Supplements to Localized Conformal Prediction: A Generalized Inference Framework for Conformal Prediction

By Leying Guan
Dept. of Biostatistics, Yale University,
New Haven, CT, USA.
leying.guan@yale.edu

In this Supplement, we describe a few supplemental Lemmas used in our proofs to results in the main paper in Appendix A. We then give proofs to results in the main paper in Appendix B and proofs to the supplemental Lemmas in Appendix C. We provide details of the construction of the dissimilarity measure $d(.,$.$) used in this paper and the automatic choice of h$ in Appendix D.

Without loss of generality, we always assume that $V_{1} \leq V_{2} \leq \ldots \leq V_{n}$ in this Supplement. We use $\mathbb{E}[$. to represent the expectation of a given variable and we refer to conformal prediction as CP and localized conformal prediction as LCP for convenience.

A. A collection of supplemental Lemmas

Lemma A. 1 describes the elementary relationship used in the proof from previous work on weighted conformal prediction (Barber et al., 2019), and we state it here for the reader's convenience. Lemma A. 2 states the monotone dependence of $Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{i}(v)\right)$ on $\tilde{\alpha}$ or v. Lemma A. 3 is a core Lemma on the marginal coverage guarantee for LCP with strategically chosen $\tilde{\alpha}$. Lemma A. 4 collects basic bounds used in the proofs of Theorem 3.

Lemma A.1. For any α and sequence $\left\{V_{1}, \ldots, V_{n+1}\right\}$, we have

$$
V_{n+1} \leq Q\left(\alpha ; \sum_{i=1}^{n} w_{i} \delta_{V_{i}}+w_{n+1} \delta_{V_{n+1}}\right) \Leftrightarrow V_{n+1} \leq Q\left(\alpha ; \sum_{i=1}^{n} w_{i} \delta_{V_{i}}+w_{n+1} \delta_{\infty}\right)
$$

where $\sum_{i=1}^{n} w_{i} \delta_{V_{i}}+w_{n+1} \delta_{V_{n+1}}$ and $\sum_{i=1}^{n} w_{i} \delta_{V_{i}}+w_{n+1} \delta_{\infty}$ are some weighted empirical distributions with weights $w_{i} \geq 0$ and $\sum_{i=1}^{n+1} w_{i}=1$.

Lemma A.2. Suppose $\left\{V_{i}, i=1, \ldots, n\right\}$, the target level α, and empirical weights $p_{i j}^{H}$ are given. Then,
(i) Given $V_{n+1}, Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{i}\left(V_{n+1}\right)\right)$ for $i=1, \ldots, n+1$ and $Q(\tilde{\alpha} ; \hat{\mathcal{F}})$ are non-decreasing, rightcontinuous and piece-wise constant on $\tilde{\alpha}$, and with value changing only at the cumulative probabilities at different V_{i}.
(ii) Given $\tilde{\alpha}, Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{i}(v)\right)$ is non-decreasing on v for $i=1, \ldots, n+1$.
(iii) If $V_{n+1}=v$ is accepted in the $C_{V}\left(X_{n+1}\right)$ in Lemma 1 , then v^{\prime} is accepted for any $v^{\prime} \leq v$.

Lemma A.3. Let $V_{i}=V\left(Z_{i} ; \mathcal{Z}\right)$ be the score for sample i, and Z_{i} is i.i.d generated for $i=1, \ldots, n+$ 1. For any event

$$
\mathcal{T}:=\left\{\left\{Z_{i}, i=1, \ldots, n+1\right\}=\left\{z_{i}:=\left(x_{i}, y_{i}\right), i=1, \ldots, n+1\right\}\right\}
$$

we have

$$
\mathbb{P}\left\{V_{n+1} \leq Q\left(\tilde{\alpha} ; \sum_{i=1}^{n+1} p_{n+1, i}^{H} \delta_{V_{i}}\right) \mid \mathcal{T}\right\}=\mathbb{E}\left[\left.\frac{1}{n+1} \sum_{i=1}^{n+1} \mathbb{1}_{v_{i} \leq v_{i}^{*}} \right\rvert\, \mathcal{T}\right]
$$

where $v_{i}=V\left(z_{i} ;\left(z_{1}, \ldots, z_{n}, z_{n+1}\right)\right), v_{i}^{*}=Q\left(\tilde{\alpha} ; \sum_{j=1}^{n+1} p_{i, j}^{H} \delta_{v_{j}}\right)$ for $i=1,2, \ldots, n+1$, and $\tilde{\alpha}$ can be random but is independent of the data conditional on \mathcal{T}. The expectation on the right side is taken over the randomness of $\tilde{\alpha}$ conditional on \mathcal{T}. $\sum_{j=1}^{n+1} H\left(x_{0}, X_{i}\right), \Delta\left(x_{0}, X\right)=H\left(x_{0}, X\right) \max _{v}\left|P_{V \mid X}(v)-P_{V \mid x_{0}}(v)\right|$ and $\Delta\left(x_{0}\right)=\sum_{i=1}^{n} \Delta\left(x_{0}, X_{i}\right)$. Then,
(i) There exists a constant $C>0$ such that, for all $x_{0} \in[0,1]^{p}$, we have

$$
\mathbb{P}\left\{B\left(x_{0}\right) \leq \frac{n h_{n}^{\beta}}{2 e L}\right\} \leq \exp \left(-\frac{n h_{n}^{\beta}}{8 L}\right), \quad \frac{\Delta\left(x_{0}\right)}{B\left(x_{0}\right) \vee\left(n h_{n}^{\beta}\right)} \leq C h_{n} \ln \left(h_{n}^{-1}\right)
$$

(ii) Set $B_{i}=B\left(X_{i}\right), R_{i}=\frac{\sum_{j \neq i}\left(\mathbb{1}_{V_{j}<V_{i}}-P_{V \mid X_{j}}\left(V_{i}\right)\right)}{B_{i}}$. Then, for all V_{i} and $i=1, \ldots, n+1$, we have

$$
\mathbb{P}\left\{\left.\left|R_{i}\right| \geq \sqrt{\frac{\ln n}{B_{i}}} \right\rvert\, \mathcal{X}, V_{i}\right\} \leq \frac{2}{n^{2}}
$$

B. Proofs Propositions, Lemmas and Theorems

In this section, we provide proofs omitted from the main paper. We first give arguments to Proposition 1 and Proposition 2 for the counterexamples. We then present proofs to Theorem 1, Theorem 2, Lemma 1, Lemma 2 that characterize the marginal behavior of LCP and our implementation. After that, we prove Theorem 3-4 on the asymptotic and local behaviors of LCP-type procedures.

Proofs of the counter examples

B.1. Proof of Proposition 1

Proof. When $\sum_{i=1}^{n+1} H\left(X_{n+1}, X_{i}\right)<\frac{1}{1-\alpha}$, by definition, we have

$$
\sum_{i=1}^{n} p_{n+1, i}^{H}=\frac{\sum_{i=1}^{n} H_{n+1, i}}{\sum_{i=1}^{n+1} H_{n+1, i}}<\frac{\frac{1}{1-\alpha}-1}{\frac{1}{1-\alpha}}=\alpha
$$

We thus have $Q(\alpha ; \hat{\mathcal{F}})=\infty$, and consequently,

$$
\begin{aligned}
& \mathbb{P}(Q(\alpha ; \hat{\mathcal{F}})=\infty)=\mathbb{P}\left(\sum_{i=1}^{n} p_{n+1, i}^{H}<\alpha\right)=\mathbb{P}\left(\sum_{i=1}^{n+1} H\left(X_{n+1}, X_{i}\right)<\frac{1}{1-\alpha}\right) \geq \varepsilon . \\
& \mathbb{P}\left(Y_{n+1} \in C\left(X_{n+1}\right)\right) \geq \mathbb{P}(Q(\alpha ; \hat{\mathcal{F}})=\infty) \geq \varepsilon
\end{aligned}
$$

B.2. Proof of Proposition 2

Proof. For $X_{n+1} \in\left\{ \pm e_{j}, j=1, \ldots, p\right\}$, let n_{0} is the number of samples with $X_{i}=0$ and n_{1} is the number of samples with $X_{i}=X_{n+1}$. The achieved conditional coverage at $\tilde{\alpha}=\alpha$ given $\mathcal{X}=X_{1:(n+1)}$ can be upper bounded as below:
$\mathbb{P}\left\{V_{n+1} \leq Q(\alpha ; \hat{\mathcal{F}}) \mid \mathcal{X}\right\}=\mathbb{P}\left\{\left.V_{n+1} \leq Q\left(\alpha ; \frac{1}{n_{1}+n_{0}+1} \sum_{i: X_{i} \in\left\{0, X_{n+1}\right\}} \delta_{V_{i}}+\frac{1}{n_{1}+n_{0}+1} \delta_{\infty}\right) \right\rvert\, \mathcal{X}\right\}$

$$
\begin{equation*}
\stackrel{(a)}{\leq} \frac{1}{n_{1}+1}+\frac{n_{0}+n_{1}+1}{n_{1}+1}\left[\alpha-\frac{n_{0}}{n_{0}+n_{1}+1}\right]_{+}, \tag{B.1}
\end{equation*}
$$

Step (a) holds because:

- When $\alpha \leq \frac{n_{0}}{n_{1}+n_{0}+1}$, the α quantile of the weighted empirical distribution is 0 , and we will have 0 coverage for $X_{n+1} \neq 0$ and (B.1) is true.
- When $\alpha>\frac{n_{0}}{n_{1}+n_{0}+1}$, the α quantile of the weighted empirical distribution in (B.1) is the $\left\lceil\left(n_{1}+n_{0}+1\right) \alpha\right\rceil-n_{0}$ largest value in $\left\{V_{i}: X_{i}=X_{n+1}\right\} \cup V_{\infty}$, which is the $\frac{\left\lceil\left(n_{1}+n_{0}+1\right) \alpha\right\rceil-n_{0}}{n_{1}+1}$ quantile of the unweighted empirical distribution formed by $\left\{V_{i}: X_{i}=X_{n+1}\right\} \cup V_{\infty}$. By Lemma A.1, $\left\{V_{n+1} \leq Q\left(t ;\left\{V_{i}: X_{i}=X_{n+1}\right\} \cup V_{\infty}\right)\right\} \Leftrightarrow\left\{V_{n+1} \leq Q\left(t ;\left\{V_{i}: X_{i}=X_{n+1}\right\} \cup\right.\right.$ $\left.\left.V_{n+1}\right)\right\}$. Hence, we have

$$
\begin{aligned}
\mathbb{P}\left\{V_{n+1} \leq Q(\alpha ; \hat{\mathcal{F}}) \mid \mathcal{X}\right\} & \left.\left.=\mathbb{P}\left\{V_{n+1} \leq Q\left(\frac{\left\lceil\left(n_{1}+n_{0}+1\right) \alpha\right\rceil-n_{0}}{n_{1}+1} ;\left\{V_{i}: X_{i}=X_{n+1}\right\} \cup V_{n+1}\right)\right\} \right\rvert\, \mathcal{X}\right\} \\
& \stackrel{(b)}{=} \frac{\left\lceil\left(n_{1}+n_{0}+1\right) \alpha\right\rceil-n_{0}}{n_{1}+1} \leq \frac{1}{n_{1}+1}+\frac{n_{0}+n_{1}+1}{n_{1}+1}\left(\alpha-\frac{n_{0}}{n_{0}+n_{1}+1}\right),
\end{aligned}
$$

where step (b) uses the fact that $V_{i} \sim \operatorname{Unif}[-1,1]$ for all i with $X_{i}=X_{n+1}$. Hence, (B.1) holds.

Next, we marginalize over $X_{1: n}$ but conditional on $m=n_{0}+n_{1}$ (the total number of samples with $X_{i} \in$ $\left\{0, X_{n+1}\right\}$). From (B.1):

$$
\begin{aligned}
\mathbb{P}\left\{V_{n+1} \leq Q(\alpha ; \hat{\mathcal{F}}) \mid m, X_{n+1}\right\} & \leq \mathbb{E}\left[\left.\frac{1}{n_{1}+1} \right\rvert\, m\right]+\mathbb{E}\left[\left.\left[\alpha \frac{m+1}{n_{1}+1}-\frac{n_{0}}{n_{1}+1}\right]_{+} \right\rvert\, m\right] \\
& =\mathbb{E}\left[\left.\frac{1}{n_{1}+1} \right\rvert\, m\right]+\mathbb{E}\left[\left.\left[\alpha \frac{m+1-n_{0}}{n_{1}+1}-(1-\alpha) \frac{n_{0}}{n_{1}+1}\right]_{+} \right\rvert\, m\right] \\
& =\mathbb{E}\left[\left.\frac{1}{n_{1}+1} \right\rvert\, m\right]+(1-\alpha) \mathbb{E}\left[\left.\left[\frac{\alpha}{1-\alpha}-\frac{n_{0}}{n_{1}+1}\right]_{+} \right\rvert\, m\right] .
\end{aligned}
$$

Notice that conditional on m, X_{i} falls at 0 or X_{n+1} following an independent Bernoulli law:

$$
X_{i}= \begin{cases}0 & \text { w.p. } \frac{q_{0}}{q_{0}+q_{1}}=\alpha \\ X_{n+1} & \text { w.p. } \frac{q_{1}}{q_{0}+q_{1}}=1-\alpha\end{cases}
$$

From direct calculations, we obtain that

$$
\begin{align*}
\mathbb{E}\left[\left.\frac{1}{n_{1}+1} \right\rvert\, m\right] & =\sum_{n_{1}=0}^{m} \frac{1}{n_{1}+1} \frac{m!}{n_{1}!\left(m-n_{1}\right)!}(1-\alpha)^{n_{1}} \alpha^{m-n_{1}} \\
& =\frac{1}{(m+1)(1-\alpha)} \sum_{n_{1}=1}^{m+1} \frac{(m+1)!}{n_{1}!\left(m+1-n_{1}\right)!}(1-\alpha)^{n_{1}} \alpha^{m+1-n_{1}} \leq \frac{1}{m(1-\alpha)} \tag{B.3}
\end{align*}
$$

Also, we have

$$
\begin{aligned}
& \mathbb{E}\left[\left.\left[\frac{\alpha}{1-\alpha}-\frac{n_{0}}{n_{1}+1}\right]_{+} \right\rvert\, m\right] \\
\stackrel{(c)}{=} & \frac{\alpha}{1-\alpha} \mathbb{P}\left(n_{0} \leq \alpha(m+1) \mid m\right)-\sum_{n_{0}=1}^{n_{0} \leq \alpha(m+1)} \frac{n_{0}}{m-n_{0}+1} \frac{m!}{n_{0}!\left(m-n_{0}\right)!} \alpha^{n_{0}}(1-\alpha)^{m-n_{0}} \\
= & \frac{\alpha}{1-\alpha}\left(\mathbb{P}\left(n_{0} \leq \alpha(m+1) \mid m\right)-\sum_{n_{0}=0}^{n_{0} \leq \alpha(m+1)-1} \frac{m!}{n_{0}!\left(m-n_{0}\right)!} \alpha^{n_{0}}(1-\alpha)^{m-n_{0}}\right) \\
= & \frac{\alpha}{1-\alpha}\left(\mathbb{P}\left(n_{0} \leq \alpha(m+1) \mid m\right)-\mathbb{P}\left(n_{0} \leq \alpha(m+1)-1 \mid m\right)\right) \\
= & \frac{\alpha}{1-\alpha} \mathbb{P}(n_{0}=\underbrace{\lfloor\alpha(m+1)\rfloor}_{n_{*}} \mid m)=\frac{\alpha}{1-\alpha}\binom{m}{n_{*}} \alpha^{n_{*}}(1-\alpha)^{m-n_{*}} .
\end{aligned}
$$

We now use the Stirling's approximation:

$$
\sqrt{2 \pi k}\left(\frac{k}{e}\right)^{k} e^{\frac{1}{12 k+1}} \leq k!\leq \sqrt{2 \pi k}\left(\frac{k}{e}\right)^{k} e^{\frac{1}{12 k}}, \text { for all } k \geq 1
$$

Plug the Stirling's approximation into (B.4), there exist a constant $C>0$ such that when $m \geq C$, we
$\mathbb{E}\left[\left.\left[\frac{\alpha}{1-\alpha}-\frac{n_{0}}{n_{1}+1}\right]_{+} \right\rvert\, m\right] \leq \frac{\alpha}{1-\alpha} \exp \left(\frac{1}{12 m}\right) \sqrt{\frac{m}{2 \pi\left(n^{*}\right)\left(m-n^{*}\right)}}\left(\alpha \frac{m}{n^{*}}\right)^{n^{*}}\left((1-\alpha) \frac{m}{m-n^{*}}\right)^{m-n^{*}}$

$$
\begin{align*}
& \stackrel{(c)}{\leq} \frac{\alpha}{1-\alpha} \exp \left(\frac{1}{12 m}\right) \sqrt{\frac{m}{2 \pi(m \alpha-1)(m(1-\alpha)-1)}}\left(\frac{m \alpha}{m \alpha-1}\right)^{n^{*}}\left(\frac{(1-\alpha) m}{m(1-\alpha)-1}\right)^{m-n^{*}} \\
& \leq C \sqrt{\frac{1}{m}}\left(1+\frac{2}{m}\right)^{m} \leq \frac{C e^{2}}{\sqrt{m}} \tag{B.5}
\end{align*}
$$

where we have used the fact that $m \alpha+1 \leq n^{*} \geq \alpha m-1$ at step (c). Notice that m itself follows a binomial distribution with n trials and successful rate $\left(q_{1}+q_{0}\right)$. Apply the Chernoff bound, we have

$$
\begin{equation*}
\mathbb{P}\left\{m \leq \frac{\left(q_{1}+q_{0}\right) n}{2}\right\} \leq \exp \left(-\frac{n\left(q_{1}+q_{0}\right)}{8}\right) \tag{B.6}
\end{equation*}
$$

For any constant $p \geq 1, n\left(q_{1}+q_{0}\right) \rightarrow \infty$. Combine it with (B.2), (B.3), (B.5) and (B.6), there exist a constant $C>0$, such that for all $X_{n+1} \in\left\{ \pm e_{j}, j=1, \ldots, p\right\}$, we have

$$
\begin{aligned}
& \mathbb{P}\left\{V_{n+1} \leq Q(\alpha ; \hat{\mathcal{F}}) \mid X_{n+1}\right\} \\
& \leq \mathbb{P}\left\{\left\{V_{n+1} \leq Q(\alpha ; \hat{\mathcal{F}}) \mid X_{n+1}\right\} \cap\left\{m \geq \frac{\left(q_{1}+q_{0}\right) n}{2}\right\}\right\}+\mathbb{P}\left\{\left.m \geq \frac{\left(q_{1}+q_{0}\right) n}{2} \right\rvert\, X_{n+1}\right\} \leq C \sqrt{\frac{1}{\left(q_{1}+q_{0}\right) n}}
\end{aligned}
$$

$$
\mathbb{P}\left\{V_{n+1} \leq Q(\alpha ; \hat{\mathcal{F}})\right\} \leq \mathbb{P}\left\{X_{n+1} \neq 0\right\} \frac{C}{\sqrt{\left(q_{0}+q_{1}\right) n}}+\mathbb{P}\left\{X_{n+1}=0\right\} \leq \frac{C}{\sqrt{\left(q_{0}+q_{1}\right) n}}+q_{0} \rightarrow q_{0}
$$

B.3. Proof of Theorem 1

Proof. Define

$$
\mathcal{T}:=\left\{\left\{Z_{i}, i=1, \ldots, n+1\right\}=\left\{z_{i}:=\left(x_{i}, y_{i}\right), i=1, \ldots, n+1\right\}\right\}
$$

Let σ be a permutation of numbers $1,2, \ldots, n+1$ that specifies how the values are assigned, e.g., Z_{i} takes value $z_{\sigma_{i}}$. Since $V(. ; \mathcal{Z})$ and $H(., . ; \mathcal{X})$ are fixed conditional on \mathcal{T}, we can set $v_{\sigma_{i}}^{*}=Q\left(\tilde{\alpha} ; \sum_{j=1}^{n} p_{\sigma_{i} j}^{H} \delta_{v_{j}}\right)$ 0_{0} as the realized empirical quantile at $\tilde{\alpha}$ for $\hat{\mathcal{F}}_{i}$ given a particular permutation ordering σ. Hence, for any given $\tilde{\alpha} \in \Gamma$, conditional \mathcal{T} and the permutation ordering σ, we have

$$
\begin{equation*}
\sum_{i=1}^{n+1} \mathbb{1}_{V_{i} \leq Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{i}\right)} \mid \mathcal{T}, \sigma=\sum_{i=1}^{n+1} \mathbb{1}_{v_{\sigma_{i}} \leq v_{\sigma_{i}}^{*}}=\sum_{i=1}^{n+1} \mathbb{1}_{v_{i} \leq v_{i}^{*}} \tag{B.7}
\end{equation*}
$$

In other words, the achieved value for the left side of (B.7) or Theorem 1 (4) remains the same for all σ. Since Γ is fixed conditional on \mathcal{T}, the smallest value in Γ satisfying (4) is also fixed conditional on \mathcal{T}, by

$$
\mathbb{P}\left\{V_{n+1} \leq Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{n+1}\right) \mid \mathcal{T}\right\}=\mathbb{E}\left[\left.\frac{1}{n+1} \sum_{i=1}^{n+1} \mathbb{1}_{v_{i} \leq v_{i}^{*}} \right\rvert\, \mathcal{T}\right]=\frac{1}{n+1} \sum_{i=1}^{n+1} \mathbb{1}_{v_{i} \leq v_{i}^{*}} \geq \alpha
$$

Marginalize over \mathcal{T}, we have

$$
\begin{equation*}
\mathbb{P}\left\{V_{n+1} \leq Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{n+1}\right)\right\} \geq \alpha \tag{B.8}
\end{equation*}
$$

By Lemma A.1, equivalently, we also have

$$
\begin{equation*}
\mathbb{P}\left\{V_{n+1} \leq Q(\tilde{\alpha} ; \hat{\mathcal{F}})\right\} \geq \alpha \tag{B.9}
\end{equation*}
$$

B.4. Proof of Theorem 2

Define

$$
\mathcal{T}:=\left\{\left\{Z_{i}, i=1, \ldots, n+1\right\}=\left\{z_{i}:=\left(x_{i}, y_{i}\right), i=1, \ldots, n+1\right\}\right\} .
$$

By (B.7) and the fact that Γ is fixed conditional on \mathcal{T}, we know that $\tilde{\alpha}_{1}, \tilde{\alpha}_{2}$ and α_{1}, α_{2} are fixed conditional
on \mathcal{T}. As a result, when $\tilde{\alpha}=\left\{\begin{array}{l}\tilde{\alpha}_{1} w \cdot p \cdot \frac{\alpha-\alpha_{2}}{\alpha_{1}-\alpha_{2}} \\ \tilde{\alpha}_{2} w \cdot p \cdot \frac{\alpha_{1}-\alpha}{\alpha_{1}-\alpha_{2}}\end{array}\right.$, and it is independent of the data conditional on \mathcal{T}. Apply Lemma A.3, we have

$$
\begin{aligned}
\mathbb{P}\left\{V_{n+1} \leq Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{n+1}\right) \mid \mathcal{T}\right\} & =\mathbb{E}\left[\left.\frac{1}{n+1} \sum_{i=1}^{n+1} \mathbb{1}_{v_{i} \leq v_{i}^{*}} \right\rvert\, \mathcal{T}\right] \\
& =\alpha_{1} \frac{\alpha-\alpha_{2}}{\alpha_{1}-\alpha_{2}}+\alpha_{2} \frac{\alpha_{1}-\alpha}{\alpha_{1}-\alpha_{2}}=\alpha
\end{aligned}
$$

Marginalizing over \mathcal{T}, we have

$$
\mathbb{P}\left\{V_{n+1} \leq Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{n+1}\right)\right\}=\alpha
$$

By Lemma A.1, equivalently, we have

$$
\mathbb{P}\left\{V_{n+1} \leq Q(\tilde{\alpha} ; \hat{\mathcal{F}})\right\}=\alpha
$$

B.5. Proof of Lemma 1

Proof. As a direct application of Theorem 1 and Crorllary 1, we obtain that

$$
\mathbb{P}\left\{V_{n+1} \in C_{V}\left(X_{n+1}\right)\right\} \geq \alpha, \mathbb{P}\left\{Y_{n+1} \in C\left(X_{n+1}\right)\right\} \geq \alpha
$$

The fact that $C_{V}\left(X_{n+1}\right)$ is an interval comes directly from Lemma A. 2 (iii).

B.6. Proof of Lemma 2

Proof.

- Proof of part 1: By definition, $V_{n+1}=v \in C_{V}\left(X_{n+1}\right)$ iff (if and only if) the smallest value $\tilde{\alpha} \in \Gamma$ that makes (6) hold is greater than $\sum_{V_{i}<v} p_{n+1, i}^{H} \in \Gamma$. That is, $v \in C_{V}\left(X_{n+1}\right)$ iff

$$
\begin{equation*}
\frac{1}{n+1} \sum_{i=1}^{n} \mathbb{1}_{V_{i} \leq Q\left(\sum_{V_{i}<v} p_{n+1, i}^{H} ; \hat{\mathcal{F}}_{i}(v)\right)}<\alpha \tag{B.10}
\end{equation*}
$$

(a) When $v=\bar{V}_{k}$ for some $1 \leq k \leq n+1, \sum_{V_{i}<\bar{V}_{k}} p_{n+1, i}^{H}=\tilde{\theta}_{k}$ by definition. Hence $v \in$ $C_{V}\left(X_{n+1}\right)$ iff

$$
\begin{equation*}
\frac{1}{n+1} \sum_{i=1}^{n} \mathbb{1}_{V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}\left(\bar{V}_{k}\right)\right)}<\alpha \tag{B.11}
\end{equation*}
$$

(b) When $v \in\left(\bar{V}_{\ell(k)}, \bar{V}_{k}\right)$ for some $1 \leq k \leq n+1, \sum_{V_{i}<v} p_{n+1, i}^{H}=\sum_{V_{i}<\bar{V}_{k}} p_{n+1, i}^{H}=\tilde{\theta}_{k}$. Hence $v \in C_{V}\left(X_{n+1}\right)$ iff

$$
\begin{equation*}
\frac{1}{n+1} \sum_{i=1}^{n} \mathbb{1}_{V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}(v)\right)}<\alpha \tag{B.12}
\end{equation*}
$$

A key observation is that the status of event $\left\{V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}(v)\right)\right\}$ does not change as we vary $v \in\left[\bar{V}_{\ell(k)}, \bar{V}_{k}\right)$. That is, for all $1 \leq i \leq n$, we have

$$
J_{i k}(v):=\left\{V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}(v)\right)\right\}=\left\{V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}\left(\bar{V}_{\ell(k)}\right)\right\}:=J_{i k}\right.
$$

This can be easily verified:
\diamond If $V_{i}<\bar{V}_{k}$, we have $V_{i} \leq \bar{V}_{\ell(k)}<v$, and

$$
\left\{V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}(v)\right)\right\}=\left\{\tilde{\theta}_{k}>\theta_{i}\right\}=\left\{V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}\left(\bar{V}_{\ell(k)}\right)\right)\right\}
$$

\diamond If $V_{i} \geq \bar{V}_{k}$, then $V_{i}>v>\bar{V}_{\ell(k)}$, and we have

$$
\left\{V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}(v)\right)\right\}=\left\{\tilde{\theta}_{k}>\theta_{i}+p_{i, n+1}^{H}\right\}=\left\{V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}\left(\bar{V}_{\ell(k)}\right)\right)\right\},
$$

Hence, we obtain

$$
\begin{equation*}
\frac{1}{n+1} \sum_{i=1}^{n} \mathbb{1}_{V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}\left(\bar{V}_{l(k)}\right)\right)}<\alpha . \tag{B.13}
\end{equation*}
$$

Combine part (a) and part (b), and the fact that $\bar{V}_{\ell(k)} \leq \bar{V}_{k}$ and $Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}(v)\right)$ is non-decreasing in v (Lemma A.2), we immediately reach the desired result that

$$
\bar{C}^{V}\left(X_{n+1}\right)=\left\{v: v \leq Q\left(\tilde{\theta}_{k^{*}} ; \hat{F}\right)\right\},
$$

where k^{*} is the largest value of k such that (B.13) holds.

- Proof of part 2: As we increase k, both $\bar{V}_{l(k)}$ and $\tilde{\theta}_{k}$ are non-decreasing, hence, $Q\left(\tilde{\theta}_{k} ; \hat{F}_{i}\left(\bar{V}_{\ell(k)}\right)\right)$ is non-decreasing in k. Thus, $J_{i k}=\left\{V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}\left(\bar{V}_{\ell(k)}\right)\right)\right\}$ is a monotone event in k : for all $k^{\prime} \geq k$, we have $J_{i k} \subseteq J_{i k^{\prime}}$. Consequently, suppose k_{i}^{*} is when $J_{i k}$ first holds, then $\mathbb{1}_{J_{i k}}=1$ iff $k \geq k_{i}^{*}$. We can divide $J_{i k}$ into two subsets:

$$
\begin{align*}
J_{i k} & =\left(\left\{V_{i}>\bar{V}_{\ell(k)}\right\} \cap\left\{V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}\left(\bar{V}_{\ell(k)}\right)\right)\right\}\right) \cup\left(\left\{V_{i} \leq \bar{V}_{\ell(k)}\right\} \cap\left\{V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}\left(\bar{V}_{\ell(k)}\right)\right)\right\}\right) \\
& \stackrel{(a)}{=} \underbrace{\left(\{\ell(i) \geq \ell(k)\} \cap\left\{\theta_{i}+p_{i, n+1}^{H}<\tilde{\theta}_{k}\right\}\right)}_{J_{i k}^{1}} \cup \underbrace{\left(\{\ell(i)<\ell(k)\} \cap\left\{\theta_{i}<\tilde{\theta}_{k}\right\}\right)}_{J_{i k}^{2}} . \tag{B.14}
\end{align*}
$$

At step (a), we have used the fact that

$$
V_{i}>\bar{V}_{\ell(k)} \Leftrightarrow \ell(i) \geq \ell(k),
$$

and that

- when $V_{i}>\bar{V}_{\ell(k)}$, we have $\sum_{1 \leq j \leq n+1: V_{j}<V_{i}} p_{i j}^{H}=\theta_{i}+p_{i, n+1}^{H}$ when $V_{n+1}=\bar{V}_{\ell(k)}$ Hence,

$$
V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}\left(\bar{V}_{l(k)}\right)\right) \Leftrightarrow \theta_{i}+p_{i, n+1}^{H}<\tilde{\theta}_{k} .
$$

- when $V_{i} \leq \bar{V}_{\ell(k)}$, we have $\sum_{1 \leq j \leq n+1: V_{j}<V_{i}} p_{i j}^{H}=\theta_{i}$ when $V_{n+1}=\bar{V}_{\ell(k)}$. Hence,

$$
V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{\mathcal{F}}_{i}\left(\overline{(}_{l(k)}\right)\right) \Leftrightarrow \theta_{i}<\tilde{\theta}_{k} .
$$

We now consider when $J_{i k}$ turns true for samples from categories A_{1}, A_{2} and A_{3}.

- For $i \in A_{1}$, by the definition of A_{1} and (B.14), we know that $J_{i k}$ is true at $k=i$ and $k_{i}^{*} \leq i$, and $J_{i k}=J_{i k}^{1}=\left\{\theta_{i}+p_{i, n+1}^{H}<\tilde{\theta}_{k}\right\}$.
- For $i \in A_{2} \cup A_{3}$, since $i \notin A_{1}$ and $k_{i}^{*}>i, J_{i k}^{1}$ fails to hold for all k. Hence, $J_{i k}$ holds when $J_{i k}^{2}$ holds.
\diamond When $i \in A_{2}$: since $\theta_{i} \geq \tilde{\theta}_{i}$, in order for $\theta_{i}<\tilde{\theta}_{k}$ to hold, by definition, we must have $\sum_{j \leq l(k)} p_{n+1, j}^{H}=\tilde{\theta}_{k}>\tilde{\theta}_{i}=\sum_{j \leq l(i)} p_{n+1, j}^{H}$, which automatically guarantees that $l(k)>l(i)$. As a result, for $i \in A_{2}$, we have $J_{i k}=J_{i k}^{2}=\left\{\theta_{i}<\tilde{\theta}_{k}\right\}$.
\diamond When $i \in A_{3}$: in order to have $l(k)>l(i)$, we automatically $\tilde{\theta}_{k} \geq \tilde{\theta}_{i}>\theta_{i}$ for samples in A_{3}. Thus, for $i \in A_{3}$, we have $J_{i k}=J_{i k}^{2}=\{l(i)<l(k)\}$.

Combine them together, we have

$$
\begin{aligned}
S(k) & =\sum_{i=1}^{n} \frac{1}{n+1} \mathbb{1}_{V_{i} \leq Q\left(\tilde{\theta}_{k} ; \hat{F}_{i}\left(\bar{V}_{\ell(k)}\right)\right)} \\
& =\frac{1}{n+1}\left(\sum_{i \in A_{1}} \mathbb{1}_{J_{i k}^{1}}+\sum_{i \in A_{2}} \mathbb{1}_{J_{i k}^{2}}+\sum_{i \in A_{3}} \mathbb{1}_{J_{i k}^{2}}\right) \\
& =\frac{1}{n+1}\left(\sum_{i \in A_{1}} \mathbb{1}_{\left\{\theta_{i}+p_{i, n+1}^{H}<\tilde{\theta}_{k}\right\}}+\sum_{i \in A_{2}} \mathbb{1}_{\theta_{i}<\tilde{\theta}_{k}}+\sum_{i \in A_{3}} \mathbb{1}_{l(i)<l(k)}\right)
\end{aligned}
$$

We have proved the second part of Lemma 2.

LOCAL COVERAGE PROPERTIES OF LCP

B.7. Proof of Theorem 3

Proof. We first prove the convergence from $\tilde{\alpha}(v)$ to α in (11) and then show that the achieved coverage levels converge to the nominal level for both $\tilde{\alpha}=\alpha$ and $\tilde{\alpha}=\tilde{\alpha}(v)$ as described in Lemma 1. Define $I_{i}=\frac{\sum_{j=1, j \neq i}^{n} P_{V \mid X_{j}}\left(V_{i}\right) H_{i j}}{B_{i}}$ and $R_{i}=\sum_{j=1, j \neq i}^{n} \frac{H_{i j}\left(\mathbb{1}_{V_{j}<V_{i}}-P_{V \mid X_{j}}\left(V_{i}\right)\right)}{B_{i}}$ for all $i=1, \ldots, n+1$.

1. Proof of (11): For $i=1, \ldots, n$, define $B_{i}=\sum_{j=1}^{n+1} H_{i j}$ and, for any $\tilde{\alpha} \in[0,1]$ and $v \in \mathbb{R}$, define

$$
J_{i}(v, \tilde{\alpha}):=\left\{V_{i} \leq Q(\tilde{\alpha} ; \hat{\mathcal{F}}(v))\right\}=\left\{\tilde{\alpha}>\frac{\sum_{j \leq n: V_{j}<V_{i}} H_{i j}+\mathbb{1}_{v<V_{i}}}{B_{i}}\right\}
$$

$J_{i}(v, \tilde{\alpha})$ is the event for wether sample i contributes to the left side of Lemma 1 (6). We can define a subset event $\underline{J}_{i}(\tilde{\alpha}) \subseteq J_{i}(v, \tilde{\alpha})$ for all v values for all v. Decompose the condition of $J_{i}(v, \tilde{\alpha})$ as below:

$$
\begin{equation*}
\frac{\sum_{j \leq n: V_{j}<V_{i}} H_{i j}+\mathbb{1}_{v<V_{i}}}{B_{i}} \leq \frac{\sum_{j \leq n: V_{j}<V_{i}} H_{i j}}{B_{i}}+\frac{1}{B_{i}}=I_{i}+R_{i}+\frac{1}{B_{i}} \tag{B.15}
\end{equation*}
$$

Set $G=\left\{i \in\{1, \ldots, n\}: B_{i} \geq \frac{1}{2 e L} n h_{n}^{\beta},\left|R_{i}\right| \leq \sqrt{\frac{2 e L \ln n}{n h_{n}^{\beta}}}\right\}$. By Lemma A. 4 (i), there exists a constant $C>0$, such that for all $i \in G$:

$$
\begin{equation*}
\frac{B_{i}-1-H_{i, n+1}}{B_{i}} \in\left[1-\frac{4 e L}{n h_{n}^{\beta}}, 1\right], \quad\left|I_{i}-\frac{B_{i}-1-H_{i, n+1}}{B_{i}} P_{V \mid X_{i}}\left(V_{i}\right)\right| \leq C h_{n} \ln \left(h_{n}^{-1}\right) . \tag{B.16}
\end{equation*}
$$

Combine (B.15) with (B.16), there exist a constant $C>0$ such that for all $i \in G$, we have

$$
\begin{equation*}
\underline{J}_{i}(\tilde{\alpha}):=\left\{\tilde{\alpha}>P_{V \mid X_{i}}\left(V_{i}\right)+C\left(h_{n} \ln \left(h_{n}^{-1}\right)+\sqrt{\frac{\ln n}{n h_{n}^{\beta}}}\right)\right\} \subseteq J_{i}(v, \tilde{\alpha}), \text { for all } v \tag{B.17}
\end{equation*}
$$

We can also define a superset event $\bar{J}_{i}(\tilde{\alpha}) \supseteq J_{i}(v, \tilde{\alpha})$ for all v values:

$$
\begin{equation*}
\frac{\sum_{j \leq n: V_{j}<V_{i}} H_{i j}+\mathbb{1}_{v<V_{i}}}{B_{i}} \geq \frac{\sum_{j \leq n: V_{j}<V_{i}} H_{i j}}{B_{i}}=I_{i}+R_{i} \tag{B.18}
\end{equation*}
$$

Combine (B.18) with (B.16), there exists a constant $C>0$ such that for all $i \in G$, we have

$$
\begin{equation*}
J_{i}(v, \tilde{\alpha}) \subseteq \bar{J}_{i}(\tilde{\alpha}):=\left\{\tilde{\alpha}>P_{V \mid X_{i}}\left(V_{i}\right)-C\left(h_{n} \ln \left(h_{n}^{-1}\right)+\sqrt{\frac{\ln n}{n h_{n}^{\beta}}}\right)\right\}, \text { for all } v \tag{B.19}
\end{equation*}
$$

Hence, we can then upper and lower bound the left side of (6) using $\bar{J}_{i}(\tilde{\alpha})$ and $\underline{J}_{i}(\tilde{\alpha})$:

$$
\begin{align*}
& \frac{1}{n+1} \sum_{i=1}^{n+1} J_{i}(v, \tilde{\alpha}) \leq \frac{1}{n+1}+\frac{1}{n+1} \sum_{i \in G} \bar{J}_{i}(\tilde{\alpha})+\frac{\left|G^{c}\right|}{n+1} \tag{B.20}\\
& \frac{1}{n+1} \sum_{i=1}^{n+1} J_{i}(v, \tilde{\alpha}) \geq \frac{1}{n+1} \sum_{i \in G} \underline{J}_{i}(\tilde{\alpha}) \tag{B.21}
\end{align*}
$$

Set $W_{i}=P_{V \mid X_{i}}\left(V_{i}\right)$, which is i.i.d generated from Unif $[0,1]$ when $V \mid X_{i}$ is a continuous variable. By Lemma A.4, we know that

$$
\begin{align*}
\mathbb{P}\left\{\left|G^{c}\right|>0\right\} & \leq \mathbb{P}\left\{\min _{i=1}^{n} B_{i} \leq \frac{n h_{n}^{\beta}}{2 e L}\right\}+\mathbb{P}\left\{\exists i \in\{1, \ldots, n\}: B_{i}>\frac{n h_{n}^{\beta}}{2 e L},\left|R_{i}\right|>\sqrt{\frac{2 e L \ln n}{n h_{n}^{\beta}}}\right\} \\
& \leq \mathbb{P}\left\{\min _{i=1}^{n} B_{i} \leq \frac{n h_{n}^{\beta}}{2 e L}\right\}+n \max _{1 \leq i \leq n} \mathbb{P}\left\{\left|R_{i}\right|>\sqrt{\frac{\ln n}{B_{i}}}\right\} \\
& \leq n \exp \left(-\frac{n h_{n}^{\beta}}{8 L}\right)+n \times \frac{1}{n^{2}} \rightarrow 0 \tag{B.22}
\end{align*}
$$

When $\left\{\left|G^{c}\right|=0\right\}$ holds:

- When $\tilde{\alpha}$ makes (6) hold, by (B.20), we must have

$$
\begin{equation*}
\frac{1}{n+1}\left(1+\sum_{i=1}^{n} \bar{J}_{i}(\tilde{\alpha})\right) \geq \alpha \Rightarrow \tilde{\alpha} \geq Q\left(\frac{n+1}{n} \alpha-\frac{1}{n} ; \frac{1}{n} \sum_{i=1}^{n} \delta_{W_{i}}\right)-C\left(h_{n} \ln \left(h_{n}^{-1}\right)+\sqrt{\frac{\ln n}{n h_{n}^{\beta}}}\right) . \tag{B.23}
\end{equation*}
$$

- By (B.21), $\tilde{\alpha}$ makes (6) hold as long as

$$
\frac{1}{n+1} \sum_{i=1}^{n} \underline{J}_{i}(\tilde{\alpha}) \geq \alpha \Rightarrow \tilde{\alpha} \geq Q\left(\frac{n+1}{n} \alpha ; \frac{1}{n} \sum_{i=1}^{n} \delta_{W_{i}}\right)+C\left(h_{n} \ln \left(h_{n}^{-1}\right)+\sqrt{\frac{\ln n}{n h_{n}^{\beta}}}\right) .
$$

Further, since Γ includes all possible empirical CDF values from weighted distribution $\hat{\mathcal{F}}_{i}$ for $i=1, \ldots, n+1$ under all possible ordering of V_{1}, \ldots, V_{n+1}. Let $B_{\max }=\max _{i=1}^{n+1} B_{i}$. The differences between two adjacent values in Γ is upper bounded by $\frac{1}{B_{\max }} \leq \frac{2 e L}{n h_{n}^{\beta}}$. Hence, there exists a constant $C>0$ such that the smallest value in Γ that makes (6) is upper bounded by

$$
\begin{equation*}
\tilde{\alpha} \leq Q\left(\frac{n+1}{n} \alpha ; \frac{1}{n} \sum_{i=1}^{n} \delta_{W_{i}}\right)+C\left(h_{n} \ln \left(h_{n}^{-1}\right)+\sqrt{\frac{\ln n}{n h_{n}^{\beta}}}\right) . \tag{B.24}
\end{equation*}
$$

The bounds (B.23) and (B.24) hold for all $V_{n+1}=v$. By Dvoretzky-Kiefer-Wolfowitz inequality and the fact that $W_{i} \sim \operatorname{Unif}[0,1]$, there exists a constant $C>0$ such that

$$
\begin{equation*}
\mathbb{P}\left(\max _{t}\left|Q\left(t ; \sum_{i=1}^{n} \delta_{W_{i}}\right)-t\right| \leq \sqrt{\frac{\ln n}{n}}\right) \leq \frac{C}{n^{2}} \tag{B.25}
\end{equation*}
$$

Combine (B.23), (B.24), (B.25) and (B.22), there exist a constant $C>0$, such that

$$
\begin{equation*}
\mathbb{P}\left\{\left|\min _{v_{n+1}} \tilde{\alpha}\left(v_{n+1}\right)-\alpha\right|<C\left(h_{n} \ln \left(h_{n}^{-1}\right)+\sqrt{\frac{\ln n}{n h_{n}^{\beta}}}\right)\right\} \geq \frac{C}{n^{2}}+\mathbb{P}\left(\left|G^{c}\right|>0\right) \rightarrow 0 \tag{B.26}
\end{equation*}
$$

Since $C\left(h_{n} \ln \left(h_{n}^{-1}\right)+\sqrt{\frac{\ln n}{n h_{n}^{\beta}}}\right) \rightarrow 0$, this concludes our proof.
2. Proofs of (9) and (10): By definition, for any given $\tilde{\alpha}, V_{n+1} \leq Q(\tilde{\alpha} ; \hat{\mathcal{F}})$ if and only if

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{H\left(X_{n+1}, X_{i}\right)}{B_{n+1}} \mathbb{1}_{V_{i}<V_{n+1}}=I_{n+1}+R_{n+1}<\tilde{\alpha} \tag{B.27}
\end{equation*}
$$

Define $G=\left\{B_{n+1} \geq \frac{n h_{n}^{\beta}}{2 e L},\left|R_{n+1}\right| \leq \sqrt{\frac{2 e L \ln n}{n h_{n}^{\beta}}}\right\}$. When G holds, following the same routine as bounding $J(\tilde{\alpha}, v)$ with $\bar{J}(\tilde{\alpha})$ and $\underline{J}(\tilde{\alpha})$, we can lower and upper bound $\left(I_{n+1}+R_{n+1}\right)$ in (B.27) ${ }_{2}$ using Lemma A. 4 (i): there exists a constant $C>0$, such that

$$
\begin{align*}
& I_{n+1}+R_{n+1} \leq P_{V \mid X_{n+1}}\left(V_{n+1}\right)+C\left(h_{n} \ln \left(h_{n}^{-1}\right)+\sqrt{\frac{\ln n}{n h_{n}^{\beta}}}\right) . \tag{B.28}\\
& I_{n+1}+R_{n+1} \geq P_{V \mid X_{n+1}}\left(V_{n+1}\right)-C\left(h_{n} \ln \left(h_{n}^{-1}\right)+\sqrt{\frac{\ln n}{n h_{n}^{\beta}}}\right) . \tag{B.29}
\end{align*}
$$

$W_{n+1}=P_{V \mid X_{n+1}}\left(V_{n+1}\right) \sim \operatorname{Unif}[0,1]$ since $V \mid X_{n+1}$ is a continuous variable. By Lemma A. 4 (i) and (ii), $\mathbb{P}\left(G^{c}\right) \rightarrow 0$. Hence, for any given $\tilde{\alpha}$, there exists a constant $C>0$, such that

$$
\begin{align*}
& \mathbb{P}\left(I_{n+1}+R_{n+1}<\tilde{\alpha}\right) \leq \tilde{\alpha}+C\left(h_{n} \ln \left(h_{n}^{-1}\right)+\frac{1}{\left(n h_{n}^{\beta}\right)^{1 / 3}}\right)+\mathbb{P}\left\{G^{c}\right\} \rightarrow \tilde{\alpha} \tag{B.30}\\
& \mathbb{P}\left(I_{n+1}+R_{n+1}<\tilde{\alpha}\right) \geq \tilde{\alpha}-C\left(h_{n} \ln \left(h_{n}^{-1}\right)+\frac{1}{\left(n h_{n}^{\beta}\right)^{1 / 3}}\right) \rightarrow \tilde{\alpha} \tag{B.31}
\end{align*}
$$

Consequently, when $\tilde{\alpha}=\alpha$ or $\tilde{\alpha}=\tilde{\alpha}(v) \rightarrow \alpha$ for all v in probability as described in (11), we achieve an asymptotic conditional coverage at level α.

B.8. Proof of Theorem 4

Proof. We use the result from Barber et al. (2019) which extends CP to the setting with covariate shift:
Proposition B. 1 (Barber et al. (2019), Corollary 1). For any fixed x_{0}. Set $w_{x_{0}}()=.\frac{d \tilde{\mathcal{P}}_{X}^{x_{0}}}{d \mathcal{P}_{X}}$ and $p_{i}^{x_{0}}(x)=\frac{w_{x_{0}}\left(X_{i}\right)}{\sum_{j=1}^{n} w_{x_{0}}\left(X_{i}\right)+w_{x_{0}}(x)}$ for $i=1, \ldots, n$, and $p_{n+1}^{x_{0}}(x)=\frac{w_{x_{0}}(x)}{\sum_{j=1}^{n} w_{x_{0}}\left(X_{i}\right)+w_{x_{0}}(x)}$. Then,

$$
\mathbb{P}\left\{V\left(X_{n+1}, Y_{n+1}\right) \leq Q\left(\alpha ; \sum_{i=1}^{n+1} p_{i}^{x_{0}}\left(X_{n+1}\right) \delta_{\bar{V}_{i}}\right)\right\} \geq \alpha
$$

In our setting, $w_{x_{0}}(x) \propto H\left(x_{0}, x\right)$. As a direct application of Proposition B.1, when (\tilde{X}, \tilde{Y}) is distributed from $\tilde{\mathcal{P}}_{X Y}^{X_{n+1}}$, we have

$$
\mathbb{P}\left\{V(\tilde{X}, \tilde{Y}) \leq Q\left(\alpha ; \sum_{i=1}^{n+1} p_{i}^{x_{0}}(\tilde{X}) \delta_{\bar{V}_{i}}\right) \mid X_{n+1}=x_{0}\right\} \geq \alpha
$$

Since the $H\left(x_{0}, x_{0}\right) \geq H\left(x_{0}, \tilde{X}\right)$ by definition, the distribution $\hat{\mathcal{F}}$ dominates the distribution $\sum_{i=1}^{n+1} p_{i}^{x_{0}}(\tilde{X}) \delta_{\bar{V}_{i}}$: given $X_{n+1}=x_{0}$, for any α, we have

$$
\begin{aligned}
Q(\alpha ; \hat{\mathcal{F}}) & =Q\left(\alpha ; \sum_{i=1}^{n+1} \frac{H\left(x_{0}, X_{i}\right)}{\sum_{j=1}^{n+1} H\left(x_{0}, X_{j}\right)} \delta_{\bar{V}_{i}}\right) \\
& \geq Q\left(\alpha ; \sum_{i=1}^{n} \frac{H\left(x_{0}, X_{i}\right)}{\sum_{j=1}^{n} H\left(x_{0}, X_{j}\right)+H\left(x_{0}, \tilde{X}\right)} \delta_{\bar{V}_{i}}+\frac{H\left(x_{0}, \tilde{X}\right)}{\sum_{j=1}^{n} H\left(x_{0}, X_{j}\right)+H\left(x_{0}, \tilde{X}\right)} \delta_{\bar{V}_{i}}\right)=Q\left(\alpha ; \sum_{i=1}^{n+1} p_{i}^{x_{0}}(\tilde{X}) \delta_{\bar{V}_{i}}\right) .
\end{aligned}
$$

Hence, we have

$$
\mathbb{P}\left\{V(\tilde{X}, \tilde{Y}) \leq Q(\alpha ; \hat{\mathcal{F}}) \mid X_{n+1}=x_{0}\right\} \geq \alpha, \text { for all } x_{0}
$$

Next, we turn to the achieved coverage using $\tilde{C}\left(X_{n+1}\right)$. By construction, we have

$$
\begin{aligned}
\left\{\tilde{Y} \in \tilde{C}\left(X_{n+1}\right)\right\} & =\left\{V\left(X_{n+1}, \tilde{Y}\right) \leq Q(\alpha ; \hat{\mathcal{F}})+\varepsilon\left(X_{n+1}\right)\right\} \\
& \supseteq\{V(\tilde{X}, \tilde{Y}) \leq Q(\alpha ; \hat{\mathcal{F}})\}
\end{aligned}
$$

Consequently, we obtain

$$
\left.\mathbb{P}\left\{\tilde{Y} \in \tilde{C}\left(X_{n+1}\right) \mid X_{n+1}=x_{0}\right\} \geq \mathbb{P}\{V(\tilde{X}) \leq Q(\alpha ; \hat{\mathcal{F}})) \mid X_{n+1}=x_{0}\right\} \geq \alpha
$$

C. Proof of Lemmas in the Appendix

C.1. Proof of Lemma A.1

Proof. By definition, we know

$$
V_{n+1} \leq Q\left(\alpha ; \sum_{i=1}^{n} w_{i} \delta_{V_{i}}+w_{n+1} \delta_{V_{n+1}}\right) \Rightarrow V_{n+1} \leq Q\left(\alpha ; \sum_{i=1}^{n} w_{i} \delta_{V_{i}}+w_{n+1} \delta_{\infty}\right)
$$

To show that Lemma A. 1 holds, we only need to show that,

$$
V_{n+1}>Q\left(\alpha ; \sum_{i=1}^{n} w_{i} \delta_{V_{i}}+w_{n+1} \delta_{V_{n+1}}\right) \Rightarrow V_{n+1}>Q\left(\alpha ; \sum_{i=1}^{n} w_{i} \delta_{V_{i}}+w_{n+1} \delta_{\infty}\right)
$$

Let $Q\left(\alpha ; \sum_{i=1}^{n} w_{i} \delta_{V_{i}}+w_{n+1} V_{n+1}\right)=V_{i^{*}}$ for some index $1 \leq i^{*} \leq n+1$. When $V_{n+1}>V_{i^{*}}$, we must have $V_{i^{*}}<\infty$. By definition:

$$
\begin{aligned}
& \alpha \geq \sum_{i=1}^{n+1} w_{i} \mathbb{1}_{V_{i} \leq V_{i^{*}}}=\sum_{i=1}^{n} w_{i} \mathbb{1}_{V_{i} \leq V_{i^{*}}}=\sum_{i=1}^{n} w_{i} \mathbb{1}_{V_{i} \leq V_{i^{*}}}+w_{n+1} \mathbb{1}_{\infty \leq V_{i^{*}}} \\
\Rightarrow & Q\left(\alpha ; \sum_{i=1}^{n} w_{i} \mathbb{1}_{V_{i}}+w_{n+1} \delta_{\infty}\right) \leq V_{i^{*}}<V_{n+1}
\end{aligned}
$$

C.2. Proof of Lemma A. 2

Proof. We can prove Lemma A. 2 with elementary calculus arguments.
(i) Given $V_{1}, \ldots, V_{n+1}, Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{i}\right)=\inf \left\{t: \mathbb{P}(v \leq t) \geq \tilde{\alpha}, v \sim \hat{\mathcal{F}}_{i}\right\}$. The empirical distribution $\hat{\mathcal{F}}$ is discrete with mass $p_{i j}^{H}$ on V_{i}, we can have an explicit expression for $Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{i}\right)$:

$$
Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{i}\right)= \begin{cases}\bar{V}_{0}, & \tilde{\alpha}=0 \\ \bar{V}_{i}, & \sum_{j=1}^{i-1} p_{i j}^{H}<\tilde{\alpha} \leq \sum_{j=1}^{i} p_{i j}^{H}, i=1, \ldots, n \\ \bar{V}_{n+1}, & \sum_{j=1}^{n} p_{i j}^{H}<\tilde{\alpha}\end{cases}
$$

Hence, $Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{i}\right)$ is non-decreasing and right-continuous piece-wise constant on $\tilde{\alpha}$, and v_{i}^{*} can only change its value at $\sum_{j=1}^{k} p_{i j}^{H}$ for $k=1, \ldots, n$. The same is true for $Q(\tilde{\alpha} ; \hat{\mathcal{F}})$.
(ii) Given $\tilde{\alpha}$, when increasing V_{n+1} from $V_{n+1}=v^{\prime}$ to $V_{n+1}=v$ for $v>v^{\prime}$, the empirical distribution $\hat{\mathcal{F}}_{i}(v)$ dominates the empirical distribution $\hat{\mathcal{F}}_{i}\left(v^{\prime}\right)$ by construction: $\forall \tilde{\alpha}$, we have

$$
\mathbb{P}\left\{t \leq \tilde{\alpha} \mid t \sim \hat{\mathcal{F}}_{i}\left(v^{\prime}\right)\right\} \geq \mathbb{P}\left\{t \leq \tilde{\alpha} \mid t \sim \hat{\mathcal{F}}_{i}(v)\right\}
$$

As a result, $Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{i}(v)\right)$ is non-decreasing on v for any given $\tilde{\alpha}$, for $i=1, \ldots, n+1$.
(iii) Suppose that $v \in C_{V}\left(X_{n+1}\right)$. Let $\tilde{\alpha} \in \Gamma$ be the smallest value such that

$$
\sum_{i=1}^{n+1} \frac{1}{n+1} \mathbb{1}_{V_{i} \leq Q\left(\tilde{\alpha} ; \hat{F}_{i}(v)\right)} \geq \alpha
$$

by definition, we have $v \leq Q(\tilde{\alpha} ; \hat{\mathcal{F}})$. Now, we consider $V_{n+1}=v^{\prime}$ for $v^{\prime} \leq v$. By the monotonicity of $Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{i}(v)\right)$ on $\tilde{\alpha}$ and v from Lemma A. 2 (i) and (ii), we must have $\tilde{\alpha}^{\prime} \geq \tilde{\alpha}^{*}$ where $\tilde{\alpha}^{\prime} \in \Gamma$ is the smallest value satisfying

$$
\sum_{i=1}^{n+1} \frac{1}{n+1} \mathbb{1}_{V_{i} \leq Q\left(\tilde{\alpha}^{\prime} ; \hat{\mathcal{F}}_{i}\left(v^{\prime}\right)\right)} \geq \alpha
$$

Hence, we have $v^{\prime} \leq v \leq Q(\tilde{\alpha} ; \hat{\mathcal{F}}) \leq Q\left(\tilde{\alpha}^{\prime} ; \hat{\mathcal{F}}\right)$ and v^{\prime} is included in the PI. This concludes our proof.

C.3. Proof of Lemma A. 3

Proof. Let σ be a permutation of numbers $1,2, \ldots, n+1$. We know that

$$
\mathbb{P}\left\{\sigma_{n+1}=i \mid \mathcal{T}\right\}=\frac{\#\left\{\sigma: \sigma_{n+1}=i\right\}}{\sum_{j=1}^{n+1} \#\left\{\sigma: \sigma_{n+1}=j\right\}}=\frac{1}{n+1}
$$

Set $\mathcal{X}=\left\{X_{1}, \ldots, X_{n+1}\right\}$ be the unordered set of the features. Since the function $V(., \mathcal{Z})$ and the localizer $H(., ., \mathcal{X})$ are fixed functions conditional on \mathcal{T}, and $\tilde{\alpha}$ (can be random) is independent of the data conditional \mathcal{T}, we obtain

$$
\begin{align*}
& \mathbb{P}\left\{V_{n+1} \leq Q\left(\tilde{\alpha} ; \sum_{j=1}^{n+1} p_{n+1, j}^{H} \delta_{V_{j}}\right) \mid \mathcal{T}, \tilde{\alpha}\right\} \\
= & \sum_{i=1}^{n+1} \mathbb{P}\left\{\sigma_{n+1}=i \mid \mathcal{T}\right\} \mathbb{1}_{\left\{V_{n+1} \leq v_{n+1}^{*}(\sigma) \mid \mathcal{T}, \sigma_{n+1}=i\right\}} \\
= & \sum_{i=1}^{n+1} \frac{1}{n+1} \mathbb{1}_{\left\{v_{i} \leq v_{n+1}^{*}(\sigma), \sigma_{n+1}=i\right\}} \tag{C.1}
\end{align*}
$$

where

$$
v_{i}^{*}(\sigma):=Q\left(\tilde{\alpha} ; \sum_{j=1}^{n+1} p_{\sigma_{i}, \sigma_{j}}^{H} \delta_{v_{\sigma_{j}}}\right)=Q\left(\tilde{\alpha} ; \sum_{j=1}^{n+1} \frac{H\left(x_{\sigma_{i}}, x_{\sigma_{j}}\right)}{\sum_{j^{\prime}=1}^{n+1} H\left(x_{\sigma_{i}}, x_{\sigma_{j^{\prime}}}\right)} \delta_{v_{\sigma_{j}}}\right)
$$

is the realization of $v_{i}^{*}:=Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{i}\right)$ under permutation σ, conditional on \mathcal{T} and $\tilde{\alpha}$. We immediately observe that,

$$
\begin{equation*}
v_{i}^{*}(\sigma)=v_{\sigma_{i}}^{*} \tag{C.2}
\end{equation*}
$$

Combine (C.1) and (C.2), we obtain that $\mathbb{P}\left\{V_{n+1} \leq v_{n+1}^{*} \mid \mathcal{T}, \tilde{\alpha}\right\}=\sum_{i=1}^{n+1} \frac{1}{n+1} \mathbb{1}_{\left\{v_{i} \leq Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{i}\right)\right\}}$. Marginal- $\quad{ }^{265}$ ize over $\tilde{\alpha} \mid \mathcal{T}$, we have

$$
\mathbb{P}\left\{V_{n+1} \leq Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{n+1}\right) \mid \mathcal{T}\right\}=\mathbb{E}\left[\left.\sum_{i=1}^{n+1} \frac{1}{n+1} \mathbb{1}_{\left\{v_{i} \leq Q\left(\tilde{\alpha} ; \hat{\mathcal{F}}_{i}\right)\right\}} \right\rvert\, \mathcal{T}\right]
$$

C.4. Proof of Lemma A. 4

Proof.
Part (i): We divide the space into non-overlapping subregions $A_{k}=\left\{x:(k-1) h_{n} \leq d\left(x_{0}, x\right)<\right.$ $\left.k h_{n}\right\}$. Then,

$$
B\left(x_{0}\right)=\sum_{i=1}^{n+1} \exp \left(-\frac{d\left(x_{0}, X_{i}\right)}{h_{n}}\right) \geq \exp (-1) \sum_{i=1}^{n} \mathbb{1}_{X_{i} \in A_{1}}
$$

and $\mathbb{1}_{X_{i} \in A_{1}}$ follows a Bernoulli distribution with success probability $q_{i} \geq \frac{1}{L} n h_{n}^{\beta}$ according to Assumption 1 (ii). We can apply Chernoff Bounds to lower bound $B\left(x_{0}\right)$:

$$
\mathbb{P}\left\{\sum_{i=1}^{n} \mathbb{1}_{X_{i} \in A_{1}} \leq \frac{n h_{n}^{\beta}}{2 L}\right\} \leq \exp \left(-\frac{n h_{n}^{\beta}}{8 L}\right) \Rightarrow \mathbb{P}\left\{B\left(x_{0}\right) \leq \frac{n h_{n}^{\beta}}{2 e L}\right\} \leq \exp \left(-\frac{n h_{n}^{\beta}}{8 L}\right)
$$

Using the partitions $\left\{A_{j}\right\}$ and Assumption 1 (i):

$$
\begin{align*}
\Delta\left(x_{0}\right) & \leq L \sum_{i=1}^{n} d\left(x_{0}, X_{i}\right) \exp \left(-\frac{d\left(x_{0}, X_{i}\right)}{h_{n}}\right) \\
& \leq L h_{n} \exp (1) \sum_{k=1}^{\infty} k \sum_{i: X_{i} \in A_{k}} \exp (-k) \\
& \leq \min _{k_{0}}\left\{L \exp (1) k_{0} h_{n} \sum_{k \leq k_{0}} \sum_{i: X_{i} \in A_{k}} H\left(x_{0}, X_{i}\right)+L h_{n} \exp (1) \sum_{k>k_{0}} \sum_{i: X_{i} \in A_{k}} k \exp (-k)\right\} \\
& \leq \min _{k_{0}}\left\{e L k_{0} h_{n} B\left(x_{0}\right)+e L h_{n} k_{0} \exp \left(-k_{0}\right) n\right\} \\
& \leq e L \beta\left\lceil\ln h_{n}^{-1}\right\rceil h_{n}\left(B\left(x_{0}\right)+n h_{n}^{\beta}\right) \tag{C.3}
\end{align*}
$$

where we have taken $k_{0}=\beta\left\lceil\ln h_{n}^{-1}\right\rceil$ at the last step. Hence, there exists a constant $C>0$ such that

$$
\frac{\Delta\left(x_{0}\right)}{B\left(x_{0}\right) \vee\left(n h_{n}^{\beta}\right)} \leq 2 e L \beta\left\lceil\ln h_{n}^{-1}\right\rceil h_{n} \leq C \ln \left(h_{n}^{-1}\right) h_{n}, \text { for all } x_{0} \in[0,1]^{p}
$$

Part (ii): Set $Z_{i j}=\frac{H_{i j}}{B_{i}}\left(\mathbb{1}_{V_{j}<V_{i}}-P_{V \mid X_{j}}\left(V_{i}\right)\right)$, and $R_{i}=\sum_{j \neq i} Z_{i j}$. By Hoeffding's lemma, the centered variable $Z_{i j}$ is sub-Gaussian with parameter $\nu_{i j}=\frac{H_{i j}}{2 B_{i}}$ for all i, j and V_{i} : for all $j \neq i$,

$$
\mathbb{E}\left[\exp \left(\lambda Z_{i j}\right) \mid V_{i}\right] \leq \exp \left(\frac{\nu_{i j}^{2} \lambda}{2}\right), \text { for all } \lambda \in \mathbb{R}
$$

Hence, the weighted sum R_{i} is sub-Gaussian with parameter $\nu_{i}=\sqrt{\sum_{j \neq i, j \leq n} \frac{H_{i j}^{2}}{4 B_{i}^{2}}} \leq \sqrt{\frac{1}{4 B_{i}}}$, where we have used the fact that $H_{i j} \leq 1$ and $B_{i}=\sum_{j=1}^{n+1} H_{i j}$. Combining it with the sub-Gaussian concentration results, we obtain that

$$
\mathbb{P}\left\{\left|R_{i}\right| \geq t \mid \mathcal{X}, V_{i}\right\} \leq 2 \exp \left(-\frac{t^{2}}{2 \nu_{i}^{2}}\right) \leq 2 \exp \left(-2 t^{2} B_{i}\right), \text { for all } V_{i}, i=1, \ldots, n+1
$$

Take $t=\sqrt{\frac{\ln n}{B_{i}}}$, we obtain the desired bound.

D. Choice of H

D.1. Estimation of the default distance

Let \mathcal{V} be the CV fold partitioning when learning V. We will estimate the spread by learning $\left|V_{i}\right|$ for V_{i} from the cross-validation step and $i=1, \ldots, n_{0}$:

$$
V_{i} \leftarrow \hat{V}^{-i}\left(X_{i}^{0}, Y_{i}^{0}\right)
$$

where \hat{V}^{-i} is the score function learned using samples excluding i.
The spread learning step is using the same CV partitioning \mathcal{V}. To learn the spread $\rho(X)$, we consider minimizing the MSE with the response $\log \left(\left|V_{i}\right|+\overline{\left|V_{i}\right|}\right)$, with $\overline{\left|V_{i}\right|}$ be the mean absolute value for V_{i} across samples in $\mathcal{D}_{0}=\left\{Z_{i}^{0}=\left(X_{i}^{0}, Y_{i}^{0}\right), i=1, \ldots, n_{0}\right\}$. This additional term $\left|V_{i}\right|$ is added to reduce the influence of samples with very small empirical $\left|V_{i}\right|$.

We do not claim that learning $\rho(X)$ in such a way is always a good choice. It is a reasonable choice for the regression score. However, for quantile regression score, $\left|V_{i}\right|$ can be large around regions with severe under-coverage or over-coverage, making it a poor target. Despite this, the resulting LCP is similar to CP with a poorly chosen $\hat{\rho}(x)$ for the quantile regression score in our empirical studies.

Our estimated $\hat{\rho}$ is defined as $\hat{\rho}=\exp (\hat{f}(x))$ where $\hat{f}(x)$ is the estimated function from the learning step. We let $\rho_{i}=\hat{\rho}^{-i}\left(X_{i}^{0}\right)$ be the estimated spread from the cross-validation step. Let $J \in \mathbb{R}^{n_{0} \times p}$ be the Jacobian matrix with $J_{i}=\frac{\partial \hat{f}^{-i}\left(X_{i}^{0}\right)}{\partial X_{i}^{0}}$. Let $u_{\|} \in \mathbb{R}^{p \times p_{0}}$ and $u_{\perp} \in \mathbb{R}^{p \times\left(p-p_{0}\right)}$ be the top p_{0} and the remaining right singular vectors, with p_{0} be a small constant. By default, $p_{0}=1$. We form the projection matrix $P_{\|}$and P_{\perp} with $u_{\|}$and u_{\perp} :

$$
P_{\|}=u_{\|} u_{\|}^{\top}, P_{\perp}=u_{\perp} u_{\perp}^{\top}
$$

The final dissimilarity measure $d\left(x_{1}, x_{2}\right)$ is a weighted sum of the three components, and

$$
d\left(x_{1}, x_{2}\right)=\frac{d_{1}\left(x_{1}, x_{2}\right)}{\sigma_{2}}+\frac{\left(\omega d_{2}\left(x_{1}, x_{2}\right)+(1-\omega) d_{3}\left(x_{1}, x_{2}\right)\right)}{\sigma_{1}}
$$

where $d_{2}\left(x_{1}, x_{2}\right), d_{3}\left(x_{1}, x_{2}\right)$ are projected distances onto $P_{\|}$and P_{\perp}, and $d_{1}\left(x_{1}, x_{2}\right)$ are distance in the space of the learned spreading function $\hat{\rho}\left(x_{1}\right), \hat{\rho}\left(x_{2}\right)$ as described in Section 3.3:
$-d_{1}\left(x_{1}, x_{2}\right)=\left\|\hat{\rho}\left(x_{1}\right)-\hat{\rho}\left(x_{2}\right)\right\|_{2}$.
$-d_{2}\left(x_{1}, x_{2}\right)=\left\|P_{\|}\left(x_{1}-x_{2}\right)\right\|_{2}$.
$-d_{3}\left(x_{1}, x_{2}\right)=\left\|P_{\perp}\left(x_{1}-x_{2}\right)\right\|_{2}$.
We set ω and σ_{1}, σ_{2} as following:

- Let $\mu_{\|} / \mu_{\perp}$ be the mean of $d_{2}\left(X_{i}^{0}, X_{j}^{0}\right)$ or $d_{3}\left(X_{i}^{0}, X_{j}^{0}\right)$ for $i \neq j$, then we let $w=\frac{\mu_{\perp}}{\mu_{\perp}+\mu_{\|}}$.
- We let σ_{1} be the mean of $\left(\omega d_{2}\left(X_{i}^{0}, X_{j}^{0}\right)+(1-\omega) d_{3}\left(X_{i}^{0}, X_{j}^{0}\right)\right)$ and σ_{2} be that mean of $d_{1}\left(X_{i}^{0}, X_{j}^{0}\right)$, using all pairs $i \neq j$ from \mathcal{D}_{0}.

D.2. Empirical estimate of the objective

We want to minimize a penalized average length of finite PIs:

$$
\begin{aligned}
& J(h)=\text { Average } \mathrm{PI}^{\text {finite }} \text { length }+\lambda \times \text { Average conditional } \mathrm{PI}^{\text {finite }} \text { length variability } \\
& \text { s.t. } \mathbb{P}(\text { Infinite } \mathrm{PI}) \leq \delta
\end{aligned}
$$

Let $\mathbb{E}_{X} f(X)$ denote the expectation of some function $f($.$) with over X$. In this tuning section, we consider two specific types of $V($.$) : the scaled regression score and the scaled quantile score, and$

$$
V(X, Y)=\frac{1}{\sigma(X)}|Y-f(X)|
$$

or

$$
V(X, Y)=\frac{1}{\sigma(X)} \max \left\{q_{l o}(X)-Y, Y-q_{h i}(X)\right\}
$$

These two score classes will include the four scores considered in our numerical experiments. Let k^{*} be the selected index from Lemma 2, for this two classes of scores, the PI of Y_{n+1} is constructed as

$$
C\left(X_{n+1}\right)=\left[f\left(X_{n+1}\right)-\sigma\left(X_{n+1}\right) \bar{V}_{k^{*}}, f\left(X_{n+1}\right)+\sigma\left(X_{n+1}\right) \bar{V}_{k^{*}}\right]
$$

or

$$
C\left(X_{n+1}\right)=\left[q_{l o}\left(X_{n+1}\right)-\sigma\left(X_{n+1}\right) \bar{V}_{k^{*}}, q_{h i}\left(X_{n+1}\right)+\sigma\left(X_{n+1}\right) \bar{V}_{k^{*}}\right] .
$$

In both cases, the length over the constructed PI of Y_{n+1} is additive on $\sigma\left(X_{n+1}\right) \bar{V}_{k^{*}}$, and hence, mini- mizing PI of Y_{n+1} is equivalent to minimizing $\sigma\left(X_{n+1}\right) \bar{V}_{k^{*}}$, and the conditional variability of the PI is the same as the variability of $\sigma\left(X_{n+1}\right) \bar{V}_{k^{*}}$ conditional on X_{n+1}. Hence, after omitting components that do not depend on h, we can express the terms in the above objective as

- Average PI ${ }^{f i n i t e}$ length: $\mathbb{E}_{Z_{1: n}, X_{n+1}}\left[\sigma\left(X_{n+1}\right) \bar{V}_{k^{*}} \mid k^{*} \leq n\right]$. It depends on $Z_{1: n}, X_{n+1}$ as well as the tuning parameter h. (Recall that when $k^{*}=n+1, \bar{V}_{n+1}=\infty$.)
- Average conditional PI ${ }^{\text {finite }}$ length variability: $\sqrt{\mathbb{E}_{Z_{1: n}, X_{n+1}}\left[\sigma\left(X_{n+1}\right)^{2}\left(\bar{V}_{k^{*}}-\mu\left(X_{n+1}\right)\right)^{2} \mid k^{*} \leq n\right]}$, where $\mu\left(X_{n+1}\right)=\mathbb{E}_{Z_{1: n}}\left[\bar{V}_{k^{*}} \mid k^{*} \leq n, X_{n+1}\right]$ is the average length finite PI at X_{n+1}, marginalized over $Z_{1: n}$.
- Average percent of infinite PI: $\mathbb{P}\left(k^{*}=n+1\right)$.

We estimate the above quantities with empirical estimates using \mathcal{D}_{0}. As in the previous section, we consider the case where the function form $V(X, Y)$ is estimated by CV and $V_{i} \leftarrow \hat{V}^{-i}\left(X_{i}^{0}, Y_{i}^{0}\right)$. For example, we want to construct the score function $V(X, Y)=|Y-f(X)|$ where $f(X)$ is the mean prediction function. Then, $\hat{V}^{-i}\left(X_{i}^{0}, Y_{i}^{0}\right)$ is calculated as

$$
\hat{V}^{-i}\left(X_{i}^{0}, Y_{i}^{0}\right)=\left|Y_{i}^{0}-\hat{f}^{-k}(x)\right|
$$

where $\hat{f}^{-k}($.$) is the learned mean function using data excluding fold k$ that includes sample i. We also estimate the spreads and define the distance on \mathcal{D}_{0} using the CV estimates.

Given the dissimilarity measure $d_{i j}$ for any pair $\left(X_{i}^{0}, X_{j}^{0}\right)$, and thus $H_{i j}=\exp \left(-\frac{d_{i j}}{h}\right)$ for a given h, we estimate the empirical loss for $h \in\left\{h_{1}, \ldots, h_{m}\right\}$ as below:

- Estimation of average length and infinite PI probability:
- We subsample $\tilde{n}=(n+1) \wedge n_{0}$ samples without replacement from \mathcal{D}_{0}, let the set be \mathcal{S} and construct PI for each sample $i \in \mathcal{S}$ with a calibration set $\mathcal{S} \backslash\{i\}$. Let L_{i} be the scaled length for the constructed PI (scaled by $\sigma\left(X_{i}^{0}\right)$).
- The probability of having infinite PI is estimated as $C_{1}(h)=\frac{\#\left\{i \in \mathcal{S}, L_{i}=\infty\right\}}{\tilde{n}}$, and the average finite PI length is estimated as $C_{2}(h)=\frac{\sum_{i \in \mathcal{S}, L_{i}<\infty} L_{i}}{\#\left\{b: L_{i b}<\infty\right\} \vee 1}$.
The above estimates can be repeated for multiple times when n_{0} is much larger than $(n+1)$.
- Estimation of conditional variability:
- Repeat B times the PI construction: for $b=1, \ldots, B$, we subsample n samples with replacement from \mathcal{D}_{0}, and let the length of scaled PI of V at Z_{i}^{0} be $L_{i b}$ for $i=1, \ldots, n_{0}$.
- Calculate the finite conditional mean as $\mu_{i}=\frac{\sum_{b: L_{i b}<\infty} L_{i b}}{\#\left\{b: L_{i b}<\infty\right\} \vee 1}$.
- Calculate the conditional variance as $s_{i}=\frac{\sum_{b: L_{i b}<\infty}\left(L_{i b}-\mu_{i}\right)^{2}}{\#\left\{b: L_{i b}<\infty\right\} \vee 1}$.
- The average conditional variability for PI with finite length is estimated as $C_{3, h}=$ $\sqrt{\frac{\sum_{i}\left(\#\left\{b: L_{i b}<\infty\right\} \times s_{i}\right)}{\#\left\{(i, b): L_{i b}<\infty\right\}}}$

We take h from the candidate set to minimize the empirical objective:

$$
h=\arg \min _{C_{1}(h) \leq \delta}\left(C_{2}(h)+\lambda C_{3}(h)\right) .
$$

REFERENCES

Barber, R. F., Candes, E. J., Ramdas, A. \& Tibshirani, R. J. (2019). Conformal prediction under covariate shift. arXiv:1904.06019.

