Supplemental File S1 Predator decline and shifting baselines: Are the landscapes we study a "sick patient"? By William J. Ripple, Christopher Wolf, Robert L. Beschta, Apryle D. Craig, Zachary S. Curcija, Erick J. Lundgren, Lauren C. Satterfield, Samuel T. Woodrich, Aaron J. Wirsing **Figure S1. Locations of national parks.** We considered all national parks in the Western United States where wolves were historically present. For each park, the number of associated theses and journal articles that we obtained is shown in parentheses. Table S1. Summary of observations regarding ungulates and plants following the displacement/extirpation of large predators in three northwestern US national parks. Source: Beschta and Ripple (2009). | National Park | Summary of observations | |---|---| | Olympic National
Park (western
portion of the park) | With wolves functionally extirpated by 1910 and a hunting ban on elk that began in 1905, the Olympic peninsula's elk population began to rapidly increase and significant browsing of riparian shrubs was observed within a decade (Bailey 1918). As herbivory impacts continued, palatable shrub and tree species were increasingly unable to grow above the browse level of elk (Murie 1935, Schwartz 1939, Newman 1954). A deterioration of plant communities led park service biologist E.L. Sumner to surmise that wolves had likely been an essential "natural check" preventing elk overpopulation (Sumner 1938). He further indicated: "Unless some substitute for this now absent controlling factor is provided, serious destruction of certain plants and even their total elimination in certain places through inability to reproduce will no doubt occur." | | Yellowstone National
Park (northern winter
range) | By 1920, and perhaps earlier, wolves had been functionally extirpated from Yellowstone's northern elk winter ranges. Approximately a decade later, Rush (1933) found that the northern range was "badly overgrazed", sheet erosion was occurring, and much of the "rich top soil" had washed away. Subsequently, Grimm (1939) concluded that herbaceous plants became depleted each winter due to overutilization by ungulates. His studies of aspen indicated that excessive browsing by elk threatened the "existence of aspen on the winter range." Even though the Park Service reduced elk numbers in an attempt to lessen their foraging impacts, by the mid-1950s the cumulative effects of grazing and trampling by elk had removed lush thickets of willows from meadows, impacted sagebrush, and depleted aspen stands "that cannot be replaced while elk consume reproduction" (NPS 1956). Bunchgrasses, which normally comprised the bulk of an elk's diet, were also in "poor condition." The diminishment of northern range plant communities led A. Leopold (1949) to simply conclude: "Thus the Yellowstone has lost its wolves and cougars, with the result that elk are ruining the flora, particularly on the winter range." | | Wind Cave National
Park | Journal records of naturalist G.B. Grinnell during the 1874 Custer expedition to the Black Hills chronicled abundant large carnivores, ungulates, berry-producing shrubs, wildflowers, and beaver along their route (Ludlow 1875). For example, serviceberry, a browse species that today is uncommon in the park, was "very abundant, both in the form of low bushes in open, dry, sparse copses and as thickets in the valleys." Grinnell also noted "almost all the streams which we passed were dammed in many places by beaver." However, discovery of gold in 1874 and a rush of miners to the Black Hills were soon followed by large herds of cattle and sheep. Thus, large predators were quickly removed from the landscape. By the mid-1880s continuous grazing by livestock had resulted in a "dangerous depletion of the range" and thus "beaver had begun to disappear and their dams began to let go" (Palais 1942). When the park was established in 1905, it inherited not only an area generally devoid of large predators, but one where native plant communities had experienced several decades of intensive herbivory by domestic ungulates (Smith unpublished¹). | _ ¹ Smith J. Rare Tree and shrub survey in Wind Cave National Park. Hot Springs, SD: Wind Cave National Park Files. Unpublished. Table S2. Species in the American West affected by coyote predation as listed by the U.S. Fish and Wildlife Service and species of concern according to Natural Heritage programs. Adapted from Table 1 in Ripple et al. (2013). | Common name | Scientific name(s) | Status | |-----------------------------|---|-----------------------------------| | Black-footed ferret | Mustela nigripes | Endangered | | Pygmy rabbit | Brachylagus idahoensis | Endangered | | San Joaquin kit fox | Vulpes macrotis mutica | Endangered | | Columbian white-tailed deer | Odocoileus virginianus
leucurus | Endangered | | Least tern | Sterna antillarum | Endangered | | Whooping crane | Grus americana | Endangered | | Olympic marmot | Marmota olympus | Species of concern WA | | Swift fox | Vulpes velox | Species of concern CO, MT, NM, WY | | Sandhill crane | Grus canadensis tabida | Species of concern CO, OR, WA | | Snowshoe hare | Lepus americanus, Lepus
americanus klamathensis,
Lepus americanus seclusus,
Lepus americanus tahoensis | Species of concern NM, CA, WY | | Long-billed curlew | Numenius americanus | Species of concern CO, OR | | Yellow-bellied marmot | Marmota flaviventris | Species of concern NM | Table S3. List of theses and journal articles analyzed. From left to right, the table columns show the thesis/dissertation or article identification number, associated national park, year of publication, university or journal name, author(s), title, taxonomic group(s) considered, whether or not the historical presence of wolves was considered, and a quote about wolves (or other large carnivores), if applicable. In the "Wolves?" column, theses and articles where only large carnivores other than wolves were considered by the authors are marked with an asterisk. Thesis number 32 covers two national parks: Theodore Roosevelt and Wind Cave. We have not included references in quotes in our references list; these papers can be identified using the associated document. | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |----------|------------------|------|--|------------------------------|--|------------------------|---------|-------| | | | | | | 41 theses | | | | | 1 | Badlands | 2006 | South Dakota State University | Russell,
Todd A. | Habitat Selection by Swift
Foxes in Badlands National
Park and the Surrounding
Area in South Dakota | swift fox | no | | | 2 | Badlands | 2007 | South
Dakota
State
University | Schroede
r, Greg
M. | Effect of Coyotes and
Release Site Selection on
Survival and Movement of
Translocated Swift Foxes in
the Badlands Ecosystem of
South Dakota | swift fox | no | | | 3 | Badlands | 2011 | South Dakota State University | Sasmal,
Indrani | Population Viability Analysis of Swift fox (Vulpes velox) at the Badlands National Park | swift fox | no | | | 4 | Badlands | 2017 | South
Dakota
State
University | Nevison,
Sarah
Ann | Swift Foxes in Southwestern South Dakota: Assessing the Current Status of a Reintroduced Population | swift fox | no | | | <u>5</u> | Glacier | 1955 | University
of
Montana | Hawley,
Vernon
Duane | Ecology of the marten in
Glacier National Park | America
n
marten | no | | | <u>6</u> | Glacier | 1968 | University
of
Montana | Koterba,
Wayne
Douglas | Analysis of the North Fork
Valley grasslands in Glacier
National Park Montana | | no | | | 7 | Glacier | 1981 | University
of
Montana | Burnett,
Gary W. | Movements and habitat
use of American marten in
Glacier National Park
Montana | | no | | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |-----------|--------------------|------|---|-----------------------------|--|------------------------|---------
--| | 8 | Lassen
Volcanic | 2007 | California
State
University
System | Kirk,
Thomas
A. | Landscape-scale habitat
associations of the
American marten (Martes
americana) in the greater
southern Cascades region
of California | America
n
marten | yes | Page 5: "Several top
mammalian predators
have been extirpated
from this region
including grizzly bear
(Ursusarctos), gray
wolf (Canis lupus) and
wolverine (Gulo gulo)
(USDA 2001)." | | 9 | Mount
Rainier | 1970 | Oregon
State
University | Schambe
rger,
Melvin | Mammals of Mount
Rainier National Park | small
mammal
s | yes | Pages 80-81: "At present, the wolf is thought to be absent from the park, but may perhaps wander down from the North Cascades in the future." | | 10 | Mount
Rainier | 1970 | Central
Washingto
n
University | Meredith
, Don H. | Subalpine Cover Ecology of
Eutamias amoenus,
Eutamias townsendii and
other small Mammals in
Huckleberry Park, Mount
Rainier National Park | small
mammal
s | no | | | 11 | Mount
Rainier | 1973 | Oregon
State
University | Henderso
n, Jan A | Composition, distribution
and succession of
subalpine meadows in
Mount Rainier National
Park | understo
ry | no | | | 12 | Mount
Rainier | 1987 | Oregon
State
University | Cooper,
Kevin
Craig | Seasonal movements and
habitat use of migratory
elk in Mount Rainier
National Park | elk | no | | | <u>13</u> | Olympic | 1979 | Oregon
State
University | Jenkins,
Kurt
Jeffrey | Home range and habitat use by Roosevelt elk in Olympic National Park, Washington | elk | yes | Page 4: "Local politicians established a bounty on cougars; concurrently, settlers depleted wolf populations to protect the diminishing elk herds and to protect livestock." | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |-----------|------------------|------|------------------------------------|-------------------------------|--|------------------------|---------|---| | 14 | Olympic | 1982 | Oregon
State
University | Leslie,
David M. | Nutritional ecology of
cervids in old-growth
forests in Olympic National
Park, Washington | elk | yes | Page 8: "Wolves, Canis
lupus, were extirpated
from the Olympic
Peninsula by the
1920s." | | <u>15</u> | Olympic | 1986 | Oregon
State
University | Schroer,
Gregory
L. | Seasonal movements and distribution of migratory Roosevelt elk in the Olympic Mountains, Washington | elk | no | | | <u>16</u> | Olympic | 1993 | Oregon
State
University | Happe,
Patricia
Jenkins | Ecological relationships
between cervid herbivory
and understory vegetation
in old-growth Sitka spruce-
western hemlock forests in
western Washington | understo
ry | yes | Page 10: "Due to the public outcry associated with theperceived low elk numbers, bounties were established to control cougar in 1904 (wolves were extirpated by 1930)" | | <u>17</u> | Olympic | 2000 | University
of
Washingto
n | Riege,
Dennis
Alan | Arrested succession in old fields within a temperate rain forest. | range
conditio
n | no | | | 18 | Olympic | 2005 | University
of
Washingto
n | Fethersto
n, Kevin
L. | Pattern and process in mountain river valley forests | trees | no | | | 19 | Olympic | 2008 | University
of
Montana | Griffin,
Suzanne
Cox | Demography and ecology
of a declining endemic
The Olympic marmot | marmot | yes | Page 24: " predator-prey dynamics on the peninsula have been altered by the extirpation of the wolf (Canis lupus) from the peninsula in the early 20th century and the simultaneous arrival of the coyote (C. latrans)" | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |----|------------------|------|--|-------------------------------|---|--------|---------|--| | 20 | Olympic | 2008 | University
of
Washingto
n | Stolnack,
Scott A. | Patterns of conifer
establishment and vigor
on montane river
floodplains in Olympic
National Park,
Washington, USA | trees | no | | | 21 | Olympic | 2014 | University
of
Washingto
n | Lewis,
Jeffrey
Charles | Post-Release Movements,
Survival, and Resource
Selection of Fishers
(Pekania pennanti)
Translocated to the
Olympic Peninsula of
Washington. | fisher | no | | | 22 | Olympic | 2020 | University
of
Washingto
n | Murphy-
Williams,
Maia. | Climate Change Impacts in
Alpine Meadows:
Environmental Factors
Correlated with the
Decline of the Olympic
Marmot (Marmota
olympus) Population in
Olympic National Park,
Washington State | marmot | yes | Page 35: "Without the competition from wolves, invasive coyotes arrived in the Olympics. Predation on the Olympic marmot by coyotes has been shown in previous research to be a significant factor in marmot decline (Figure 1) (Witczuk et al. 2013, Griffin et al. 2008)." | | 23 | Redwood | 2010 | California
State
University
System | Teraoka,
Emily | Structure and composition of old-growth and unmanaged second-growth riparian forests at Redwood National Park, USA | trees | no | | | 24 | Redwood | 2016 | Texas State
University
– San
Marcos | Kolbe,
Nicholas
R. | Density-Dependent Not -
Independent Factors
Influence Roosevelt Elk
Recruitment in the Bald
Hills of Redwood National
Park | elk | no | | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |-----------|-------------------|------|---------------------------------|----------------------------------|---|--------|---------|---| | <u>25</u> | Rocky
Mountain | 2013 | Colorado
State
University | Kaczynski
, Kristen
Mannix | Riparian willow decline in
Colorado: interactions of
ungulate browsing, native
birds and fungi | shrubs | yes | Page 13: "Elk populations have increased since the early 1900's due to the extirpation of wolves, while moose were introduced into Colorado in the late 1970's | | 26 | Rocky
Mountain | 2015 | Colorado
State
University | Craig,
Apryle
Dawn | Impacts of elk management and riparian condition on songbirds in Rocky Mountain National Park | shrubs | yes | Abstract: " riparian willow (Salix spp.) communities in Rocky Mountain National Park (RMNP) are declining as a result of a trophic cascade involving the local extinction of wolves (Canis lupus) and an exponential increase in elk (Cervus elaphus)." | | 27 | Rocky
Mountain | 2019 | Colorado
State
University | Laurel,
DeAnna
J. | Effects of beaver engineering on downstream fluxes in Colorado mountain streams | shrubs | yes | Page 15: "Wolves were hunted to extinction in Rocky Mountain National Park during the 1920s and the numbers of elk and moose within the national park rose steadily during the 20th century." | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |-----------|---|------|--|-----------------------------|---|------------------|---------|---| | 28 | Rocky
Mountain | 2021 | Colorado
State
University | , Taryn | Willow growth response to
altered disturbance
regimes in Rocky
Mountain National Park:
herbivory, water levels,
and hay production | shrubs | yes* | Page 6: "Increased herbivory from native species is often caused by mass extinction that led to the loss of apex predators and subsequent growth of prey species population that feed on riparian vegetation (Berger et al., 2001). | | <u>29</u> | Theodore
Roosevelt | 1988 | Montana
State
University | Sullivan,
Mark
Gerald | Distribution, habitat use,
and food habits of
reintroduced elk in
Theodore Roosevelt
National Park, North
Dakota | elk | yes* | Page 32: "The cow-calf
ratio in September
1985 was 45:100. This
was less than
expected for an area
devoid of
large
predators." | | 30 | Theodore
Roosevelt | 1989 | Montana
State
University | Westfall,
Jerry
Allen | The ecology of reintroduced elk in Theodore Roosevelt National Park, North Dakota | elk | no | | | 31 | Theodore
Roosevelt | 1998 | Montana
State
University | Lewis,
Stephen
Thomas | Evaluation of habitat use
by a transplanted bighorn
sheep herd in Theodore
Roosevelt National Park | bighorn
sheep | no | | | 32 | Theodore
Roosevelt
and Wind
Cave | 2010 | Texas State University – San Marcos | ' | Comparative Study of the
Spatial Organization and
Zoogeomorphic Effects of
Black-tailed Prairie Dogs | prairie
dog | no | | | 33 | Wind
Cave | 1998 | South
Dakota
State
University | Bauman,
Peter J. | The Wind Cave National Park Elk Herd: Home Ranges, Seasonal Movements, and Alternative Control Methods | elk | yes* | Page 6: "Currently, natural regulation of elk populations in WICA is not feasible, principally because there are few suitable predators found in this relatively small, fenced park (Varland et al. 1978)." | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |-----------|------------------|------|--|----------------------------|--|------------------------|---------|---| | 34 | Wind
Cave | 2001 | South Dakota State University | | Small Mammal Survey of
Wind Cave National Park. | small
mammal
s | no | | | 35 | Wind
Cave | 2004 | South
Dakota
State
University | Sievers,
Jaret D. | Factors Influencing a Declining Pronghorn Population in Wind Cave National Park, South Dakota | prongho
rn | no | | | 36 | Wind
Cave | 2007 | South
Dakota
State
University | | Ecology of the Coyote
(Canis latrans) at Wind
Cave National Park. | coyote | yes | Page 1: "Several explanations have been put forth for coyote expansion across North America, including the extirpation of wolves In Yellowstone National Park, for instance, the extirpation of gray wolves may have permitted higher coyote population densities (Crabtree and Sheldon 1999)." | | <u>37</u> | Yellowsto
ne | 1966 | Colorado
State
University | Oldemey
er, John
Lee | Winter ecology of bighorn
sheep in Yellowstone
National Park | bighorn
sheep | no | | | 38 | Yellowsto
ne | 1968 | Colorado
State
University | Woolf,
Alan | Summer ecology of
bighorn sheep in
Yellowstone National Park | bighorn
sheep | no | | | 39 | Yellowsto
ne | 1981 | Montana
State
University | Tyers,
Daniel
Bruce | The condition of the northern winter range in Yellowstone National Park : a discussion of the controversy. | range
conditio
n | yes | Page 86: "One was the near elimination of the grey wolf and mountain lion that disturbed the mutually beneficial relationship between predators and plant eaters. | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |----|------------------|------|--|--|---|----------------------------|---------|---| | 40 | Yellowsto
ne | 1990 | Utah State
University | Kay,
Charles E. | Yellowstone's Northern Elk
Herd: A Critical Evaluation
of the "Natural Regulation
" paradigm | conditio | yes | Page 2: "government agents eliminated all wolves and most mountain lions from the park by the late 1920s. After this had been accomplished, the Park Service came to believe that its eradication of native predators had permitted the northern elk herd to irrupt and overuse its range." | | 41 | Yellowsto
ne | 1994 | Montana
State
University | Sikes,
Derek
Scott | Influences of ungulate
carcasses on Coleopteran
communities in
Yellowstone National Park,
USA | scaveng
ers | no | | | | | | | | 55 journal articles | | | | | 42 | Badlands | 1998 | Journal of
Wildlife
Manageme
nt | Biggins,
DE;
Godbey,
JL;
Hanebury
, LR;
Luce, B;
Marinari,
PE;
Matchett
, MR;
Vargas, A | The Effect of Rearing
Methods on Survival of
Reintroduced Black-Footed
Ferrets | black-
footed
ferret | no | | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |----|------------------|------|--|--|--|------------------------|---------|---| | 43 | Badlands | 2013 | Conservati
on
Genetics | Sasmal, Indrani; Jenks, Jonathan A.; Waits, Lisette P.; Gonda, Michael G.; Schroede r, Greg M.; Datta, Shubham | Genetic Diversity in a Reintroduced Swift Fox Population | swift fox | yes | Page 93: "The species declined during the mid-1800s, largely due to habitat loss and poisoning targeted at wolves (Canis lupus) and coyotes (Canis latrans)." | | 44 | Grand
Teton | 1991 | Applied
Animal
Behaviour
Science | Boyce,
MS | Migratory Behavior and
Management of Elk
(Cervus-Elaphus) | elk | yes | Page 243: The major predator on elk in Jackson Hole was the wolf {Canis lupus} before its extirpation during the 1920s (Weaver, 1979)." | | 45 | Grand
Teton | 1996 | Canadian Journal of Zoology- Revue Canadienn e De Zoologie | Smith,
BL;
Anderson
, SH | Patterns of Neonatal
Mortality of Elk in
Northwest Wyoming | elk | no | | | 46 | Grand
Teton | 1998 | Journal of
Wildlife
Manageme
nt | Smith,
BL;
Anderson
, SH | Juvenile Survival and
Population Regulation of
the Jackson Elk Herd | elk | no | | | 47 | Mount
Rainier | 1999 | Journal of
Range
Manageme
nt | SH; | Plant Response to Defoliation in a Subalpine Green Fescue Community | range
conditio
n | no | | | 48 | Olympic | 1993 | Northwest
Science | Schroer,
GL;
Jenkins,
KJ;
Moorhea
d, BB | Roosevelt Elk Selection of
Temperate Rain-Forest
Seral Stages in Western
Washington | elk | no | | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |----|------------------|------|--|--|--|------------------------|---------|---| | 49 | Olympic | 1994 | Northwest
Science | , EG; | Ungulate-Forest
Relationships in Olympic-
National-Park -
Retrospective Exclosure
Studies | range
conditio
n | no | | | 50 | Olympic | 1996 | Canadian Journal of Forest Research- Revue Canadienn e De Recherche Forestiere | Schreiner
, EG;
Krueger,
KA;
Happe,
PJ;
Houston,
DB | Understory Patch Dynamics and Ungulate Herbivory in Old-Growth Forests of Olympic National Park, Washington | range
conditio
n | no | | | 51 | Olympic | 2008 | Ecohydrolo
gy | | Wolves, Trophic Cascades,
and Rivers in the Olympic
National Park, USA | trees | yes | Page 118: "Gray wolves (Canis lupus) were extirpated in the early 1900s from the Olympic Peninsula of northwestern Washington." | | 52 | Olympic | 2013 | Journal of
Mammalog
y | Witczuk,
Julia;
Pagacz,
Stanislaw
; Mills, L.
Scott | Disproportionate Predation on Endemic Marmots by Invasive Coyotes | marmot | yes | Page 711: "One unknown but potentially important factor is the absence of gray wolves, extirpated from the Olympic Peninsula about 1930 (Scheffer 1995)." | | 53 | Olympic | 2015 | Journal of
Zoology | Witczuk,
J.;
Pagacz,
S.;
Gliwicz,
J.; Mills,
L. S. | Niche Overlap Between
Sympatric Coyotes and
Bobcats in Highland Zones
of Olympic Mountains,
Washington | marmot | yes | Page 2: "The subsequent increase in coyote abundance closely paralleled a dramatic decrease and eventual extinction of the wolf Canis lupus population (Scheffer, 1995)." | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |----|------------------|------|---|---|---|------------------------|---------
--| | 54 | Olympic | 2017 | Earth
Surface
Processes
and
Landforms | East, Amy E.; Jenkins, Kurt J.; Happe, Patricia J.; Bountry, Jennifer A.; Beechie, Timothy J.; Mastin, Mark C.; Sankey, Joel B.; Randle, Timothy J. | Channel-Planform Evolution in Four Rivers of Olympic National Park, Washington, USA: The Roles of Physical Drivers and Trophic Cascades | range
conditio
n | yes | Page 1011: " to investigate whether physical or trophic-cascade-driven ecological factors – excessive elk impacts after wolves were extirpated a century ago – are the dominant drivers of channel planform in these gravel-bed rivers." | | 55 | Olympic | 2021 | Ecosphere | Woodwa
rd, A.;
Jenkins,
K. J.;
Harmon,
M. E. | Plant Community Succession Following Ungulate Exclusion in a Temperate Rainforest | range
conditio
n | yes | Page 3: " the hypothesis that wolf extirpation has created a trophic cascade whereby elk numbers are adversely impacting river morphology through their negative effects on riparian forest vegetation (Beschta and Ripple 2008)." | | 56 | Redwood | 2014 | | Starns,
Heath D.;
Ricca,
Mark A.;
Duarte,
Adam;
Weckerly
, Floyd
W. | Climatic and Density
Influences on Recruitment
in an Irruptive Population
of Roosevelt Elk | elk | no | | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |----|-------------------|------|---------------------------------|---|---|-------|---------|--| | 57 | Redwood | 2015 | California
Fish and
Game | Kolbe,
Nicholas
R.;
Weckerly
, Floyd
W. | Home-Range Overlap of
Roosevelt Elk Herds in the
Bald Hills of Redwood
National Park | elk | no | | | 58 | Redwood | 2018 | California
Fish and
Game | Tolliver,
James D.
M.;
Weckerly
, Floyd
W. | Abundance, Habitat and
Occupancy of Roosevelt
Elk in the Bald Hills of
Redwood National Park | elk | no | | | 59 | Redwood | 2021 | Basic and
Applied
Ecology | Weckerly, Floyd W.; Kolbe, Nicholas R.; Schmidt, Kristin N.; Bensen, Keith J. | Prescribed Fire Has Slight
Influence on Roosevelt Elk
Population Dynamics | elk | no | | | 60 | Rocky
Mountain | 1997 | Ecography | Baker,
WL;
Munroe,
JA; Hessl,
AE | The Effects of Elk on Aspen
in the Winter Range in
Rocky Mountain National
Park | aspen | yes | Page 155: "Major predators, such as gray wolf canus lupus and grizzly bear Ursus arctos, were extirpated before park establishment." | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |----|-------------------|------|---------------------------------------|---|--|------------------------|---------|-------| | 61 | Rocky
Mountain | 1997 | Landscape
Ecology | Stohlgren , TJ; Coughen our, MB; Chong, GW; Binkley, D; Kalkhan, MA; Schell, LD; Buckley, DJ; Berry, JK | Landscape Analysis of
Plant Diversity | range
conditio
n | no | | | 62 | Rocky
Mountain | 1999 | Landscape
Ecology | | Aspen Regeneration in the
Colorado Front Range:
Differences at Local and
Landscape Scales | aspen | no | | | 63 | Rocky
Mountain | 1999 | Oecologia | | Carbon and Water Relations of Salix Monticola in Response to Winter Browsing and Changes in Surface Water Hydrology: An Isotopic Study Using δ^{13} C and δ^{18} O | willow | no | | | 64 | Rocky
Mountain | 2001 | Journal of
Range
Manageme
nt | RSC; | Carbon and Nitrogen
Dynamics in Elk Winter
Ranges | willow | no | | | # | National
Park | Year | University/
Journal | Author(s) | Title Taxa Wolves | | Wolves? | Quote | |----|-------------------|------|--|---|--|--------|---------|--| | 65 | Rocky
Mountain | 2001 | Oecologia | Peinetti,
HR;
Menezes,
RSC;
Coughen
our, MB | Changes Induced by Elk Browsing in the Aboveground Biomass Production and Distribution of Willow (Salix Monticola Bebb): Their Relationships With Plant Water, Carbon, and Nitrogen Dynamics | willow | no | | | 66 | Rocky
Mountain | 2002 | Climatic
Change | Wang,
GM;
Hobbs,
NT;
Singer,
FJ; Ojima,
DS;
Lubow,
BC | Impacts of Climate Changes on Elk Population Dynamics in Rocky Mountain National Park, Colorado, USA | elk | yes* | Page 206: "Many of
these areas lack large
capable predators." | | 67 | Rocky
Mountain | 2002 | Journal of
Wildlife
Manageme
nt | Lubow,
BC;
Singer,
FJ;
Johnson,
TL;
Bowden,
DC | Dynamics of Interacting Elk
Populations Within and
Adjacent to Rocky
Mountain National Park | elk | yes | Page 773: " but 2 major predators (wolves [Canis lupus] and grizzly bears [Ursus arctos]) have been eliminated from this system" | | 68 | Rocky
Mountain | 2002 | Journal of
Wildlife
Manageme
nt | s, LC; | Influences of Herbivory
and Water on Willow in Elk
Winter Range | willow | yes | Page 788: " Large predators and some herbivores have been eliminated" | | 69 | Rocky
Mountain | 2002 | Landscape
Ecology | Peinetti,
HR;
Kalkhan,
MA;
Coughen
our, MB | Long-Term Changes in
Willow Spatial Distribution
on the Elk Winter Range of
Rocky Mountain National
Park (USA) | willow | yes* | Page 352 "possibly due in part to predator eradication " | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |----|-------------------|------|--|---|---|------------------------|---------|---| | 70 | Rocky
Mountain | 2003 | Landscape
Ecology | Kaye,
MW;
Stohlgren
, TJ;
Binkley,
D | Aspen Structure and
Variability in Rocky
Mountain National Park,
Colorado, USA | aspen | no | | | 71 | Rocky
Mountain | 2003 | Environme
ntal
Manageme
nt | , PJ; | Model-Based Assessment
of Aspen Responses to Elk
Herbivory in Rocky
Mountain National Park,
USA | aspen | yes | Page 167: "Prior to
their extirpation,
wolves may have
limited the RMNP
herd to fluctuations
within a range of 300–
800 elk (Coughenour
2001)." | | 72 | Rocky
Mountain | 2004 | Journal of
Wildlife
Manageme
nt | ker, KA; | Effects of Elk Herbivory on
Vegetation and Nitrogen
Processes | range
conditio
n | yes* | Page 837: "The elimination of large predators, disruption and loss of migration routes, and the creation of artificial forage sources in towns and developed areas have contributed to possible overabundance and/or overconcentrations of elk in some areas (Wagner et al. 1995)." | | 73 | Rocky
Mountain | 2005 | Western
North
American
Naturalist | Bender,
LC; Cook,
JG | Nutritional Condition of
Elk in Rocky Mountain
National Park | elk | no | | | 74 | Rocky
Mountain | 2005 | Ecological
Application
s | Kaye,
MW;
Binkley,
D;
Stohlgren | Effects of Conifers and Elk
Browsing on Quaking
Aspen Forests in the
Central Rocky Mountains,
USA | aspen | no | | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |----|-------------------|------|--|---|---|--------|---------|---| | 75 | Rocky
Mountain | 2005 | Rangeland
Ecology &
Manageme
nt | Baker,
BW;
Peinetti,
HR;
Coughen
our, MB | Resilience of Willow Stems
After Release From Intense
Elk Browsing | willow | yes | Page 575: "The elimination of large predators has reduced predation risk in some riparian areas " | | 76 | Rocky
Mountain | 2005 | Canadian Journal of Botany- Revue Canadienn e De Botanique | Gage, EA;
Cooper,
DJ | Patterns of Willow Seed
Dispersal, Seed
Entrapment, and Seedling
Establishment in a Heavily
Browsed Montane
Riparian Ecosystem | willow | yes* | Page 685: "However,
because elk in Rocky
Mountain National
Park lack
predators,
there appears to be no
effective constraint on
browsing." | | 77 | Rocky
Mountain | 2005 | Ecological
Application
s | | Interaction of Beaver and
Elk Herbivory Reduces
Standing Crop of Willow | willow | yes* | Page 111: "Large
herbivores congregate
in these areas because
they lack disturbance
from large predators" | | 78 | Rocky
Mountain | 2008 | Forest
Ecology
and
Manageme
nt | Binkley,
Dan | Age Distribution of Aspen
in Rocky Mountain
National Park, USA | aspen | yes* | Page 797: "increased browsing that may have resulted from extirpation of predators" | | 79 | Rocky
Mountain | 2008 | Journal of
Environme
ntal
Manageme
nt | John B.;
Hobbs, N. | Regulating Overabundant
Ungulate Populations: An
Example for Elk in Rocky
Mountain National Park,
Colorado | elk | no | | | 80 | Rocky
Mountain | 2009 | · · | Menezes,
Romulo
S. C. | Isotopic Evidence of the
Effects of Herbivory and
Landscape Position on
Plant Nitrogen Sources in a
Riparian Ecosystem | willow | no | | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |----|-----------------------|------|--|---|--|------------------------|---------|---| | 81 | Rocky
Mountain | 2012 | Ecosphere | Baker, Bruce W.; Raul Peinetti, H.; Coughen our, Michael B.; Johnson, Therese L. | Competition Favors Elk Over Beaver in a Riparian Willow Ecosystem | elk | yes | Page 9: "The elk
population grew
quickly in the absence
of wolves (Canis lupus)
and grizzly bears
(Ursus arctos), which
also had been
extirpated." | | 82 | Rocky
Mountain | 2015 | Forest
Ecology
and
Manageme
nt | , Kristen
M.; | Post-Fire Response of
Riparian Vegetation in a
Heavily Browsed
Environment | range
conditio
n | no | | | 83 | Rocky
Mountain | 2016 | Ecosphere | Schweige
r, E.
William;
Grace,
James B.;
Cooper,
David;
Bobowski
, Ben;
Britten,
Mike | Using Structural Equation
Modeling to Link Human
Activities to Wetland
Ecological Integrity | range
conditio
n | yes | Page 5: "Human activities extirpated (Canis lupus) wolves largely before the park was established." | | 84 | Theodore
Roosevelt | 2002 | | JE; | Evaluation of a Forage
Allocation Model for
Theodore Roosevelt
National Park | range
conditio
n | no | | | 85 | Theodore
Roosevelt | 2007 | Journal of
Wildlife
Manageme
nt | Glen A.; | Dynamics of Newly
Established Elk
Populations | elk | no | | | # | National
Park | Year | University/
Journal | Author(s) | Taxa Wolv | | Wolves? | Quote | |----|-----------------------|------|---|--|--|----------------------------------|---------|--| | 86 | Theodore
Roosevelt | 2014 | California
Fish and
Game | Sargeant,
Glen A.;
Oehler,
Michael
W.;
Sexton,
Chad L. | Use of Water Developments by Female Elk at Theodore Roosevelt National Park, North Dakota | | no | | | 87 | Wind
Cave | 2007 | Frontiers in
Ecology
and the
Environme
nt | Ripple,
William
J.;
Beschta,
Robert L. | Hardwood Tree Decline Following Large Carnivore Loss on the Great Plains, USA ook a cotto ood trees | | yes | Page 241: "we conducted a retrospective analysis of large carnivores " | | 88 | Yellowsto
ne | 1991 | Journal of
Wildlife
Manageme
nt | e, GD; | Physiological Assessment elk of Winter Nutritional Deprivation in Elk of Yellowstone-National-Park | | no | | | 89 | Yellowsto
ne | 1991 | Journal of
Applied
Ecology | Coughen
our, MB | Biomass and Nitrogen
Responses to Grazing of
Upland Steppe on
Yellowstone Northern
Winter Range | herbace
ous
vegetati
on | no | | | 90 | Yellowsto
ne | 1992 | Ecology | Frank,
DA;
McNaugh
ton, SJ | The Ecology of Plants,
Large Mammalian
Herbivores, and Drought in
Yellowstone-National-Park | range
conditio
n | no | | | 91 | Yellowsto
ne | 1993 | Oecologia | Frank,
DA;
McNaugh
ton, SJ | Evidence for the
Promotion of
Aboveground Grassland
Production by Native Large
Herbivores in Yellowstone-
National-Park | herbace
ous
vegetati
on | no | | | 92 | Yellowsto
ne | 1993 | Ecological
Modelling | Turner,
MG; Wu,
YG;
Romme,
WH;
Wallace,
LL | A Landscape Simulation-
Model of Winter Foraging
by Large Ungulates | elk | no | | | # | National
Park | Year | University/
Journal | Author(s) | Title | Таха | Wolves? | Quote | |----|------------------|------|--|---|--|----------------------------------|---------|---| | 93 | Yellowsto
ne | 1994 | Ecological
Application
s | Turner,
MG; Wu,
YA;
Wallace,
LL;
Romme,
WH;
Brenkert,
A | Simulating Winter Interactions Among Ungulates, Vegetation, and Fire in Northern Yellowstone Park | elk | no | | | 94 | Yellowsto
ne | 1994 | Biogeoche
mistry | Frank, DA; Inouye, RS; Huntly, N; Minshall, GW; Anderson , JE | The Biogeochemistry of a
North-Temperate
Grassland With Native
Ungulates - Nitrogen
Dynamics in Yellowstone-
National-Park | herbace
ous
vegetati
on | no | | | 95 | Yellowsto
ne | 1994 | Range | Singer,
FJ; Mark,
LC; Cates,
RC | Ungulate Herbivory of
Willows on Yellowstone
Northern Winter Range | willow | yes | Page 435: "since wolves (Canis Lupus) are estirpated" | | 96 | Yellowsto
ne | 1994 | Canadian
Journal of
Zoology-
Revue
Canadienn
e De
Zoologie | Singer,
FJ;
Norland,
JE | Niche Relationships Within
a Guild of Ungulate
Species in Yellowstone-
National-Park, Wyoming,
Following Release From
Artificial Controls | elk | yes | Page 1383: "the removal of a significant predator, the gray wolf (Canis lupus)" | **Table S4. Mammal irruptions following predator declines.** The table shows the top 10 wild terrestrial mammal species ranked by biomass as given in Greenspoon et al. (2023). The first four columns, taken from Table 1 of Greenspoon et al. (2023), indicate species' common name, scientific name, estimated total biomass in Mt, and estimated total population size. Where applicable, the final column contains a quote and reference related to the species' predators. For information on predator conservation status, see Wolf and Ripple (2017). | Common | Scientific | Mass (Mt) | # (M) | Status of predators | |--------------------------------|---------------------------|-----------|-------|--| | White-tailed
deer | Odocoileus
virginianus | 2.7 | 45 | "Ungulate irruptions, primarily of deer, began to occur following the occurrence of wolf extinctions, with most of the western irruptions (80 percent) taking place between 1935 and 1945" (Ripple and Beschta 2005) | | Wild boar | Sus scrofa | 1.9 | 30 | n/a | | African
savanna
elephant | Loxodonta
africana | 1.3 | 0.5 | n/a | | Eastern
gray
kangaroo | Macropus
giganteus | 0.6 | 20 | "In Australia, the native Thylacine (<i>Thylacinus cynocephalus</i>) was eliminated from the mainland about 5,000 years ago. Livestock grazing was introduced [], after which the Dingo (<i>Canis dingo</i>) was eliminated from much of the mainland, and Indigenous hunting was suppressed []. This combination of actions is believed to have reduced predation/hunting pressure on the larger marsupial herbivores, and in combination with [], has led to significant increases in the distribution and density of many large macropod species, notably the Eastern Grey Kangaroo (Macropus giganteus) []" (Gordon et al. 2021) | | Mule deer | Odocoileus
hemionus | 0.5 | 7 | "Results from Zion National Park
generally affirm Leopold's (1943)
interpretation of the mule deer irruption on
the Kaibab Plateau of Arizona and its
effect on plant communities after cougar
and wolf eradication" (Ripple et al. 2010) | | Moose | Alces alces | 0.5 | 1.5 | "In 9 of 10 multiyear, telemetry-based studies in moose—bear—wolf systems, predation (primarily on calves) was the dominant factor affecting moose population dynamics compared with harvest, malnutrition, disease, and adverse weather []" (Boertje et al. 2010) |
----------------------|----------------------------|-----|-----|--| | Red deer
(elk) | Cervus
elaphus | 0.5 | 2 | "Wolf and lynx predation kept red deer
and roe deer below carrying capacity and
constantly provided remains for
scavengers" (Ordiz et al. 2021) | | European
roe deer | Capreolus
capreolus | 0.4 | 20 | "[] found that roe deer densities were significantly lower in areas with sympatric wolves and lynx compared to areas with wolves alone or areas without either predator" (Ripple and Beschta 2012) | | Red
kangaroo | Macropus
rufus | 0.4 | 10 | "dingo removal was linked to a dramatic increase in red kangaroo abundance" (Hunter et al. 2018) | | Common warthog | Phacochoer
us africanus | 0.3 | 5 | n/a | ## **Supplemental Methods** As the basis for our study, we began with a list of all national parks in the continental Northwestern United States west of 100 degrees longitude and between 40 and 49 degrees latitude, yielding an initial total of 13 national parks. We excluded Crater Lake and North Cascades National Parks since they had few wolves historically, resulting in a final total of 11 national parks (Figure S1). For each national park in our analysis, we searched the Open Access Theses and Dissertations website (OATD; available at OATD.org) for theses and dissertations (hereafter, "theses") using an exact keyword match based on the full name of the national park, which covers titles, abstracts, subjects, etc. We focused on theses and dissertations rather than individual manuscripts because, by definition, these bodies of work represent in-depth field studies where a thorough historical context of the study area would be expected to be presented. To identify scientific journal articles published since 1965, we then searched the Web of Science Core Collection database for "topic" (including titles, abstracts, and keywords) matching each national park name. For national parks where wolves were extirpated, but have since returned, we only considered theses and articles published when wolves were absent: Yellowstone prior to 1995, Glacier prior to 1985, Grand Teton prior to 1999, and Lassen Volcanic prior to 2015. OATD indexes theses from a large set of universities and repositories. As of April, 2023, there were over 6.5 million theses indexed on OATD, including some published as early as the late 1700s. We supplemented the list of search results by adding several theses that were not included in the results. After obtaining initial lists of theses (n = 433) and journal articles (n = 126), we scanned their abstracts in order to remove publications that were not relevant to terrestrial food web ecology. Specifically, we retained publications that were on topics that might be affected by wolf extirpation, only including elk (*Cervus canadensis*) and plants that elk consume, as well as coyotes and coyote prey and smaller predators. We then searched the full text of each remaining publication for the terms "wol", "carn", and "preda" to determine whether (1) the historical presence of wolves was considered, (2) the historical presence of wolves was not considered, but extirpated large carnivores or large predators in general were discussed, or (3) extirpated wolves, large carnivores, or large predators were not discussed at all. In the first two cases, we obtained a relevant short quote from the thesis abstract or full text. ## **Supplemental References** - Bailey V. 1918. Report on investigation of elk herds in the Olympic Mountains, Washington. Olympic National Forest, Olympia, WA. - Beschta RL, Ripple WJ. 2009. Large predators and trophic cascades in terrestrial ecosystems of the western United States. Biological Conservation 142: 2401–2414. - Boertje RD, Keech MA, Paragi TF. 2010. Science and Values Influencing Predator Control for Alaska Moose Management. Journal of Wildlife Management 74: 917–928. - Gordon I, Snape M, Fletcher D, Howland B, Coulson G, Festa-Bianchet M, Caley P, McIntyre S, Pople T, Wimpenny C, others. 2021. Herbivore management for biodiversity conservation: a case study of kangaroos in the Australian Capital Territory (ACT). Ecological Management & Restoration 22: 124–137. - Greenspoon L, Krieger E, Sender R, Rosenberg Y, Bar-On YM, Moran U, Antman T, Meiri S, Roll U, Noor E, others. 2023. The global biomass of wild mammals. Proceedings of the National Academy of Sciences 120: e2204892120. - Grimm RL. 1939. Northern Yellowstone winter range studies. The Journal of Wildlife Management 3: 295–306. - Hunter DO, Lagisz M, Leo V, Nakagawa S, Letnic M. 2018. Not all predators are equal: a continent-scale analysis of the effects of predator control on Australian mammals. Mammal Review 48: 108–122. - Leopold A. 1949. A Sand County almanac and sketches here and there. Oxford University Press. - Ludlow W. 1875. Report of a Reconnaissance of the Black Hills of Dakota, Made in 1874. US Government Printing Office. - Murie OJ. 1935. Report on the Elk of the Olympic Peninsula. Biological Survey. - Newman CC. 1954. Roosevelt Elk of Olympic National Park. National Park Service. - [NPS] National Park Service. 1956. Management Plan for the Northern Elk Herd, Yellowstone National Park, 30 November, 1956. USDI, National Park Service. - Ordiz A, Aronsson M, Persson J, Støen O-G, Swenson JE, Kindberg J. 2021. Effects of human disturbance on terrestrial apex predators. Diversity 13: 68. - Palais H. 1942. The cattle industry in the Black Hills. The Black Hills Engineer 28: 2–107. - Ripple WJ, Beschta RL. 2005. Linking wolves and plants: Aldo Leopold on trophic cascades. BioScience 55: 613–621. - Ripple WJ, Beschta RL. 2012. Large predators limit herbivore densities in northern forest ecosystems. European Journal of Wildlife Research 1–10. - Ripple WJ, Rooney TP, Beschta RL. 2010. Large predators, deer, and trophic cascades in boreal and temperate ecosystems. Trophic cascades: predators, prey, and the changing dynamics of nature. Island Press, Washington, DC, USA 141–161. - Ripple WJ, Wirsing AJ, Wilmers CC, Letnic M. 2013. Widespread mesopredator effects after wolf extirpation. Biological Conservation 160: 70–79. - Rush WM. 1933. Northern Yellowstone elk study. Montana Fish and Game Commission. - Schwartz J. 1939. The Olympic elk study. USDA Forest Service, Olympic National Forest, Olympia, WA. - Sumner E. 1938. Special report of elk in Olympic National Park. USDI National Park Service, San Francisco, California, USA. - Wolf C, Ripple WJ. 2017. Range contractions of the world's large carnivores. Royal Society Open Science 4: 170052.