0+q1
= α,

Xn+1 w.p. q1
q0+q1

= 1− α.

From direct calculations, we obtain that

E[
1

n1 + 1
|m] =

m∑
n1=0

1

n1 + 1

m!

n1!(m− n1)!
(1− α)n1αm−n1

75

=
1

(m+ 1)(1− α)

m+1∑
n1=1

(m+ 1)!

n1!(m+ 1− n1)!
(1− α)n1αm+1−n1 ≤ 1

m(1− α)
. (B.3)

Also, we have

E

[
[
α

1− α
− n0

n1 + 1
]+|m

]
(c)
=

α

1− α
P(n0 ≤ α(m+ 1)|m)−

n0≤α(m+1)∑
n0=1

n0

m− n0 + 1

m!

n0!(m− n0)!
αn0(1− α)m−n0

=
α

1− α

P(n0 ≤ α(m+ 1)|m)−
n0≤α(m+1)−1∑

n0=0

m!

n0!(m− n0)!
αn0(1− α)m−n0

 80

=
α

1− α
(P(n0 ≤ α(m+ 1)|m)−P(n0 ≤ α(m+ 1)− 1|m))

=
α

1− α
P(n0 = bα(m+ 1)c︸ ︷︷ ︸

n∗

|m) =
α

1− α

(
m

n∗

)
αn∗(1− α)m−n∗ . (B.4)

We now use the Stirling’s approximation:
√

2πk(
k

e
)ke

1
12k+1 ≤ k! ≤

√
2πk(

k

e
)ke

1
12k , for all k ≥ 1.
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Plug the Stirling’s approximation into (B.4), there exist a constant C > 0 such that when m ≥ C, we
have:85

E

[
[
α

1− α
− n0

n1 + 1
]+|m

]
≤ α

1− α
exp(

1

12m
)

√
m

2π(n∗)(m− n∗)
(α
m

n∗
)n
∗
(

(1− α)
m

m− n∗

)m−n∗
(c)

≤ α

1− α
exp(

1

12m
)

√
m

2π(mα− 1)(m(1− α)− 1)
(

mα

mα− 1
)n
∗
(

(1− α)m

m(1− α)− 1

)m−n∗
≤ C

√
1

m
(1 +

2

m
)m ≤ Ce2

√
m
, (B.5)

where we have used the fact that mα+ 1 ≤ n∗ ≥ αm− 1 at step (c). Notice that m itself follows a
binomial distribution with n trials and successful rate (q1 + q0). Apply the Chernoff bound, we have90

P

{
m ≤ (q1 + q0)n

2

}
≤ exp(−n(q1 + q0)

8
). (B.6)

For any constant p ≥ 1, n(q1 + q0)→∞. Combine it with (B.2), (B.3), (B.5) and (B.6), there exist a
constant C > 0, such that for all Xn+1 ∈ {±ej , j = 1, . . . , p}, we have

P

{
Vn+1 ≤ Q(α; F̂)|Xn+1

}
≤P

{
{Vn+1 ≤ Q(α; F̂)|Xn+1} ∩ {m ≥

(q1 + q0)n

2
}
}

+P

{
m ≥ (q1 + q0)n

2
|Xn+1

}
≤ C

√
1

(q1 + q0)n
.

Marginalize over Xn+1, we reach the desired result: there exists a sufficiently large constant C, such that95

P

{
Vn+1 ≤ Q(α; F̂)

}
≤ P {Xn+1 6= 0} C√

(q0 + q1)n
+P {Xn+1 = 0} ≤ C√

(q0 + q1)n
+ q0 → q0.

B.3. Proof of Theorem 1
Proof. Define

T := {{Zi, i = 1, . . . , n+ 1} = {zi := (xi, yi), i = 1, . . . , n+ 1}} .

Let σ be a permutation of numbers 1, 2, . . . , n+ 1 that specifies how the values are assigned, e.g., Zi takes
value zσi . Since V (.;Z) and H(., .;X ) are fixed conditional on T , we can set v∗σi = Q(α̃;

∑n
j=1 p

H
σij
δvj )

as the realized empirical quantile at α̃ for F̂i given a particular permutation ordering σ. Hence, for any100

given α̃ ∈ Γ, conditional T and the permutation ordering σ, we have
n+1∑
i=1

1Vi≤Q(α̃;F̂i)|T , σ =

n+1∑
i=1

1vσi≤v∗σi
=

n+1∑
i=1

1vi≤v∗i . (B.7)

In other words, the achieved value for the left side of (B.7) or Theorem 1 (4) remains the same for all σ.
Since Γ is fixed conditional on T , the smallest value in Γ satisfying (4) is also fixed conditional on T , by
Lemma A.3, we obtain that105

P{Vn+1 ≤ Q(α̃; F̂n+1)|T } = E

[
1

n+ 1

n+1∑
i=1

1vi≤v∗i |T

]
=

1

n+ 1

n+1∑
i=1

1vi≤v∗i ≥ α

Marginalize over T , we have

P{Vn+1 ≤ Q(α̃; F̂n+1)} ≥ α. (B.8)

By Lemma A.1, equivalently, we also have

P{Vn+1 ≤ Q(α̃; F̂)} ≥ α. (B.9)
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B.4. Proof of Theorem 2
Define

T := {{Zi, i = 1, . . . , n+ 1} = {zi := (xi, yi), i = 1, . . . , n+ 1}} .

By (B.7) and the fact that Γ is fixed conditional on T , we know that α̃1, α̃2 and α1, α2 are fixed conditional 110

on T . As a result, when α̃ =

{
α̃1 w.p.

α−α2

α1−α2

α̃2 w.p.
α1−α
α1−α2

, and it is independent of the data conditional on T . Apply

Lemma A.3, we have

P{Vn+1 ≤ Q(α̃; F̂n+1)|T } = E

[
1

n+ 1

n+1∑
i=1

1vi≤v∗i |T

]
= α1

α− α2

α1 − α2
+ α2

α1 − α
α1 − α2

= α.

Marginalizing over T , we have 115

P{Vn+1 ≤ Q(α̃; F̂n+1)} = α.

By Lemma A.1, equivalently, we have

P{Vn+1 ≤ Q(α̃; F̂)} = α.

B.5. Proof of Lemma 1
Proof. As a direct application of Theorem 1 and Crorllary 1, we obtain that

P {Vn+1 ∈ CV (Xn+1)} ≥ α, P {Yn+1 ∈ C(Xn+1)} ≥ α.

The fact that CV (Xn+1) is an interval comes directly from Lemma A.2 (iii). �

B.6. Proof of Lemma 2 120

Proof.

– Proof of part 1: By definition, Vn+1 = v ∈ CV (Xn+1) iff (if and only if) the smallest value α̃ ∈ Γ
that makes (6) hold is greater than

∑
Vi<v

pHn+1,i ∈ Γ. That is, v ∈ CV (Xn+1) iff

1

n+ 1

n∑
i=1

1Vi≤Q(
∑
Vi<v

pHn+1,i;F̂i(v)) < α. (B.10)

(a) When v = V k for some 1 ≤ k ≤ n+ 1,
∑
Vi<V k

pHn+1,i = θ̃k by definition. Hence v ∈
CV (Xn+1) iff 125

1

n+ 1

n∑
i=1

1Vi≤Q(θ̃k;F̂i(V k)) < α. (B.11)

(b) When v ∈ (V `(k), V k) for some 1 ≤ k ≤ n+ 1,
∑
Vi<v

pHn+1,i =
∑
Vi<V k

pHn+1,i = θ̃k.
Hence v ∈ CV (Xn+1) iff

1

n+ 1

n∑
i=1

1Vi≤Q(θ̃k;F̂i(v)) < α. (B.12)

A key observation is that the status of event {Vi ≤ Q(θ̃k; F̂i(v))} does not change as we vary
v ∈ [V `(k), V k). That is, for all 1 ≤ i ≤ n, we have

Jik(v) := {Vi ≤ Q(θ̃k; F̂i(v))} = {Vi ≤ Q(θ̃k; F̂i(V `(k))} := Jik.

This can be easily verified: 130
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� If Vi < V k, we have Vi ≤ V `(k) < v, and

{Vi ≤ Q(θ̃k; F̂i(v))} = {θ̃k > θi} = {Vi ≤ Q(θ̃k; F̂i(V `(k)))}

� If Vi ≥ V k, then Vi > v > V `(k), and we have

{Vi ≤ Q(θ̃k; F̂i(v))} = {θ̃k > θi + pHi,n+1} = {Vi ≤ Q(θ̃k; F̂i(V `(k)))},

Hence, we obtain

1

n+ 1

n∑
i=1

1Vi≤Q(θ̃k;F̂i(V l(k))) < α. (B.13)

Combine part (a) and part (b), and the fact that V `(k) ≤ V k and Q(θ̃k; F̂i(v)) is non-decreasing in
v (Lemma A.2), we immediately reach the desired result that135

C̄V (Xn+1) = {v : v ≤ Q(θ̃k∗ ; F̂)},

where k∗ is the largest value of k such that (B.13) holds.
– Proof of part 2: As we increase k, both V l(k) and θ̃k are non-decreasing, hence, Q(θ̃k; F̂i(V `(k)))

is non-decreasing in k. Thus, Jik = {Vi ≤ Q(θ̃k; F̂i(V̄`(k)))} is a monotone event in k: for all
k′ ≥ k, we have Jik ⊆ Jik′ . Consequently, suppose k∗i is when Jik first holds, then 1Jik = 1 iff
k ≥ k∗i . We can divide Jik into two subsets:140

Jik =
(
{Vi > V̄`(k)} ∩ {Vi ≤ Q(θ̃k; F̂i(V̄`(k)))}

)
∪
(
{Vi ≤ V̄`(k)} ∩ {Vi ≤ Q(θ̃k; F̂i(V̄`(k)))}

)
(a)
=
(
{`(i) ≥ `(k)} ∩ {θi + pHi,n+1 < θ̃k}

)
︸ ︷︷ ︸

J1
ik

∪
(
{`(i) < `(k)} ∩ {θi < θ̃k}

)
︸ ︷︷ ︸

J2
ik

. (B.14)

At step (a), we have used the fact that

Vi > V `(k) ⇔ `(i) ≥ `(k),

and that
– when Vi > V `(k), we have

∑
1≤j≤n+1:Vj<Vi

pHij = θi + pHi,n+1 when Vn+1 = V̄`(k) Hence,145

Vi ≤ Q(θ̃k; F̂i(V̄l(k)))⇔ θi + pHi,n+1 < θ̃k.

– when Vi ≤ V `(k), we have
∑

1≤j≤n+1:Vj<Vi
pHij = θi when Vn+1 = V̄`(k). Hence,

Vi ≤ Q(θ̃k; F̂i(V̄l(k)))⇔ θi < θ̃k.

We now consider when Jik turns true for samples from categories A1, A2 and A3.
– For i ∈ A1, by the definition of A1 and (B.14), we know that Jik is true at k = i and k∗i ≤ i,

and Jik = J1
ik = {θi + pHi,n+1 < θ̃k}.

– For i ∈ A2 ∪A3, since i /∈ A1 and k∗i > i, J1
ik fails to hold for all k. Hence, Jik holds when150

J2
ik holds.

� When i ∈ A2: since θi ≥ θ̃i, in order for θi < θ̃k to hold, by definition, we must
have

∑
j≤l(k) p

H
n+1,j = θ̃k > θ̃i =

∑
j≤l(i) p

H
n+1,j , which automatically guarantees

that l(k) > l(i). As a result, for i ∈ A2, we have Jik = J2
ik = {θi < θ̃k}.

� When i ∈ A3: in order to have l(k) > l(i), we automatically θ̃k ≥ θ̃i > θi for samples155

in A3. Thus, for i ∈ A3, we have Jik = J2
ik = {l(i) < l(k)}.
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Combine them together, we have

S(k) =

n∑
i=1

1

n+ 1
1Vi≤Q(θ̃k;F̂i(V `(k)))

=
1

n+ 1

(∑
i∈A1

1J1
ik

+
∑
i∈A2

1J2
ik

+
∑
i∈A3

1J2
ik

)

=
1

n+ 1

(∑
i∈A1

1{θi+pHi,n+1<θ̃k}
+
∑
i∈A2

1θi<θ̃k
+
∑
i∈A3

1l(i)<l(k)

)
. 160

We have proved the second part of Lemma 2. �

LOCAL COVERAGE PROPERTIES OF LCP
B.7. Proof of Theorem 3

Proof. We first prove the convergence from α̃(v) to α in (11) and then show that the achieved coverage
levels converge to the nominal level for both α̃ = α and α̃ = α̃(v) as described in Lemma 1. Define 165

Ii =
∑n
j=1,j 6=i PV |Xj (Vi)Hij

Bi
and Ri =

∑n
j=1,j 6=i

Hij(1Vj<Vi−PV |Xj (Vi))

Bi
for all i = 1, . . . , n+ 1.

1. Proof of (11): For i = 1, . . . , n, define Bi =
∑n+1
j=1 Hij and, for any α̃ ∈ [0, 1] and v ∈ R, define

Ji(v, α̃) := {Vi ≤ Q(α̃; F̂(v))} = {α̃ >
∑
j≤n:Vj<Vi

Hij + 1v<Vi

Bi
}.

Ji(v, α̃) is the event for wether sample i contributes to the left side of Lemma 1 (6). We can define
a subset event J i(α̃) ⊆ Ji(v, α̃) for all v values for all v. Decompose the condition of Ji(v, α̃) as
below: 170∑

j≤n:Vj<Vi
Hij + 1v<Vi

Bi
≤
∑
j≤n:Vj<Vi

Hij

Bi
+

1

Bi
= Ii +Ri +

1

Bi
. (B.15)

Set G =
{
i ∈ {1, . . . , n} : Bi ≥ 1

2eLnh
β
n, |Ri| ≤

√
2eL lnn

nhβn

}
. By Lemma A.4 (i), there exists a

constant C > 0, such that for all i ∈ G:

Bi − 1−Hi,n+1

Bi
∈ [1− 4eL

nhβn
, 1], |Ii −

Bi − 1−Hi,n+1

Bi
PV |Xi(Vi)| ≤ Chn ln(h−1

n ). (B.16)

Combine (B.15) with (B.16), there exist a constant C > 0 such that for all i ∈ G, we have 175

J i(α̃) :=

{
α̃ > PV |Xi(Vi) + C

(
hn ln(h−1

n ) +

√
lnn

nhβn

)}
⊆ Ji(v, α̃), for all v. (B.17)

We can also define a superset event J̄i(α̃) ⊇ Ji(v, α̃) for all v values:∑
j≤n:Vj<Vi

Hij + 1v<Vi

Bi
≥
∑
j≤n:Vj<Vi

Hij

Bi
= Ii +Ri. (B.18)

Combine (B.18) with (B.16), there exists a constant C > 0 such that for all i ∈ G, we have

Ji(v, α̃) ⊆ J̄i(α̃) :=

{
α̃ > PV |Xi(Vi)− C

(
hn ln(h−1

n ) +

√
lnn

nhβn

)}
, for all v. (B.19)
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Hence, we can then upper and lower bound the left side of (6) using J̄i(α̃) and J i(α̃):

1

n+ 1

n+1∑
i=1

Ji(v, α̃) ≤ 1

n+ 1
+

1

n+ 1

∑
i∈G

J̄i(α̃) +
|Gc|
n+ 1

, (B.20)180

1

n+ 1

n+1∑
i=1

Ji(v, α̃) ≥ 1

n+ 1

∑
i∈G

J i(α̃). (B.21)

Set Wi = PV |Xi(Vi), which is i.i.d generated from Unif[0, 1] when V |Xi is a continuous variable.
By Lemma A.4, we know that

P{|Gc| > 0} ≤ P{
n

min
i=1

Bi ≤
nhβn
2eL
}+P{∃i ∈ {1, . . . , n} : Bi >

nhβn
2eL

, |Ri| >

√
2eL lnn

nhβn
}

≤ P{
n

min
i=1

Bi ≤
nhβn
2eL
}+ n max

1≤i≤n
P{|Ri| >

√
lnn

Bi
}185

≤ n exp(−nh
β
n

8L
) + n× 1

n2
→ 0. (B.22)

When {|Gc| = 0} holds:
– When α̃ makes (6) hold, by (B.20), we must have

1

n+ 1

(
1 +

n∑
i=1

J̄i(α̃)

)
≥ α⇒ α̃ ≥ Q(

n+ 1

n
α− 1

n
;

1

n

n∑
i=1

δWi)− C

(
hn ln(h−1

n ) +

√
lnn

nhβn

)
.

(B.23)

– By (B.21), α̃ makes (6) hold as long as190

1

n+ 1

n∑
i=1

J i(α̃) ≥ α⇒ α̃ ≥ Q(
n+ 1

n
α;

1

n

n∑
i=1

δWi) + C

(
hn ln(h−1

n ) +

√
lnn

nhβn

)
.

Further, since Γ includes all possible empirical CDF values from weighted distribution F̂i for
i = 1, . . . , n+ 1 under all possible ordering of V1, . . . , Vn+1. Let Bmax = maxn+1

i=1 Bi. The
differences between two adjacent values in Γ is upper bounded by 1

Bmax
≤ 2eL

nhβn
. Hence, there

exists a constant C > 0 such that the smallest value in Γ that makes (6) is upper bounded by195

α̃ ≤ Q(
n+ 1

n
α;

1

n

n∑
i=1

δWi
) + C

(
hn ln(h−1

n ) +

√
lnn

nhβn

)
. (B.24)

The bounds (B.23) and (B.24) hold for all Vn+1 = v. By Dvoretzky–Kiefer–Wolfowitz inequality
and the fact that Wi ∼ Unif[0, 1], there exists a constant C > 0 such that

P(max
t
|Q(t;

n∑
i=1

δWi
)− t| ≤

√
lnn

n
) ≤ C

n2
. (B.25)

Combine (B.23), (B.24), (B.25) and (B.22), there exist a constant C > 0, such that200

P

{
| min
vn+1

α̃(vn+1)− α| < C

(
hn ln(h−1

n ) +

√
lnn

nhβn

)}
≥ C

n2
+P(|Gc| > 0)→ 0. (B.26)

Since C
(
hn ln(h−1

n ) +
√

lnn

nhβn

)
→ 0, this concludes our proof.
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2. Proofs of (9) and (10): By definition, for any given α̃, Vn+1 ≤ Q(α̃; F̂) if and only if

n∑
i=1

H(Xn+1, Xi)

Bn+1
1Vi<Vn+1

= In+1 +Rn+1 < α̃. (B.27)

Define G = {Bn+1 ≥ nhβn
2eL , |Rn+1| ≤

√
2eL lnn

nhβn
}. When G holds, following the same routine as

bounding J(α̃, v) with J̄(α̃) and J(α̃), we can lower and upper bound (In+1 +Rn+1) in (B.27) 205

using Lemma A.4 (i): there exists a constant C > 0, such that

In+1 +Rn+1 ≤ PV |Xn+1
(Vn+1) + C

(
hn ln(h−1

n ) +

√
lnn

nhβn

)
. (B.28)

In+1 +Rn+1 ≥ PV |Xn+1
(Vn+1)− C

(
hn ln(h−1

n ) +

√
lnn

nhβn

)
. (B.29)

Wn+1 = PV |Xn+1
(Vn+1) ∼ Unif[0, 1] since V |Xn+1 is a continuous variable. By Lemma A.4 (i)

and (ii), P(Gc)→ 0. Hence, for any given α̃, there exists a constant C > 0, such that 210

P(In+1 +Rn+1 < α̃) ≤ α̃+ C

(
hn ln(h−1

n ) +
1

(nhβn)1/3

)
+P {Gc} → α̃, (B.30)

P(In+1 +Rn+1 < α̃) ≥ α̃− C

(
hn ln(h−1

n ) +
1

(nhβn)1/3

)
→ α̃. (B.31)

Consequently, when α̃ = α or α̃ = α̃(v)→ α for all v in probability as described in (11), we
achieve an asymptotic conditional coverage at level α. �

B.8. Proof of Theorem 4 215

Proof. We use the result from Barber et al. (2019) which extends CP to the setting with covariate shift:

Proposition B.1 (Barber et al. (2019), Corollary 1). For any fixed x0. Set wx0
(.) =

dP̃x0X
dPX and

px0
i (x) =

wx0 (Xi)∑n
j=1 wx0 (Xi)+wx0 (x) for i = 1, . . . , n, and px0

n+1(x) =
wx0 (x)∑n

j=1 wx0 (Xi)+wx0 (x) . Then,

P

{
V (Xn+1, Yn+1) ≤ Q(α;

n+1∑
i=1

px0
i (Xn+1)δV i)

}
≥ α.

In our setting, wx0
(x) ∝ H(x0, x). As a direct application of Proposition B.1, when (X̃, Ỹ ) is distributed

from P̃Xn+1

XY , we have 220

P

{
V (X̃, Ỹ ) ≤ Q(α;

n+1∑
i=1

px0
i (X̃)δV i)|Xn+1 = x0

}
≥ α.

Since the H(x0, x0) ≥ H(x0, X̃) by definition, the distribution F̂ dominates the distribution∑n+1
i=1 p

x0
i (X̃)δV i : given Xn+1 = x0, for any α, we have

Q(α; F̂) = Q(α;

n+1∑
i=1

H(x0, Xi)∑n+1
j=1 H(x0, Xj)

δV̄i)

≥ Q(α;

n∑
i=1

H(x0, Xi)∑n
j=1H(x0, Xj) +H(x0, X̃)

δV̄i +
H(x0, X̃)∑n

j=1H(x0, Xj) +H(x0, X̃)
δV̄i) = Q(α;

n+1∑
i=1

px0
i (X̃)δV i).
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Hence, we have225

P{V (X̃, Ỹ ) ≤ Q(α; F̂)|Xn+1 = x0} ≥ α, for all x0.

Next, we turn to the achieved coverage using C̃(Xn+1). By construction, we have

{Ỹ ∈ C̃(Xn+1)} = {V (Xn+1, Ỹ ) ≤ Q(α; F̂) + ε(Xn+1)}
⊇ {V (X̃, Ỹ ) ≤ Q(α; F̂)}.

Consequently, we obtain

P

{
Ỹ ∈ C̃(Xn+1)|Xn+1 = x0

}
≥ P

{
V (X̃) ≤ Q(α; F̂))|Xn+1 = x0

}
≥ α.

C. PROOF OF LEMMAS IN THE APPENDIX230

C.1. Proof of Lemma A.1
Proof. By definition, we know

Vn+1 ≤ Q(α;

n∑
i=1

wiδVi + wn+1δVn+1
)⇒ Vn+1 ≤ Q(α;

n∑
i=1

wiδVi + wn+1δ∞).

To show that Lemma A.1 holds, we only need to show that,

Vn+1 > Q(α;

n∑
i=1

wiδVi + wn+1δVn+1)⇒ Vn+1 > Q(α;

n∑
i=1

wiδVi + wn+1δ∞).

Let Q(α;
∑n
i=1 wiδVi + wn+1Vn+1) = Vi∗ for some index 1 ≤ i∗ ≤ n+ 1. When Vn+1 > Vi∗ , we must

have Vi∗ <∞. By definition:235

α ≥
n+1∑
i=1

wi1Vi≤Vi∗ =

n∑
i=1

wi1Vi≤Vi∗ =

n∑
i=1

wi1Vi≤Vi∗ + wn+11∞≤Vi∗

⇒Q(α;

n∑
i=1

wi1Vi + wn+1δ∞) ≤ Vi∗ < Vn+1.

C.2. Proof of Lemma A.2
Proof. We can prove Lemma A.2 with elementary calculus arguments.

(i) Given V1, . . . , Vn+1, Q(α̃; F̂i) = inf{t : P(v ≤ t) ≥ α̃, v ∼ F̂i}. The empirical distribution F̂ is240

discrete with mass pHij on Vi, we can have an explicit expression for Q(α̃; F̂i):

Q(α̃; F̂i) =


V 0, α̃ = 0,

V i,
∑i−1
j=1 p

H
ij < α̃ ≤

∑i
j=1 p

H
ij , i = 1, . . . , n,

V n+1,
∑n
j=1 p

H
ij < α̃.

Hence,Q(α̃; F̂i) is non-decreasing and right-continuous piece-wise constant on α̃, and v∗i can only
change its value at

∑k
j=1 p

H
ij for k = 1, . . . , n. The same is true for Q(α̃; F̂).

(ii) Given α̃, when increasing Vn+1 from Vn+1 = v′ to Vn+1 = v for v > v′, the empirical distribution
F̂i(v) dominates the empirical distribution F̂i(v′) by construction: ∀α̃, we have245

P

{
t ≤ α̃|t ∼ F̂i(v′)

}
≥ P

{
t ≤ α̃|t ∼ F̂i(v)

}
.

As a result, Q(α̃; F̂i(v)) is non-decreasing on v for any given α̃, for i = 1, . . . , n+ 1.
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(iii) Suppose that v ∈ CV (Xn+1). Let α̃ ∈ Γ be the smallest value such that

n+1∑
i=1

1

n+ 1
1Vi≤Q(α̃;F̂i(v)) ≥ α,

by definition, we have v ≤ Q(α̃; F̂). Now, we consider Vn+1 = v′ for v′ ≤ v. By the monotonicity
of Q(α̃; F̂i(v)) on α̃ and v from Lemma A.2 (i) and (ii), we must have α̃′ ≥ α̃∗ where α̃′ ∈ Γ is
the smallest value satisfying 250

n+1∑
i=1

1

n+ 1
1Vi≤Q(α̃′;F̂i(v′)) ≥ α,

Hence, we have v′ ≤ v ≤ Q(α̃; F̂) ≤ Q(α̃′; F̂) and v′ is included in the PI. This concludes our
proof. �

C.3. Proof of Lemma A.3
Proof. Let σ be a permutation of numbers 1, 2, . . . , n+ 1. We know that

P {σn+1 = i|T } =
#{σ : σn+1 = i}∑n+1
j=1 #{σ : σn+1 = j}

=
1

n+ 1
. 255

Set X = {X1, . . . , Xn+1} be the unordered set of the features. Since the function V (.,Z) and the local-
izer H(., .,X ) are fixed functions conditional on T , and α̃ (can be random) is independent of the data
conditional T , we obtain

P

Vn+1 ≤ Q(α̃;

n+1∑
j=1

pHn+1,jδVj )|T , α̃


=

n+1∑
i=1

P{σn+1 = i|T }1{Vn+1≤v∗n+1(σ)|T ,σn+1=i} 260

=

n+1∑
i=1

1

n+ 1
1{vi≤v∗n+1(σ),σn+1=i} (C.1)

where

v∗i (σ) := Q(α̃;

n+1∑
j=1

pHσi,σjδvσj ) = Q(α̃;

n+1∑
j=1

H(xσi , xσj )∑n+1
j′=1H(xσi , xσj′ )

δvσj )

is the realization of v∗i := Q(α̃; F̂i) under permutation σ, conditional on T and α̃. We immediately ob-
serve that,

v∗i (σ) = v∗σi (C.2)

Combine (C.1) and (C.2), we obtain that P{Vn+1 ≤ v∗n+1|T , α̃} =
∑n+1
i=1

1
n+11{vi≤Q(α̃;F̂i)}. Marginal- 265

ize over α̃|T , we have

P

{
Vn+1 ≤ Q(α̃; F̂n+1)|T

}
= E

[
n+1∑
i=1

1

n+ 1
1{vi≤Q(α̃;F̂i)}|T

]
.
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C.4. Proof of Lemma A.4
Proof.
Part (i): We divide the space into non-overlapping subregions Ak = {x : (k − 1)hn ≤ d(x0, x) <

khn}. Then,270

B(x0) =

n+1∑
i=1

exp(−d(x0, Xi)

hn
) ≥ exp(−1)

n∑
i=1

1Xi∈A1
,

and 1Xi∈A1
follows a Bernoulli distribution with success probability qi ≥ 1

Lnh
β
n according to Assump-

tion 1 (ii). We can apply Chernoff Bounds to lower bound B(x0):

P

{
n∑
i=1

1Xi∈A1 ≤
nhβn
2L

}
≤ exp(−nh

β
n

8L
)⇒ P

{
B(x0) ≤ nhβn

2eL

}
≤ exp(−nh

β
n

8L
).

Using the partitions {Aj} and Assumption 1 (i):

∆(x0) ≤ L
n∑
i=1

d(x0, Xi) exp(−d(x0, Xi)

hn
),

≤ Lhn exp(1)

∞∑
k=1

k
∑

i:Xi∈Ak

exp(−k)275

≤ min
k0

L exp(1)k0hn
∑
k≤k0

∑
i:Xi∈Ak

H(x0, Xi) + Lhn exp(1)
∑
k>k0

∑
i:Xi∈Ak

k exp(−k)


≤ min

k0
{eLk0hnB(x0) + eLhnk0 exp(−k0)n}

≤ eLβdlnh−1
n ehn

(
B(x0) + nhβn

)
, (C.3)

where we have taken k0 = βdlnh−1
n e at the last step. Hence, there exists a constant C > 0 such that

∆(x0)

B(x0) ∨ (nhβn)
≤ 2eLβdlnh−1

n ehn ≤ C ln(h−1
n )hn, for all x0 ∈ [0, 1]p.

Part (ii): Set Zij =
Hij
Bi

(
1Vj<Vi − PV |Xj (Vi)

)
, and Ri =

∑
j 6=i Zij . By Hoeffding’s lemma, the cen-280

tered variable Zij is sub-Gaussian with parameter νij =
Hij
2Bi

for all i, j and Vi: for all j 6= i,

E[exp(λZij)|Vi] ≤ exp(
ν2
ijλ

2
), for all λ ∈ R.

Hence, the weighted sum Ri is sub-Gaussian with parameter νi =

√∑
j 6=i,j≤n

H2
ij

4B2
i
≤
√

1
4Bi

, where we

have used the fact that Hij ≤ 1 and Bi =
∑n+1
j=1 Hij . Combining it with the sub-Gaussian concentration

results, we obtain that

P {|Ri| ≥ t|X , Vi} ≤ 2 exp(− t2

2ν2
i

) ≤ 2 exp(−2t2Bi), for all Vi, i = 1, . . . , n+ 1.

Take t =
√

lnn
Bi

, we obtain the desired bound. �285
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D. CHOICE OF H
D.1. Estimation of the default distance

Let V be the CV fold partitioning when learning V . We will estimate the spread by learning |Vi| for Vi
from the cross-validation step and i = 1, . . . , n0:

Vi ← V̂ −i(X0
i , Y

0
i ),

where V̂ −i is the score function learned using samples excluding i. 290

The spread learning step is using the same CV partitioning V . To learn the spread ρ(X), we consider
minimizing the MSE with the response log(|Vi|+ |Vi|), with |Vi| be the mean absolute value for Vi
across samples in D0 = {Z0

i = (X0
i , Y

0
i ), i = 1, . . . , n0}. This additional term |Vi| is added to reduce

the influence of samples with very small empirical |Vi|.
We do not claim that learning ρ(X) in such a way is always a good choice. It is a reasonable choice for 295

the regression score. However, for quantile regression score, |Vi| can be large around regions with severe
under-coverage or over-coverage, making it a poor target. Despite this, the resulting LCP is similar to CP
with a poorly chosen ρ̂(x) for the quantile regression score in our empirical studies.

Our estimated ρ̂ is defined as ρ̂ = exp(f̂(x)) where f̂(x) is the estimated function from the learning
step. We let ρi = ρ̂−i(X0

i ) be the estimated spread from the cross-validation step. Let J ∈ Rn0×p be 300

the Jacobian matrix with Ji, =
∂f̂−i(X0

i )

∂X0
i

. Let u‖ ∈ Rp×p0 and u⊥ ∈ Rp×(p−p0) be the top p0 and the
remaining right singular vectors, with p0 be a small constant. By default, p0 = 1. We form the projection
matrix P‖ and P⊥ with u‖ and u⊥:

P‖ = u‖u
>
‖ , P⊥ = u⊥u

>
⊥.

The final dissimilarity measure d(x1, x2) is a weighted sum of the three components, and

d(x1, x2) =
d1(x1, x2)

σ2
+

(ωd2(x1, x2) + (1− ω)d3(x1, x2))

σ1
,

where d2(x1, x2), d3(x1, x2) are projected distances onto P‖ and P⊥, and d1(x1, x2) are distance in the 305

space of the learned spreading function ρ̂(x1), ρ̂(x2) as described in Section 3.3:

– d1(x1, x2) = ‖ρ̂(x1)− ρ̂(x2)‖2.
– d2(x1, x2) = ‖P‖(x1 − x2)‖2.
– d3(x1, x2) = ‖P⊥(x1 − x2)‖2.

We set ω and σ1, σ2 as following: 310

– Let µ‖/µ⊥ be the mean of d2(X0
i , X

0
j ) or d3(X0

i , X
0
j ) for i 6= j, then we let w = µ⊥

µ⊥+µ‖
.

– We let σ1 be the mean of
(
ωd2(X0

i , X
0
j ) + (1− ω)d3(X0

i , X
0
j )
)

and σ2 be that mean of
d1(X0

i , X
0
j ), using all pairs i 6= j from D0.

D.2. Empirical estimate of the objective
We want to minimize a penalized average length of finite PIs: 315

J(h) = Average PIfinite length + λ× Average conditional PIfinite length variability
s.t. P(Infinite PI) ≤ δ.

LetEXf(X) denote the expectation of some function f(.) with overX . In this tuning section, we consider
two specific types of V (.): the scaled regression score and the scaled quantile score, and

V (X,Y ) =
1

σ(X)
|Y − f(X)|,

or 320

V (X,Y ) =
1

σ(X)
max{qlo(X)− Y, Y − qhi(X)}.
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These two score classes will include the four scores considered in our numerical experiments. Let k∗ be
the selected index from Lemma 2, for this two classes of scores, the PI of Yn+1 is constructed as

C(Xn+1) = [f(Xn+1)− σ(Xn+1)V k∗ , f(Xn+1) + σ(Xn+1)V k∗ ],

or

C(Xn+1) = [qlo(Xn+1)− σ(Xn+1)V k∗ , qhi(Xn+1) + σ(Xn+1)V k∗ ].

In both cases, the length over the constructed PI of Yn+1 is additive on σ(Xn+1)V k∗ , and hence, mini-
mizing PI of Yn+1 is equivalent to minimizing σ(Xn+1)V k∗ , and the conditional variability of the PI is325

the same as the variability of σ(Xn+1)V k∗ conditional on Xn+1. Hence, after omitting components that
do not depend on h, we can express the terms in the above objective as

– Average PIfinite length: EZ1:n,Xn+1

[
σ(Xn+1)V k∗ |k∗ ≤ n

]
. It depends on Z1:n, Xn+1 as well as

the tuning parameter h. (Recall that when k∗ = n+ 1, V n+1 =∞. )

– Average conditional PIfinite length variability:
√
EZ1:n,Xn+1

[
σ(Xn+1)2

(
V k∗ − µ(Xn+1)

)2 |k∗ ≤ n],330

where µ(Xn+1) = EZ1:n

[
V k∗ |k∗ ≤ n,Xn+1

]
is the average length finite PI at Xn+1, marginal-

ized over Z1:n.
– Average percent of infinite PI: P(k∗ = n+ 1).

We estimate the above quantities with empirical estimates using D0. As in the previous section, we con-
sider the case where the function form V (X,Y ) is estimated by CV and Vi ← V̂ −i(X0

i , Y
0
i ). For exam-335

ple, we want to construct the score function V (X,Y ) = |Y − f(X)| where f(X) is the mean prediction
function. Then, V̂ −i(X0

i , Y
0
i ) is calculated as

V̂ −i(X0
i , Y

0
i ) = |Y 0

i − f̂−k(x)|,

where f̂−k(.) is the learned mean function using data excluding fold k that includes sample i. We also
estimate the spreads and define the distance on D0 using the CV estimates.

Given the dissimilarity measure dij for any pair (X0
i , X

0
j ), and thus Hij = exp(−dijh ) for a given h,340

we estimate the empirical loss for h ∈ {h1, . . . , hm} as below:

– Estimation of average length and infinite PI probability:
– We subsample ñ = (n+ 1) ∧ n0 samples without replacement from D0, let the set be S and

construct PI for each sample i ∈ S with a calibration set S \ {i}. Let Li be the scaled length
for the constructed PI (scaled by σ(X0

i )).345

– The probability of having infinite PI is estimated as C1(h) = #{i∈S,Li=∞}
ñ , and the average

finite PI length is estimated as C2(h) =
∑
i∈S,Li<∞

Li

#{b:Lib<∞}∨1 .

The above estimates can be repeated for multiple times when n0 is much larger than (n+ 1).
– Estimation of conditional variability:

– RepeatB times the PI construction: for b = 1, . . . , B, we subsample n samples with replace-350

ment from D0, and let the length of scaled PI of V at Z0
i be Lib for i = 1, . . . , n0.

– Calculate the finite conditional mean as µi =
∑
b:Lib<∞

Lib

#{b:Lib<∞}∨1 .

– Calculate the conditional variance as si =
∑
b:Lib<∞

(Lib−µi)2

#{b:Lib<∞}∨1 .
– The average conditional variability for PI with finite length is estimated as C3,h =√∑

i(#{b:Lib<∞}×si)
#{(i,b):Lib<∞}355

We take h from the candidate set to minimize the empirical objective:

h = arg min
C1(h)≤δ

(C2(h) + λC3(h)) .



15

REFERENCES

BARBER, R. F., CANDES, E. J., RAMDAS, A. & TIBSHIRANI, R. J. (2019). Conformal prediction under covariate
shift. arXiv:1904.06019 . 360


	A collection of supplemental Lemmas
	Proofs Propositions, Lemmas and Theorems
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 1
	Proof of Lemma 2 
	Proof of Theorem 3
	Proof of Theorem 4

	Proof of Lemmas in the Appendix
	Proof of Lemma A.1
	Proof of Lemma A.2
	Proof of Lemma A.3
	Proof of Lemma A.4

	Choice of H
	Estimation of the default distance
	Empirical estimate of the objective


