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Section A: Form of covariance matrix Σ−1h

When Gt is an identity matrix, Σ−1h is a tridiagonal matrix. Otherwise, Σ−1h is a block diagonal

matrix with blocks of size n, and two off-diagonals of length n(T-1).

In order to write out the form of Σh, we use the identities:
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Focusing on the exponents in the two identities that involve h,
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2 is normally distributed with mean 0 and covariance

matrix σ2Σh, such that:
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Section B: Prior specification, MCMC sampler and full conditional

distributions for lkmr

1. Prior specification

To complete the model specification, we define prior distributions for the regression parameters β

and σ2. As suggested by Park and Casella (2008), we take the prior for σ2 to be inverse gamma,

π(σ2) =
γa

Γ(a)
(σ2)−a−1e

−γ
σ2 , σ2 > 0, a > 0, γ > 0 (1.1)

and π(β) ∝ 1. As suggested by Kyung and others (2010), we use a gamma prior on λ21 and λ22.

Specifically, priors are of the form

π(λ2) =
δr

Γ(r)
(λ2)r−1e−δλ

2

, λ2 > 0, r > 0, δ > 0. (1.2)

In the simulation study described in Section 3 of the manuscript, we evaluated a grid of r and δ

values to identify hyperparameters that optimize root mean squared error (RMSE) for estimation

of the exposure-response surface across a range of realistic exposure scenarios. Our simulation

studies identified hyperparameter values for λ21 of r1 = 60 and δ1 = 10, and hyperparameters for

λ22 of r2 = 45 and δ2 = 10, as values that performed well under a range of simulation scenarios

which considered differing numbers of toxicants and time windows, as well as differing exposure-

response relationships.

2. MCMC sampler

In this section, we describe the Gibbs sampler implementation for the hierarchy of (2.7) - (2.10)

of the main manuscript. For convenience, we denote
∑
t ht as Wh. The joint density is

f(y|β,h, σ2, τ 2,ω2) ∝ 1

(2πσ2)n/2
exp

[
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2σ2
(y−Wh−Xβ)T (y−Wh−Xβ)
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The full conditional distribution of h is:

h|σ2, τ 2,ω2, X,β,y ∼ NnT
[
(W TW + Σ−1h )−1W T (y−Xβ), σ2(W TW + Σ−1h )−1

]
The full conditional of σ2 is:

σ2|h, τ 2,ω2,X,β,y ∼ (2.4)

Inverse Gamma

[
n(T + 1)

2
+ a,

(y−Wh−Xβ)T (y−Wh−Xβ) + hTΣ−1h h

2
+ γ

]
Also, the full conditional of β is:

β|h, σ2 ∼ N
[
(XTX)−1XT (y−Wh), σ2(XTX)−1

]
(2.5)

The full conditional distribution for τ 2 is:

1
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Lastly, the full conditional distributions of λ21 and λ22, with priors Γ(r1, δ1) and Γ(r2, δ2),

respectively, are:

λ21 ∼ gamma
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The Gibbs sampler is implemented to cyclically sample from the distributions of h,β, σ2, τ2,

ω2, λ21, and λ22 conditional on the current values of the other parameters. We note that for several

parameters, h, β, τ 2, and ω2, the Gibbs sampler is a block update.
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Section C: Simulation results

For each scenario, we present the intercept, slope and R2 of the regressions, as well as RMSE

and coverage, over 100 simulations, each with a dataset of 100 subjects. Supplementary Table S1

considers a different exposure response function than used in Table 1 of the manuscript, in order

to study the performance of LKMR when the shape of the exposure-response surface differs at

different time windows. For this scenario, h(z) = 2 ∗ z22,1 + 2 ∗ z22,3 − 2 ∗ z3,2, for zt,m, t = 1, ..., 4

time windows and m = 1, ..., 5 toxicants, and an auto-correlation of 0.5 among toxicants. We see

that for all time windows, LKMR has a lower RMSE and a higher R2 than BKMR, suggesting a

better estimation of the time-specific mixture effects. Furthermore, LKMR better estimates the

mixture effects at time window 2 as compared with JKBKMR - the slope under LKMR is 0.81

compared with 0.39 for JKBKMR, and the RMSE is 1.09 under LKMR compared with 2.47 for

JKBKMR. We also consider three other simulation scenarios which assume the same shape of

the exposure-response surface as Table 1 of the manuscript, but for a larger number of toxicants

and/or time windows.

We first assess the performance of LKMR for a larger number of toxicants. Supplementary

Table S2 considers a scenario of 10 toxicants and 4 time windows. In this scenario, the RMSE

under LKMR is consistently lower for all time windows than for BKMR or JKBKMR, with the

except of time window 1. Furthermore, the R2 is consistently higher across all time windows for

LKMR as compared with BKMR or JKBKMR.

We next assess the performance of LKMR for a larger number of time windows. Supplemen-

tary Table S3 considers a simulation scenario of 10 time windows and 5 toxicants. Here, R2 is

consistently higher, coverage is consistently higher, and RMSE is consistently lower for all time

windows except for time window 1 when comparing LKMR against BKMR or JKBKMR.

To complete the simulations, we finally assess the performance of LKMR for a larger number

of toxicants and time windows. The results presented in Supplementary Table S4, which simulates
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exposure data of 10 toxicants and 10 time windows, show that compared with BKMR, LKMR

has a lower RMSE as well as higher coverage across all time windows. Furthermore, LKMR has

consistently higher slope, R2 and coverage than JKBKMR. We see that across all methods, when

a larger number of time windows and/or larger number of metals is studied, while maintaining

the same sample size, performance generally decreases. However, LKMR is still better able to

estimate the time-specific exposure-response surface, even if its effects are sometimes attenuated.

Supplementary table S1. Regression of ĥ on h under a different exposure-response simulation
scenario for M = 5 toxicants and T = 4 time windows. h(z) = 2 ∗ z22,1 + 2 ∗ z22,3 − 2 ∗ z3,2, for
zt,m, t = 1, ..., 4 time windows and m = 1, ..., 5 toxicants. Performance of estimated ht (zi) across
100 simulated datasets, each with N=100. AR-1 denotes the autocorrelation in simulated data.
RMSE denotes the root mean squared error of the ĥ as compared to h. Coverage denotes the
proportion of times that the true h falls within in the posterior credible interval of each time
point. At time windows 1 and 4, there is no effect; thus, slope and R2 are not applicable to the
regression of ĥ on h . BKMR refers to applying BKMR to exposure data from each time point
separately. Joint Kernel refers to applying BKMR simultaneously to data from all time points.

h function Time window Intercept Slope R2 RMSE Coverage

1 0.01 N/A N/A 0.86 0.97
LKMR

2 -0.02 0.81 0.94 1.09 0.90
AR-1 = 0.5 3 0.02 0.72 0.78 0.95 0.92

4 0.01 N/A N/A 0.78 0.98

1 0.05 N/A N/A 1.16 0.95
BKMR

2 0.02 0.95 0.87 1.33 0.78
AR-1 = 0.5 3 0.06 0.87 0.73 1.20 0.94

4 0.05 N/A N/A 1.10 0.94

1 0.04 N/A N/A 0.85 0.99
Joint Kernel

2 0.13 0.39 0.71 2.47 0.81
AR-1 = 0.5 3 -0.03 0.86 0.83 0.90 0.99

4 0.03 N/A N/A 0.87 0.99
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Supplementary table S2. Regression of ĥ on h under an exposure-response simulation scenario
for M = 10 toxicants and T = 4 time windows. We assumed there is no effect of exposure to the
mixture at time t = 1, and a gradual increase in the effect over time, by defining ht(z) = αth(z),
z = (z1, ..., z10)T , where α = (α1, α2, α3, α4) = 2 ∗ (0, 0.5, 0.8, 1) and h(z) = z21 − z22 + 0.5z1z2 +
z1 + z2. Performance of estimated ht (zi) across 100 simulated datasets, each with N=100. AR-1
denotes the autocorrelation in simulated data. RMSE denotes the root mean squared error of the
ĥ as compared to h. Coverage denotes the proportion of times that the true h falls within in the
posterior credible interval of each time point. At time window 1, there is no effect; thus, slope and
R2 are not applicable to the regression of ĥ on h . BKMR refers to applying BKMR to exposure
data from each time point separately. JKBKMR refers to applying BKMR simultaneously to data
from all time points.

h function Time window Intercept Slope R2 RMSE Coverage

1 0.05 N/A N/A 1.74 1.00
LKMR

2 0.02 0.64 0.59 1.61 1.00
AR-1 = 0.5 3 -0.03 0.64 0.78 1.99 0.99

4 0.05 0.72 0.82 2.17 0.99

1 0.20 N/A N/A 2.20 0.97
BKMR

2 0.16 1.15 0.50 3.08 0.94
AR-1 = 0.5 3 0.00 1.30 0.74 3.41 0.91

4 0.24 1.10 0.76 3.16 0.92

1 0.14 N/A N/A 1.51 1.00
JKBKMR

2 0.15 0.49 0.42 2.11 0.99
AR-1 = 0.5 3 0.10 0.49 0.58 2.74 0.96

4 0.15 0.47 0.60 3.29 0.91
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Supplementary table S3. Regression of ĥ on h under an exposure-response simulation scenario
for M = 5 toxicants and T = 10 time windows. We assumed there is no effect of exposure to the
mixture at time t = 1, and a gradual increase in the effect over time, by defining ht(z) = αth(z),
z = (z1, ..., z5)T , where α = (α1, α2, α3, α4) = 2 ∗ (0, 0.5, 0.8, 1) and h(z) = z21 − z22 + 0.5z1z2 +
z1 +z2. Performance of estimated ht (zi) across 100 simulated datasets, each with N = 100. AR-1
denotes the autocorrelation in simulated data. RMSE denotes the root mean squared error of
the ĥ as compared to h. Coverage denotes the proportion of times that the true h falls within
in the posterior credible interval of each time point. At time windows 1, 5, 6, 7, 8, 9, 10, there
is no effect; thus, slope and R2 are not applicable to the regression of ĥ on h . BKMR refers to
applying BKMR to exposure data from each time point separately. JKBKMR refers to applying
BKMR simultaneously to data from all time points.

h function Time window Intercept Slope R2 RMSE Coverage

1 0.05 N/A N/A 1.21 1.00
LKMR

2 0.02 0.72 0.79 1.20 1.00
AR-1 = 0.5 3 0.07 0.76 0.91 1.45 1.00

4 -0.04 0.66 0.92 1.98 0.97
5 0.05 N/A N/A 1.16 1.00
6 0.02 N/A N/A 0.83 1.00
7 -0.01 N/A N/A 0.80 1.00
8 0.01 N/A N/A 0.82 1.00
9 0.01 N/A N/A 0.79 1.00
10 -0.02 N/A N/A 0.99 1.00

1 0.48 N/A N/A 2.07 0.93
BKMR

2 0.33 1.34 0.65 2.85 0.90
AR-1 = 0.5 3 0.26 1.48 0.85 3.22 0.82

4 0.17 1.22 0.87 2.73 0.87
5 0.48 N/A N/A 2.73 0.89
6 0.47 N/A N/A 1.75 0.95
7 0.47 N/A N/A 1.63 0.97
8 0.47 N/A N/A 1.55 0.98
9 0.46 N/A N/A 1.55 0.98
10 0.45 N/A N/A 1.47 0.97

1 0.09 N/A N/A 1.07 1.00
JKBKMR

2 0.08 0.40 0.51 1.98 0.98
AR-1 = 0.5 3 0.09 0.39 0.55 2.93 0.91

4 0.09 0.33 0.54 3.78 0.85
5 0.11 N/A N/A 1.11 1.00
6 0.08 N/A N/A 1.04 1.00
7 0.09 N/A N/A 1.02 1.00
8 0.09 N/A N/A 1.01 1.00
9 0.07 N/A N/A 1.01 1.00
10 0.08 N/A N/A 1.02 1.00
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Supplementary table S4. Regression of ĥ on h under an exposure-response simulation scenario
for M = 10 toxicants and T = 10 time windows. We assumed there is no effect of exposure to the
mixture at time t = 1, and a gradual increase in the effect over time, by defining ht(z) = αth(z),
z = (z1, ..., z5)T , where α = (α1, α2, α3, α4) = 4 ∗ (0, 0.5, 0.8, 1) and h(z) = z21 − z22 + 0.5z1z2 +
z1 + z2. Performance of estimated ht (zi) across 100 simulated datasets, each with N=100. AR-1
denotes the autocorrelation in simulated data. RMSE denotes the root mean squared error of
the ĥ as compared to h. Coverage denotes the proportion of times that the true h falls within
in the posterior credible interval of each time point. At time windows 1, 5, 6, 7, 8, 9, 10, there
is no effect; thus, slope and R2 are not applicable to the regression of ĥ on h . BKMR refers to
applying BKMR to exposure data from each time point separately. JKBKMR refers to applying
BKMR simultaneously to data from all time points.

h function Time window Intercept Slope R2 RMSE Coverage

1 0.13 N/A N/A 3.02 1.00
LKMR

2 0.02 0.60 0.72 2.61 1.00
AR-1 = 0.8 3 -0.01 0.46 0.82 4.27 0.99

4 -0.02 0.36 0.81 6.36 0.95
5 -0.04 N/A N/A 2.79 1.00
6 -0.02 N/A N/A 2.08 1.00
7 -0.06 N/A N/A 1.80 1.00
8 -0.03 N/A N/A 1.73 1.00
9 -0.04 N/A N/A 1.75 1.00
10 -0.07 N/A N/A 2.15 1.00

1 -0.40 N/A N/A 9.96 0.84
BKMR

2 -0.67 2.26 0.71 9.81 0.85
AR-1 = 0.8 3 0.01 2.04 0.88 10.02 0.78

4 0.17 1.52 0.85 8.28 0.87
5 -0.42 N/A N/A 11.51 0.81
6 -0.40 N/A N/A 8.46 0.90
7 -0.42 N/A N/A 5.88 0.93
8 -0.40 N/A N/A 4.67 0.98
9 -0.37 N/A N/A 4.60 0.98
10 -0.41 N/A N/A 5.16 0.97

1 0.00 N/A N/A 1.85 1.00
JKBKMR

2 -0.09 0.30 0.47 3.98 0.96
AR-1 = 0.8 3 -0.04 0.23 0.47 6.27 0.87

4 0.02 0.18 0.46 8.26 0.80
5 -0.01 N/A N/A 1.73 1.00
6 0.00 N/A N/A 1.48 1.00
7 -0.03 N/A N/A 1.40 1.00
8 -0.02 N/A N/A 1.27 1.00
9 -0.06 N/A N/A 1.34 1.00
10 0.03 N/A N/A 1.41 1.00
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Section D: Application of bkmr and joint kernel bkmr to element data

Linear regression applied to ELEMENT data

LKMR applied to ELEMENT data

BKMR applied to ELEMENT data

Joint kernel applied to ELEMENT data

Supplementary figure S2. BKMR and joint kernel (JKBKMR) estimated main effect of each metal
at three critical windows for ELEMENT data. LKMR plot is provided as a reference. Plot of the
estimated relative importance of each metal, as quantified by the difference in the mean response
at the 75th percentile versus the 25th percentile of a given metal exposure, while holding all other
metal exposures constant at their median values.
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LKMR applied to ELEMENT data

BKMR applied to ELEMENT data

Joint kernel applied to ELEMENT data

Supplementary figure S3. BKMR and joint kernel (JKBKMR) estimated time-specific exposure
response functions applied to ELEMENT data. LKMR plot is provided as a reference. Plot of
the estimated posterior mean of the exposure-response surface for Mn and Zn, at the median of
Ba, Cr, and Li.
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LKMR applied to ELEMENT data

BKMR applied to ELEMENT data

Joint kernel applied to ELEMENT data

Supplementary figure S4. BKMR and joint kernel (JKBKMR) estimated time-specific exposure-
response functions for Mn at low and high Zn levels applied to ELEMENT data. LKMR plot is
provided as a reference. Plot of the cross-section of the estimated exposure-response surface for
Mn, at the 25th (top panel) and 75th (bottom panel) of Zn exposure, holding Ba, Cr, and Li
constant at median exposures.
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Section E: Application of lkmr to a simulated case study dataset

We describe the dataset and graphical results for a simulated case study. The simulated case study

considered a five-toxicant scenario: three toxicants (out of five) exert a gradual non-additive,

non-linear effect over three time windows that are representative of pregnancy and early life.

We used the following model: yi = xTi β +
∑
t ht (zi,t) + ei, where zi,t = (z1i,t, z2i,t, z3i,t)

T
,

ei ∼ N(0, 1), xi = (x1i, x2i)
T and x1i ∼ N (10, 1) and x2i ∼ Bernoulli(0.5). We simulated auto-

correlation within toxicant exposures zm = (zTm,1, z
T
m,2, z

T
m,3)T for metal m = 1, 2, 3, 4, 5 across

time, and correlation among toxicants, using the Kronecker product for the exposure correlation

matrix. Auto-correlation (AR-1) within toxicants was set to be 0.5. The shape of the exposure-

response function ht(zi,t), which was assumed to be the same at each time point, was simulated

as quadratic with two-way interactions. We assumed there is a gradual increase in the effect over

time, by defining ht(z) = αth(z) for time windows t = 1, 2, where α = (α1, α2) = (0.5, 1) and

h(z) = z21 − z22 + 0.5z1z2 + z1 + z2, and h3(z) = 1.5 ∗ (z21 − z22 + 0.5z1z2 + z1 + z2 + z4) for time

window t = 3. We used the quadratic kernel function, such that K(z, z’) = (zT z’ + 1)2.

The description and analysis code for the simulated case study can be found in the Github

repository: https://github.com/shelleyhliu/LKMR-CaseStudy.
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A. Relative importance of 5 simulated metals at 3 time windows

B. Heatmap of Z1-Z2 joint effects for 3 time windows

C. Cross-sectional plots of Z1 effects at low/high Z2 for 3 time points

D. Overall interaction between Z1-Z2 at 3 time points

Supplementary figure S5. LKMR estimated plots for a simulated case study dataset. A) Plot of the
estimated relative importance of each metal, as quantified by the difference in the mean response
at the 75th percentile versus the 25th percentile of a given metal exposure, while holding all
other metal exposures constant at their median values. B) Plot of the estimated posterior mean
of the exposure-response surface for Z1 and Z2, at the median of Z3, Z4, Z5. C) Plot of the
cross-section of the estimated exposure-response surface for Z1, at the 25th (top panel) and 75th
(bottom panel) of Z2 exposure, holding Z3, Z4, Z5 constant at median exposures. D) Plot of the
estimated interaction effect between Z1 and Z2, holding Z3, Z4, Z5 constant at median exposures.
First, we estimated the exposure-response effect for high (75th) versus low (25th) Z1 exposures, at
high Z2 levels. Next, we estimated the exposure-response effect for high versus low Z1 exposures,
at low Z2 levels. The difference between the two estimated exposure-response effects quantifies
the Z1-Z2 interaction. All other metal exposures are held constant at their median values.
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