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Supplemental Tables 

Table S1. Summary of variables shown in Figures 2 and 3. Table columns show the variable 

name, update frequency, number of years with data, time of most recent data point, current value 

of the variable, change relative to the previous value, and rank (where rank 1 indicates the 

highest value to date). For variables with subannual frequency, the value, change, and rank are 

all based on year-to-date data. For example, they are based on the first 20.8% of each year for the 

variable ―Carbon dioxide (CO2 parts per million)‖ (since ―Year‖ is equal to 2021.208). Note that 

variable time spans (# of years) differ significantly depending on the source. Variables that set 

all-time records based on the time series data are shown in red and marked with asterisks. 

Sources for these variables are given in this supplement. 

Variable Type Years Year Value Change Rank 

Human population (billion 

individuals)* 

Annual 73 2022 7.95 0.079 1 

Total fertility rate (births per 

woman)* 

Annual 61 2020 2.39 -0.0146 61 

Ruminant livestock (billion 

individuals)* 

Annual 60 2020 4.12 0.0579 1 

Per capita meat production 

(kg/yr) 

Annual 60 2020 43.3 -0.233 8 

World GDP 

(trillion current US $/yr)* 

Annual 63 2022 89.8 3.11 1 

Global tree cover loss (million 

hectares/yr) 

Annual 21 2021 25.3 -0.53 4 

Brazilian Amazon forest loss 

(million hectares/yr) 

Annual 34 2021 1.32 0.215 18 

Coal consumption 

(Exajoules/yr) 

Annual 57 2021 160 9.03 3 

Oil consumption 

(Exajoules/yr) 

Annual 57 2021 184 10 5 

Gas consumption 

(Exajoules/yr)* 

Annual 57 2021 145 6.91 1 

Solar/wind consumption 

(Exajoules/yr)* 

Annual 57 2021 27.3 4.17 1 
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Air transport (billion 

passengers carried/yr) 

Annual 48 2020 1.81 -2.75 17 

Total institutional assets 

divested (trillion USD)* 

Annual 11 2022 39.2 24.5 1 

CO2 emissions (gigatonnes CO2 

equivalent/yr) 

Annual 32 2021 39 2.01 3 

Per capita CO2 emissions 

(tonnes CO2 equivalent/yr) 

Annual 32 2021 4.95 0.207 14 

GHG emissions covered by 

carbon pricing (%)* 

Annual 33 2022 23.1 0.09 1 

Carbon price ($ per tonne CO2 

emissions) 

Annual 33 2022 14.2 0.0933 22 

Fossil fuel subsidies (billion 

USD/yr) 

Annual 12 2021 440 259 7 

Governments that have 

declared  a climate 

emergency (#)* 

Annual 6 2021 2080 146 1 

Carbon dioxide 

(CO2 parts per million)* 

Subannual 43 2022.375 418 2.48 1 

Methane 

(CH4 parts per billion)* 

Subannual 39 2022.292 1910 19.7 1 

Nitrous oxide 

(N2O parts per billion)* 

Subannual 45 2022.286 336 1.46 1 

Surface temperature anomaly 

(change) (°C) 

Subannual 143 2022.537 0.903 0.101 5 

Minimum Arctic sea ice 

(million km2) 

Annual 43 2021 4.92 0.92 32 

Greenland ice mass change 

(gigatonnes)* 

Subannual 21 2022.45 -5090 -198 21 

Antarctica ice mass change 

(gigatonnes) 

Subannual 21 2022.45 -2460 199 19 
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Glacier thickness change (m of 

water equivalent)* 

Annual 72 2021 -25.5 -0.771 72 

Ocean heat content change 

(1022 joules)* 

Annual 17 2021 27.2 1.64 1 

Ocean acidity (pH) Subannual 33 2020.964 8.07 0.00994 24 

Sea level change relative to 

20-year mean (mm)* 

Subannual 30 2022.413 53.1 2.82 1 

Area burned in the 

United States 

(million hectares/yr) 

Annual 39 2021 2.88 -1.21 13 

Global tree cover loss due to 

fires (million hectares/yr) 

Annual 21 2021 9.3 0.451 2 

Billion-dollar floods in the 

United States (events/year) 

Annual 42 2021 2 2 10 

Extremely hot days relative to 

1961-1990 (% of days/year) 

Annual 71 2021 19 -0.47 2 

Dengue virus vector capacity 

(average % change ca. 1950) 

Annual 68 2017 11.2 -0.262 2 
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Table S2. Regional summaries for 24 countries and The European Union. Variables shown are 

―CO2‖ (total CO2 emissions associated with fossil fuel consumption in mega tonnes CO2), 

―Population‖ (human population size in millions), ―CO2/capita‖ (CO2 emissions per capita in 

tonnes per person), ―Share‖ (percentage of all CO2 emissions associated with fossil fuel 

consumption compared to the global total), and ―GDP/capita‖ (per capita gross domestic product 

in US dollars per person). All data are for the year 2020 except GDP for Japan and the United 

Arab Emirates, which are for 2019. Additional details on these variables are provided in the 

supplementary information below. GDP/capita was calculated using FAOSTAT population 

estimates and World Bank GDP estimates. 

 CO2 Population CO2/capita Share GDP/capita 

China 12040 1476 8.2 30.9% $10,704 

United States 5168 333 15.5 13.3% $61,092 

The European Union 3060 514 6.0 7.9% $34,568 

India 2797 1393 2.0 7.2% $1,961 

Russia 2172 146 14.9 5.6% $10,218 

Japan 1082 126 8.6 2.8% $35,175 

Iran 893 85 10.5 2.3% $5,268 

Indonesia 713 276 2.6 1.8% $3,856 

Saudi Arabia 679 35 19.2 1.7% $19,018 

South Korea 629 51 12.3 1.6% $32,924 

Canada 595 38 15.6 1.5% $44,151 

Brazil 496 214 2.3 1.3% $8,551 

South Africa 473 60 7.9 1.2% $5,865 

Turkey 448 85 5.3 1.1% $13,251 

Mexico 444 130 3.4 1.1% $9,255 

Australia 433 26 16.8 1.1% $58,669 

Vietnam 340 98 3.5 0.9% $3,373 

Thailand 302 70 4.3 0.8% $6,270 

UAE 293 10 29.3 0.8% $37,120 

Iraq 290 41 7.0 0.7% $4,466 

Kazakhstan 272 19 14.3 0.7% $11,269 

Egypt 267 104 2.6 0.7% $4,086 
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Malaysia 267 33 8.1 0.7% $10,827 

Pakistan 258 225 1.1 0.7% $1,507 

Algeria 245 45 5.5 0.6% $3,914 

Top 25 34656 5634 6.2 88.9% $13,660 

World 38977 7875 4.9 100.0% $11,004 
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Supplemental Figures 

 

 
Figure S1. Annual consumption rates for nuclear energy and hydroelectricity (British Petroleum 

Company 2022). Non-fossil fuel energy supply pathways in the future may include hydro and 

nuclear power in addition to wind and solar power (IPCC 2018). See British Petroleum Company 

(2022) for other minor energy sources not shown in this figure. Figure 2h in the main text shows 

consumption of fossil fuels as well as solar/wind energy. 
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Figure S2. Approximate area burned in the U.S. (see figure 3l). The solid black lines show the 

predicted mean area burned according to a Bayesian change-point regression model. The dashed 

black lines correspond to an 80% credible band. According to this model, a new fire regime 

began around 1996 [80% credible interval: (1985, 2004)], although more research is needed to 

support this finding. Weakly informative priors were used for the rate parameters and inference 

was based on 4,000 posterior samples (see Supplementary Methods). 



 

9 

 
Figure S3. Number of inflation-adjusted billion-dollar floods in the U.S. (see figure 3n). The 

solid black lines show the predicted mean number of floods according to a Bayesian change-

point regression model. The dashed black lines correspond to an 80% credible band. According 

to this model, a new flood regime began around 2010 [80% credible interval: (2006, 2014)], 

although more research is needed to support this finding. Weakly informative priors were used 

for the rate parameters and inference was based on 4,000 posterior samples (see Supplementary 

Methods). 
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Figure S4. Cumulative fossil CO2 emissions (excluding carbonation) relative to 1750. Data from 

1750-2020 are from Friedlingstein et al. (2022), and the 2021 estimate is from Hausfather 

(2022). Addressing the climate emergency will require detailing with the massive building of 

carbon dioxide in the atmosphere. Otherwise, elevated CO2 levels and global temperatures, and 

could persist for centuries. An emissions counter developed using these data can be viewed at 

https://wolfkind.neocities.org/CO2/counter.html. 

https://wolfkind.neocities.org/CO2/counter.html
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Figure S5. Global historical and needed climate finance/investment. The red line shows actual 

climate finance from 2012 to 2020. The black line shows needed climate finance (2021-2050) in 

order to follow the 1.5°C pathway. This figure is adapted from a similar version presented in the 

Climate Policy Initiative‘s ―Global Landscape of Climate Finance 2021‖ report (Buchner et al. 

2021). For additional details on these data, see Buchner et al. (2021). 
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Recent climate-related disasters (Table 1) 
 

Below, we list a range of recent disasters from 2022 that were at least partly related to climate 

change. This list is not intended to be exhaustive. Due to the recent nature of these events, our 

sources often include news media articles. This list is identical to the one in Table 1 except 

relevant news articles and reports are provided using hyperlinks. 

 

Because of the natural variability and stochasticity of the Earth system, attributing specific 

extreme events (or parts of their impacts) to climate change is an exceptionally challenging task 

(Stott et al. 2013, Trenberth et al. 2015), although it may be possible in some cases (e.g., Strauss 

et al. 2021). For simplicity, we have partly adopted the framework of Stott et al. (2013), which is 

described by Trenberth et al. (2015 p. 725) as follows: 

 

―[T]he approach is to characterize the event and ask (i) whether the likelihood or strength of such 

events has changed in the observational record, and (ii) whether this change is consistent with the 

anthropogenic influence as found in one or more climate models, and thereby assess the ‗fraction 

of attributable risk‘.‖ 

 

For each event, we provide one or more references indicating that climate change may have 

increased the likelihood or intensity of such events. However, the references generally do not 

report the ―fraction of attributable risk‖ as these analyses are often not yet available.  

 

Note that some of these climate disasters may be at least partly related to changes in jet streams  

(Stendel et al. 2021, Rousi et al. 2022). 

 

● (January-September, 2022) Many rivers in Europe have run low or dried up partly 

because of the worst drought in 500 years and intense heat waves. Climate change has 

likely played a significant role in this crisis by increasing the frequency and intensity of 

droughts and heat waves. 

● (February, 2022) La Niña and climate change contributed to record-breaking rainfall on 

the east coast of Australia. This led to flooding that damaged thousands of properties and 

killed eight people. 

● (February-March, 2022) Record-breaking flooding occurred along the northeastern coast 

of Australia, leading to standing water, which in turn promoted the spread of mosquitoes 

that carry the Japanese encephalitis virus. Such flooding is likely becoming more 

common due to climate change. 

● (February-July, 2022) The number of people affected by drought in Kenya, Somalia, and 

Ethiopia who have limited access to safe water increased from 9.5 million to 16.2 

million. This increasing drought severity may be at least partly due to climate change 

(Ghebrezgabher et al. 2016). 

https://www.wired.com/story/the-drying-up-of-europes-great-rivers-could-be-the-new-normal/
https://www.bbc.com/news/world-europe-62648912
https://www.theguardian.com/environment/2022/aug/08/the-new-normal-how-europe-is-being-hit-by-a-climate-driven-drought-crisis
https://www.newscientist.com/article/2309783-record-flooding-in-australia-driven-by-la-nina-and-climate-change/
https://www.newscientist.com/article/2309783-record-flooding-in-australia-driven-by-la-nina-and-climate-change/
https://www.the-scientist.com/news-opinion/wet-weather-brings-japanese-encephalitis-to-australia-69915
https://www.climatecouncil.org.au/resources/supercharged-climate-rain-bombs-flash-flooding-destruction/
https://www.climatecouncil.org.au/resources/supercharged-climate-rain-bombs-flash-flooding-destruction/
https://www.unicef.org/press-releases/children-suffering-dire-drought-across-parts-africa-are-one-disease-away-catastrophe
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● (March, 2022) A severe drought in the Southern U.S. Plains put the winter wheat crop at 

risk. Although droughts are complex phenomena with many possible causes, increasing 

drought intensity has been linked to climate change (Mukherjee et al. 2018). 

● (March-April, 2022) A deadly heat wave occurred in India and Pakistan, killing at least 

90 people and contributing to widespread crop losses and wildfires. It was estimated that 

climate change made this event 30 times more likely to occur. 

● (April, 2022) Climate change likely contributed to extreme rainfall in Eastern South 

Africa, which triggered flooding and landslides that killed at least 435 people and 

affected more than 40,000 people. 

● (April-June, 2022) Widespread dust storms in the Middle East led to thousands of people 

being hospitalized; such dust storms may be increasing in frequency due to climate 

change. 

● (May, 2022) Extremely heavy rainfall in northeastern Brazil resulted in landslides and 

flooding that killed at least 100 people. Climate change may be responsible for the 

increasing frequency of extreme rainfall. 

● (June, 2022) A severe storm in Yellowstone (United States) caused the Gardner River to 

overflow, destroying parts of the road at Yellowstone National Park‘s north entrance. 

Such extreme flooding could be increasing in frequency due to climate change. 

● (June, 2022) Several countries in Western Europe experienced a record-breaking heat 

wave. This heat wave contributed to major wildfires in Spain and Germany. Many other 

parts of the Northern Hemisphere also experienced extreme heat; for example, 

temperatures reached 104.4 F in Isesaki, Japan—an all-time record for the country. 

Similarly, a heat dome in the United States contributed to record-breaking temperatures. 

Other affected countries include Finland, Iran, Norway, and Italy. In general, extreme 

heat is becoming more common due to climate change (Luber and McGeehin 2008). 

● (June, 2022) Following extreme heat, China experienced record-breaking rainfall, which 

may be linked to climate change. 

● (June, 2022) Bangladesh experienced the worst monsoon flooding in 100 years, killing at 

least 26 people. This flooding is likely at least partly due to climate change causing 

monsoons to become more variable. 

● (June-July, 2022) Extreme rainfall led to flooding in some parts of New South Wales, 

Australia. Sydney is currently on track to experience the wettest year on record. It is 

likely that climate change contributed at least partly to this rainfall and flooding. 

● (June-August, 2022) Deadly floods in Pakistan have killed more than 1,000 people and 

affected roughly 33 million people, including 16 million children, since mid-June. 

Impacts include surging rates of dengue fever, gastric infections, and malaria. These 

floods may be partly related to climate change causing monsoon rainfall to become more 

intense. 

https://www.reuters.com/world/us/plains-drought-curb-us-wheat-harvest-adding-global-supply-worries-2022-03-14/
https://www.theguardian.com/environment/2022/may/23/deadly-indian-heatwave-made-30-times-more-likely-by-climate-crisis
https://apnews.com/article/russia-ukraine-science-business-india-global-trade-4d32889d982bf0a60396ff4ba817ca16
https://www.nature.com/articles/d41586-022-01444-1
https://www.worldweatherattribution.org/climate-change-made-devastating-early-heat-in-india-and-pakistan-30-times-more-likely/
https://www.worldweatherattribution.org/climate-change-exacerbated-rainfall-causing-devastating-flooding-in-eastern-south-africa/
https://www.worldweatherattribution.org/climate-change-exacerbated-rainfall-causing-devastating-flooding-in-eastern-south-africa/
https://www.theguardian.com/environment/2022/jun/03/apocalyptic-skies-dust-storms-wreaking-havoc-iraq-syria
https://www.cbsnews.com/news/brazil-flooding-landslides-over-100-deaths/
https://www.cbsnews.com/news/brazil-flooding-landslides-over-100-deaths/
https://earthobservatory.nasa.gov/images/150010/catastrophic-flooding-in-yellowstone
https://www.npr.org/2022/07/07/1110219977/yellowstone-flooding-reveals-forecast-flaws
https://www.dw.com/en/europes-june-heat-wave-sparks-wildfires-warning/a-62176365
https://www.dw.com/en/europes-june-heat-wave-sparks-wildfires-warning/a-62176365
https://phys.org/news/2022-06-spain-germany-wildfires-unusual.html
https://www.nbcnews.com/science/science-news/tokyo-heat-wave-sweltering-temperatures-northern-hemisphere-rcna35713
https://www.pbs.org/newshour/science/oppressive-heat-wave-persists-across-large-swath-of-northern-hemisphere
https://www.axios.com/2022/06/30/heat-waves-europe-japan-records
https://thediplomat.com/2022/07/china-sees-record-rains-heat-as-weather-turns-volatile/
https://www.natureworldnews.com/articles/51491/20220622/bangladesh-record-breaking-worst-flooding-in-100-years.htm
https://www.aljazeera.com/news/2022/6/21/bangladesh-india-floods-kill-over-100-millions-in-need-of-aid
https://www.washingtonpost.com/climate-environment/2022/07/05/australia-flooding-sydney-record-rainfall/
https://www.washingtonpost.com/climate-environment/2022/07/05/australia-flooding-sydney-record-rainfall/
https://www.climatecouncil.org.au/resources/supercharged-climate-rain-bombs-flash-flooding-destruction/
https://www.cnn.com/2022/08/31/asia/pakistan-floods-forms-inland-lake-satellite-intl-hnk/index.html
https://www.theguardian.com/world/2022/sep/21/it-is-beyond-bleak-pakistan-floods-impacted-16m-children-says-unicef
https://www.bbc.com/news/world-asia-62907449
https://www.worldweatherattribution.org/climate-change-likely-increased-extreme-monsoon-rainfall-flooding-highly-vulnerable-communities-in-pakistan/
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● (June-August, 2022) China experienced an extraordinary heat wave, which may be the 

most severe that has ever been recorded globally. Such events are likely becoming more 

common because of climate change. The extreme heat contributed to large-scale crop 

failures and wildfires, in addition to exacerbating a major drought that caused 66 rivers to 

dry up and led to a significant decline in hydroelectricity generation. 

● (August-September, 2022) California and other parts of the Western United States faced 

extremely hot temperatures due to a heat dome, which caused seven firefighters to be 

hospitalized with heat-related injuries. The effects of the heat dome may have been 

worsened by climate change. 

● (September-October, 2022) In the United States, Hurricane Ian caused damage across 

many parts of Florida and the Carolinas, killing more than 100 people and leaving at least 

2.5 million without electrical power. Ian is one of the costliest and strongest hurricanes to 

ever hit the United States. Climate change is likely causing strong and rapidly 

intensifying storms such as Ian to become more common. 

 

https://www.newscientist.com/article/2334921-heatwave-in-china-is-the-most-severe-ever-recorded-in-the-world/
https://www.fastcompany.com/90782689/chinas-unprecedented-heat-wave-is-another-sign-we-arent-ready-for-the-reality-of-climate-change
https://www.fastcompany.com/90782689/chinas-unprecedented-heat-wave-is-another-sign-we-arent-ready-for-the-reality-of-climate-change
https://phys.org/news/2022-09-wildfire-rages-california-dome.html
https://www.latimes.com/california/story/2022-08-31/the-heat-dome-phenomenon-thats-generating-californias-hottest-week-and-why-its-getting-worse
https://www.cnn.com/2022/10/03/us/hurricane-ian-florida-recovery-monday/index.html
https://www.cnbc.com/2022/09/29/hurricane-ian-downgraded-to-tropical-storm-as-it-continues-to-batter-florida.html
https://www.cnbc.com/2022/10/01/dozens-are-dead-from-ian-one-of-strongest-costliest-us-storms.html
https://www.nytimes.com/2022/09/29/briefing/hurricane-ian-storm-climate-change.html
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Climate Impacts: Untold Human Suffering in Pictures 
 

Here, we present a compilation of photographs intended as a visual demonstration of the recent 

impacts of climate change. Photos generally show human suffering due to natural disasters that 

may be at least partly attributable to climate change. The photos primarily come from the last 

decade (2013-2022) and are grouped into two themes: flooding and drought. 

 

All photos are Creative Commons licensed and most were obtained through the Climate Visuals 

project (https://climatevisuals.org/), which compiles images from many sources. Specific credits 

are given with each image along with a brief description of the event. All quotations describing 

images are from the Climate Visuals project. 

 
 

 
Part I. Flooding 

 

 

 

South Sudan, 2014. ―Two small boys wading through water in a rural landscape, a flood plain.‖ 

Credit: JC Mcllwaine / UNMISS, Creative Commons 

 

 

https://climatevisuals.org/
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Bangladesh, 2020. Houses are nearly submerged due to flooding in Sirajganj, Bangladesh. 

Credit: Moniruzzaman Sazal / Climate Visuals Countdown, Creative Commons 

 

 

 

United Kingdom, 2007. ―Torrential rainfall in South Yorkshire on the 25th June 2007 led to the beck 

flooding in the afternoon.‖ Credit: John Dal, Creative Commons 
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Uganda, 2020. ―A girl, duck in hand wades through the water in Rwangara where Lake Albert levels 

caused the area to flood, destroying countless homes.‖ Credit: Climate Centre, Creative Commons 

 

 

 

United Kingdom, 2014. ―Man wades through flooded Cornish high street in the village of Fowey.‖ 

Credit: Prawny / Pixabay, Creative Commons 
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Mozambique, 2019. ―Two young people carrying large electrical goods through flood waters, amplifiers.‖ 

Credit: Denis Onyodi / IFRC/DRK, Creative Commons 

 

 

 

Bangladesh, 2018. ―Surviving against climate tragedy, two children a girl and a boy on a flooded 

riverbank.‖ Credit: Moniruzzaman Sazal / Climate Visuals Countdown 
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United Kingdom, 2008. ―Residents wade through flooded streets to escape flood waters‖ 

Credit: John Dal, Creative Commons 

 

Part II. Drought 

 

 

Afghanistan, 2019. ―In the Afghan city of Bamiyan, young girls are caught by a sandstorm on their way 

to school.‖ Credit: Solmaz Daryani / Climate Visuals Countdown, Creative Commons 
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Kenya, 2017. ―Drought in Kenya's Ewaso Ngiro river basin, transporting water by donkey cart.‖ 

Credit: Denis Onyodi / Denis Onyodi/KRCS, Creative Commons 

 

 

 

United States, 2012. Drought-affected corn field in Paulding County, Ohio. 

Credit: U.S. Department of Agriculture / Christina Reed, Creative Commons. 
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Ethiopia, 2016. ―Children in dust storm.‖ 

Credit: Anouk Delafortrie / EU/ECHO, Creative Commons 

 

 

 

Kenya, 2017. ―Pastoralists living in the Ewaso Ngiro river basin in central Kenya are digging for water 

and fear they will have to begin large-scale cattle destocking if the next rains are poor.‖ 

Credit: Denis Onyodi / KRCS, Creative Commons 
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United States, 2012. Agriculture Secretary Tom Vilsack examines crop damage due to a drought in Iowa. 

Credit: U.S. Department of Agriculture / Darin Leach 

 

 

 

Mozambique, 2016. A water hole that may have become empty due to drought. 

Credit: Aurélie Marrier d'Unienville / IFRC 
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Climate feedback loops and tipping points 
 

Rising global temperatures increase the risks posed by feedback loops and tipping points (Lenton 

et al. 2019). For example, climate change and deforestation have together pushed the Amazon 

rainforest beyond critical thresholds, raising concerns about multiple positive feedback loops in 

this important ecosystem (Boulton et al. 2022). Likewise, warming in the Arctic can cause 

accelerated release of greenhouse gasses from permafrost, potentially leading to further warming 

(Schuur et al. 2015). 

 

 

Planetary boundaries 
 

The climate crisis cannot be addressed as a stand alone issue. It is part of a larger systemic 

problem; a manifestation of the fact that humanity is now deep into the Anthropocene, where 

human demand exceeds the regenerative capacity of the biosphere (Wackernagel et al. 2002) and 

where Earth is losing its resilience to deal with stress and disturbance. The latest assessments 

indicate that 6 of the 9 planetary boundaries that contribute to regulate the state of the planet are 

beyond their safe space (Steffen et al. 2015, Persson et al. 2022, Wang-Erlandsson et al. 2022) 

(Steffen et al., 2015; Persson et al., 2022; Lan-Erlandsson et al., 2022), and that protecting nature 

(land, biodiversity, freshwater, nutrients) can help determine whether or not we are able to hold 

the agreed Paris climate target of 1.5°C (Rockström et al. 2021). A safe landing on climate 

requires massive action on both tackling ecological overshoot and decarbonising the global 

energy system. 
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Methods for planetary vital signs 
 

Ripple et al. (2020) compiled a set of global time series related to human actions that affect the 

environment and climate (e.g. fossil fuel consumption) and the associated environmental and 

climatic responses (e.g. temperature change). We have made a number of updates to this set of 

variables, which are described below. For completeness, we also describe all relevant methods, 

variables, and sources in full here, but note that there may be some overlap with Ripple et al. 

(2020) given the nature of this update. 

 

Although the data used are from sources believed to be reliable, no formal accuracy assessment 

for these datasets has been made by us and users should proceed with caution. With the 

exception of climate emergency declarations (see next section), all the ―human actions‖ time 

series are annual. However, many of the ―environmental and climatic responses‖ time series are 

subannual (e.g., monthly). In contrast to Ripple et al. (2020), we opted to keep these eight time 

series at their original (source) frequency rather than resampling to annual frequency. 

 

For each variable, we calculated the following statistics: 

 

1. The number of years with data (e.g., a variable with data from 1960 to 2021 would have 

62 years of data) 

2. The most recent year with data (can be fractional for subannual frequency variables – for 

example, 2021.35) 

3. The most recent value of the variable (year-to-date average for subannual variables) 

4. The most recent change in the variable (between current and preceding year-to-date 

averages for subannual variables) 

5. The rank associated with the most recent value (#3) based on the entire time series. For 

example, a rank of 2 means the variable is at its second highest level ever (second highest 

year-to-date average for subannual variables). 

 

While we only plotted data between 2000 and the present (2021), we included data from before 

2000 (if available) when calculating the above statistics. 

 

Models for vital signs 

 

For area burned in the United States and billion-dollar floods in the United States, we fitted 

Bayesian changepoint models to explore the possibility of abrupt shifts in these time series. 

Following Fonnesbeck et al. (2017), we treated the number of billion dollar floods in each year 

as Poisson distributed, with two rate parameters—one before the breakpoint and another after the 

breakpoint. We treated the breakpoint location itself as a latent discrete parameter, with a 

discrete uniform prior. For the rate parameter priors, we used weakly informative exponential 



 

25 

distributions with mean 10 (and variance 100). We used the same approach to model area 

burned, except we treated the data as following exponential distributions, rather than Poisson 

distributions. 

 

We marginalized out the latent discrete breakpoint parameters and fit the models using the Stan 

probabilistic programming language (Carpenter et al. 2017). We based inference on 4,000 

MCMC posterior samples (from 4 chains with 1,000 burnin samples discarded). It is important to 

note that this analysis was intended as a simple and preliminary assessment of possible abrupt 

shifts in certain climate-related disaster variables. To make rigorous conclusions, further research 

is needed. For example, followup work could consider more flexible probability distributions, 

account for possible temporal autocorrelation, or incorporate climate-related predictor variables 

 

For the plots of the other ―environmental and climatic responses‖ variables with high variance, 

we included smooth trend lines calculated using locally estimated scatterplot smoothing. We fit 

the trend lines in R using the ‗loess‘ function with default settings (degree 2, span 0.75) (R Core 

Team 2018). 

 

 

 

 

 

  



 

26 

Indicators of climate-related human activities (Figure 2) 
 

Below, we list sources and provide brief descriptions of indicators used in our analysis. Full 

methods for each indicator are available at the provided sources. 

 

Human population (Figure 2a) 

 

We used the Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) as 

our source of human population data (FAOSTAT 2022). For human population estimates, the 

source data used by FAOSTAT are derived from national population censuses. For 2019 through 

2022, these estimates are classified as ―year projections.‖ 

 

Total fertility rate (Figure 2b) 

 

We obtained this variable from the World Bank (The World Bank 2022a). The full variable name 

is ―Fertility rate, total (births per woman)‖ and the World Bank variables ID is 

SP.DYN.TFRT.IN. This variable was derived using data from multiple sources, including the 

United Nations Population Division. The full list of original sources is available at The World 

Bank (2022a). Total fertility rate is defined as ―the number of children that would be born to a 

woman if she were to live to the end of her childbearing years and bear children in accordance 

with age-specific fertility rates of the specified year‖ (The World Bank 2022a). 

 

Ruminant livestock population (Figure 2c) 

 

We used the Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) as 

our source of ruminant livestock population data (FAOSTAT 2022). We considered ruminants to 

be members of the following groups: cattle, buffaloes, sheep, and goats. For livestock estimates, 

the primary data sources are national statistics obtained using questionnaires or collected from 

countries‘ websites or reports. When national livestock statistics were unavailable, they were 

estimated by FAOSTAT using imputation (FAOSTAT 2022). 

 

Per capita meat production (Figure 2d) 

 

We used total meat production data from FAOSTAT along with FAOSTAT human population 

size estimates (figure 2a) to estimate per capita meat production (FAOSTAT 2022). The meat 

production estimates are for the ―Meat, Total‖ item under the ―Crops and livestock products‖ 

domain (FAOSTAT 2022). 

 

World gross domestic product (Figure 2e) 

 

We obtained this variable from the World Bank (2022b) for the years 1960 to 2021. The full 

variable name is ―GDP (constant 2015 US$)‖ and the World Bank variable ID is 
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NY.GDP.MKTP.KD. This variable was derived from multiple sources such as World Bank 

national accounts. For details, including limitations and exceptions, see The World Bank 

(2022b). Gross domestic product (at purchaser‘s prices) is defined as ―the sum of gross value 

added by all resident producers in the economy plus any product taxes and minus any subsidies 

not included in the value of the products‖ (The World Bank 2022b). 

 

We calculated a projection for 2022 gross domestic product (GDP) using the April 2022 edition 

of the International Monetary Fund‘s World Economic Outlook Database (IMF 2022). We first 

obtained the year 2022 percentage change estimate based on the variable ―Gross domestic 

product, constant prices‖ in units ―Percent change‖ (IMF 2022). We then used this percentage 

change estimate to predict total GDP (as measured by the World Bank in constant 2015 US 

dollars) in 2022. Because IMF projections and World Bank and World Economic Outlook GDP 

estimates likely differ in methodology, this 2022 estimate should only be considered an 

approximation. 

 

Global tree cover loss (Figure 2f) 

 

We obtained data on annual global tree cover loss from Global Forest Watch (Hansen et al. 

2013). These data express loss globally in million hectares (Mha) and were derived from 

remotely-sensed forest change maps. It should be noted that loss is general and not linked to a 

specific type of deforestation. So, it includes wildlife, conversion to agriculture, disease, etc. 

Additionally, tree cover loss does not take tree cover gain into account. Thus, net forest loss may 

be lower than the reported numbers. 

 

Some of the apparent variation in loss rates may be due to non-forest factors such as changes in 

the modeling algorithm, satellite data quality, and satellite data variability (Global Forest Watch 

2022). Thus, trends in tree cover loss rates should be interpreted with this limitation in mind. 

 

Brazilian Amazon forest loss (Figure 2g) 

 

We obtained annual Brazilian Amazon forest loss estimates from Butler (2022). Brazil contains 

about 60% of the Amazon rainforest. We used annual deforestation estimates rather than 

monthly ones because of high month-to-month variability. Due to cloud cover issues, each 

annual estimate is for the period August 1 to July 31. For example, the 2021 estimate is for 

deforestation occurring between August 1, 2020 and July 31, 2021. 

 

The original source of these data is PRODES — the annual deforestation monitoring system of 

Brazil‘s National Institute for Space Research (INPE). PRODES deforestation estimates are 

based on remotely sensed Landsat-type data. 
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Energy consumption (Figure 2h) 

 

We used the British Petroleum Company‘s 2022 Statistical Review of World Energy as our 

primary source of data on energy consumption (British Petroleum Company 2022). For energy 

consumption, we used the following time series: coal, oil, natural gas, solar, and wind. We 

grouped solar and wind together into a single category. Coal consumption data are only for 

commercial solid fuels. In each case, the units of energy consumption are exajoules (per year). 

Other sources of low carbon energy such as hydropower and nuclear power are shown in figure 

S3. 

 

Air transport (Figure 2i) 

 

We obtained estimates from the World Bank (The World Bank 2022c). The full variable name is 

―Air transport, passengers carried.‖ The corresponding World Bank variable ID is IS.AIR.PSGR. 

This variable was derived from multiple sources, including the International Civil Aviation 

Organization. The full list of sources is available at The World Bank (2022c). Air transport 

includes both domestic and international travelers. 

 

Divestment (Figure 2j) 

 

Data on ―total assets under management committed to fossil fuel divestment‖ were obtained 

from the ―Invest Divest 2021‖ report (DivestInvest 2021). They cover institutional divestment by 

1,485 organizations. The most commonly represented institutions were faith-based organizations, 

educational institutions, philanthropic foundations, governments, and pension funds 

(DivestInvest 2021). The original source of these data is the Global Divestment Commitments 

Database, which is ―currently managed by Stand.earth in partnership with 350.org‖ (DivestInvest 

2021). 

 

There are several important methodological details for these data: 

 

1. This divestment variable reflects cumulative institutional investment by year in terms of 

total assets under management (AUM). Thus, it does not represent actual amounts of 

divestment from fossil fuel companies. 

2. Fossil divestment commitments vary in terms of reach and impact. For example, some 

commitments may only apply to tar sands or thermal coal. 

3. Estimates are based on announced fossil fuel divestment commitments. 

4. Although the Global Divestment Commitments Database is reported to be the most 

comprehensive dataset on divestment commitments (DivestInvest 2021), it does not 

necessarily include all commitments. 

 

For further details and caveats, see the ―Methodology‖ section of the Invest Divest 2021 report 

(DivestInvest 2021). 
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Note that more sophisticated metrics are needed to determine which companies should be subject 

to divestment (Mormann 2020). 

 

CO2 emissions (Figure 2k) 

 

We used the British Petroleum Company‘s 2022 Statistical Review of World Energy as our 

source of data on CO2 emissions (British Petroleum Company 2022). Specifically, we used the 

variable ―Carbon Dioxide Equivalent Emissions from Energy, Process Emissions, Methane, and 

Flaring,‖ which is defined as ―the sum of carbon dioxide emissions from energy, carbon dioxide 

emissions from flaring, methane emissions in carbon dioxide equivalent and carbon dioxide 

emissions from industrial processes‖ (British Petroleum Company 2022). 

 

Per capita CO2 emissions (Figure 2l) 

 

We converted total CO2 emissions (figure 2k) to per capita CO2 emissions using FAOSTAT 

human population size estimates (figure 2a). 

 

Greenhouse gas emissions covered by carbon pricing (Figure 2m) 

 

The data on percentage of greenhouse gas emissions covered by carbon pricing schemes are 

taken directly from World Bank Group (2021). When multiple schemes covered the same 

emissions, the emissions were associated with the earliest of the schemes. The data were 

accessed using the Carbon Pricing Dashboard. They were last updated on April 1, 2021. 

 

Carbon price and share of greenhouse gas emissions covered by carbon pricing (Figure 2n) 

 

These data were derived from World Bank Group (2021). To estimate the global carbon price, 

we used the average of the individual scheme prices weighted by the percentage of greenhouse 

gas emissions covered by each scheme. When multiple schemes covered the same emissions, the 

emissions were associated with the earliest of the schemes. The data were accessed using the 

Carbon Pricing Dashboard. They were last updated on April 1, 2022. 

 

Fossil fuel subsidies (Figure 2o) 

 

We obtained data on fossil fuel subsidies between 2010 and 2020 using the International Energy 

Agency subsidies database (IEA 2022). Fossil fuel consumption subsidies are global totals in 

2020 billion US dollars. They cover oil, electricity, natural gas, and coal. 

 

Subsidy values are estimated using the price-gap approach, which involves comparing ―average 

end-user prices paid by consumers with reference prices that correspond to the full cost of 

supply‖ (IEA 2022). The subsidy amount is equal to the product of this price gap and the amount 

consumed (IEA 2022). 
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Climate emergency declarations (Figure 2p) 

 

We obtained data on climate emergency declarations from the International Climate Emergency 

Forum (ICEF) ―Governments emergency declaration spreadsheet‖ (Climate Emergency 

Declaration 2022). These data track governments that have either declared or recognized a 

climate emergency. The first declaration in the dataset occurred on December 5, 2016. We 

converted these data to annual totals by considering only cumulative total declarations at the end 

of each year. For example, the total number of declarations by 2018 corresponds to the number 

of declarations made prior to December 31, 2018 (including those made in preceding years). 

 

In the manuscript text, we present the number of countries in which one or more jurisdictions 

have declared a climate emergency. We obtained this information from the International Climate 

Emergency Forum (ICEF) ―Governments emergency declaration spreadsheet‖ (Climate 

Emergency Declaration 2022). 
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Indicators of climate-related responses (Figure 3) 
 

Atmospheric CO2 (Figure 3a) 

 

We obtained globally averaged monthly estimates of atmospheric CO2 concentration from 

NOAA‘s Global Monitoring Laboratory (Dlugokencky and Tans 2022). Specifically, we used 

the dataset ―Globally averaged marine surface monthly mean data.‖ Note that data for the most 

recent year are subject to change; potential changes are typically minor. Beginning on February 

10, 2021, these CO2 data are on the WMO X2019 scale. See Global Monitoring Laboratory 

(2021) for details on the difficulty in attributing a change in atmospheric CO2 concentration to 

COVID-19. 

 

Atmospheric methane (Figure 3b) 

 

We obtained globally-averaged monthly estimates of atmospheric methane (CH4) concentration 

from NOAA (Ed Dlugokencky, NOAA/ESRL 2022). We used the ―Globally averaged marine 

surface monthly mean data‖ dataset. These data are derived from measurements made at a global 

network of sampling sites that were smoothed across time and plotted versus latitude 

(Dlugokencky et al. 1994, Masarie and Tans 1995). The data are reported as a ―dry air mole 

fraction‖ (Ed Dlugokencky, NOAA/ESRL 2022). 

 

Atmospheric nitrous oxide (Figure 3c) 

 

We obtained data on nitrous oxide (N2O) concentration from the NOAA/ESRL Global 

Monitoring Laboratory (―Globally averaged marine surface monthly mean data‖) (Ed 

Dlugokencky, NOAA/GML 2022). These global monthly mean estimates are measured in parts 

per billion and are derived by smoothing data collected from a global network of airs sampling 

sites (Dlugokencky et al. 1994, Masarie and Tans 1995). 

 

Surface temperature anomaly (change) (Figure 3d) 

 

We obtained global monthly mean surface temperature anomaly data from the NASA GISS 

Surface Temperature Analysis (GISTEMP v4) dataset (GISTEMP Team 2022). We used the 

―Combined Land-Surface Air and Sea-Surface Water Temperature Anomalies (Land-Ocean 

Temperature Index, L-OTI)‖ ―Global-mean monthly, seasonal, and annual means‖ variable. 

These temperature anomaly/change estimates combine land and ocean surface temperatures. The 

baseline period used for setting zero is the 1951-1980 mean. 

 

Minimum Arctic sea ice (Figures 3e) 

 

We obtained minimum Arctic sea ice estimates from Wiese (2019) and NSIDC/NASA (2022). 

They are derived from satellite observations. For each year, the data indicate the average Arctic 

sea ice extent for the month of September, which is when the annual minimum occurs. 
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According to NSIDC/NASA (2022), ―Arctic sea ice reaches its minimum each September. 

September Arctic sea ice is now declining at a rate of 13.1 percent per decade, relative to the 

1981 to 2010 average.‖ For plotting purposes, we associated each observation with September 15 

(the approximate midpoint of the month). 

 

Greenland ice mass (Figure 3f) 

 

We obtained total land ice mass change measurements for Greenland from Wiese (2019) and 

NSIDC/NASA (2022). These data show changes in ice sheet mass (in Gt) since April 2002. They 

come from NASA‘s GRACE satellites (GRACE and GRACE-FO JPL RL06Mv2 Mascon 

Solution). The data are in the form of anomalies relative to April 2002. The measurement 

frequency is roughly monthly. The gap in the data between June 10, 2017 and June 14, 2018 

corresponds to the time between missions, and should be kept in mind when interpreting the 

year-to-date means that we present. For more details on these data, see Watkins et al. (2015). 

 

Antarctica ice mass (Figure 3g) 

 

We obtained total land ice mass change measurements for Antarctica from Wiese (2019). These 

data show the changes in ice sheet mass (in Gt) since April 2002. They come from NASA‘s 

GRACE satellites (GRACE and GRACE-FO JPL RL06Mv2 Mascon Solution). The 

measurement frequency is roughly monthly. The gap in the data between June 10, 2017 and June 

14, 2018 corresponds to the time between missions, and should be kept in mind when 

interpreting the year-to-date means that we present. For more details on these data, see Watkins 

et al. (2015). 

 

Cumulative glacier thickness change (Figure 3h) 

 

We obtained cumulative glacier mass balance data from the World Glacier Monitoring Service 

(WGMS 2022). These data were derived from a database with information about changes in 

mass, volume, etc. of individual glaciers over time. They are based on averaging over a global 

set of reference glaciers and are measured relative to 1970. 

 

The units of these data are meters of water equivalent. According to the World Glacier 

Monitoring Service, ―A value of -1.0 [meter of water equivalent] per year is representing a mass 

loss of 1,000 kg per square meter of ice cover or an annual glacier-wide ice thickness loss of 

about 1.1 m per year, as the density of ice is only 0.9 times the density of water‖ (WGMS 2022). 

 

For plotting, we associated each value with the midpoint of the corresponding year. 

 

Ocean heat content (Figure 3i) 

 

We obtained yearly (not pentadal) ocean heat content time series data from NOAA‘s National 

Centers for Environmental Information (NCEI) (NOAA 2022a). These data are in units of 10
22
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joules and cover the depth range 0-2000 m. The reference period is 1955-2006 (Levitus et al. 

2012). 

 

For plotting, we associated each value with the midpoint of the corresponding year (as in the 

dataset). 

 

Ocean acidity (Figure 3j) 

 

As a proxy for global ocean acidity, we used a time series of seawater pH from the Hawaii 

Ocean Time-series surface CO2 system data product (HOT 2022). This data product was adapted 

from Dore et al. (2009). The data were collected at Station ALOHA (22°45'N, 158°00'W). We 

used the variable ―pHmeas_insitu,‖ which is described as the ―mean measured seawater pH, 

adjusted to in situ temperature, on the total scale‖ (HOT 2022). 

 

Sea level change (Figure 3k) 

 

We obtained data on global mean sea level from GSFC (2021). The variable we used was 

―GMSL (Global Isostatic Adjustment (GIA) not applied) variation (mm) with respect to 20-year 

TOPEX/Jason collinear mean reference.‖ According to the dataset description, the 

―TOPEX/Jason 20 year collinear mean reference is derived from cycles 121 to 858, years 1996-

2016‖ (GSFC 2021). For details, see Beckley et al. (2010) and Beckley et al. (2017). 

 

It should be noted that temperature increase and the warming of the entire ocean is a major 

contributor to sea-level rise (WCRP Global Sea Level Budget Group 2018). 

 

Total area burned by wildfires in the United States (Figure 3l) 

 

These data come from the National Interagency Coordination Center at The National Interagency 

Fire Center (National Interagency Coordination Center 2022) and include Alaska and Hawaii. 

The total for 2004 does not include state lands within North Carolina. 

 

Although wildfire risk depends on many factors including forest management, climate change is 

likely a significant contributor in the United States (An et al. 2015) and globally (Jolly et al. 

2015). 

 

As with global tree cover loss due to fires (figure 3m), this dataset does not distinguish between 

natural and human-ignited fires. 

 

Global tree cover loss due to fires (Figure 3m) 

 

We obtained global estimates of tree cover loss due to fires from Tyukavina et al. (2022). Tree 

cover refers to vegetation with height 5 m or greater. These estimates exclude the burning of 

felled trees, but include both natural and human-ignited fires (Tyukavina et al. 2022). 
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These data were downloaded using the Global Forest Watch platform (World Resources Institute 

2022). 

 

Billion-dollar floods in the United States (Figure 3n) 

 

We obtained data on the frequency of billion-dollar floods in the United States from NOAA 

(2022b). This dataset covers the number of floods per year (since 1980) with at least 1 billion 

USD in damages. All damage estimates were CPI-adjusted to 2022 (NOAA 2022b). See Smith 

(2022) for details. 

 

Climate change is likely associated with increasing flood risk in many parts of the world, 

although estimates may be highly uncertain (Hirabayashi et al. 2013, Alfieri et al. 2017). 

Because the data we present relate to economic damages, an increasing trend may be partly due 

to rising vulnerability, exposure, and GDP (Cardona et al. 2012, Lavell et al. 2012). 

 

Extremely hot days relative to 1961-1990 (Figure 3o) 

 

We used the ―TX90p‖ temperature metric to assess the frequency of extremely hot days (Donat 

et al. 2013). This variable is derived from the GHCNDEX dataset and indicates the proportion of 

days where the maximum temperature exceeds the 90th percentile for the baseline period 1961-

1990. Thus, it should remain around 10% in the absence of an overall temperature trend. To 

obtain a single global time series, the gridded spatio-temporal time series were averaged across 

Earth‘s surface (from -84 to 84 latitude). For details, see Zhang et al. (2005) and Donat et al. 

(2013). 

 

Note that climate change has been linked to increases in both the frequency and intensity of 

extreme heat events (Luber and McGeehin 2008). 

 

Dengue virus vector capacity (Figure 3p) 

 

Watts et al. (2019) presented estimates of global vectorial capacity for two dengue virus vectors: 

the mosquito species Aedes aegypti and Aedes albopictus. The vectorial capacities associated 

with these species are measures of their propensity to transmit the dengue virus (Liu-Helmersson 

et al. 2014). These data cover the timespan 1950 to 2017 and are expressed in terms of % change 

relative to ca. 1950 (Watts et al. 2019). We estimated overall vectorial capacity change by 

averaging these time series together. Since these vectors have different baseline capacities, the 

average that we present is only intended as a rough indicator of overall capacity.  
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