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1 Supplementary Details

1.1 Ambiguous reads in single-cell RNA-seq data

When using single-cell RNA-seq data, we only employ a latent variable approach for multi-gene mapping reads,
while a reads are not allocated, and are treated separately from s and u. This is because, in order to allocate
a reads, we need an estimate of the probability that an ambiguous read is spliced (or unspliced), which cannot
be accurately computed, because it depends on various unknown factors.

In fact, existing single-cell analysis tools either assign all ambiguous reads as spliced, for example, velocyto
(La Manno et al., 2018), or acknowledge the difficulty and quantify the result of the ambiguous reads as a
stand-alone count matrix (i.e., a), and leave the task of solving the ambiguity to the users, such as alevin
(Srivastava et al., 2019) and alevin-fry (He et al., 2022). The difficulty of ambiguous read allocation comes from
both biological and computational aspects. First, s and u mRNA share large genomic regions (e.g., exons), while
scRNA-seq reads are characterized by short fragments, which are often compatible with both splice variants
of genes. Second, most ambiguous reads can be allocated to spliced and unspliced genes equally well, with
no decisive evidence for disambiguating those reads. Third, while read coverage is approximately uniform in
bulk RNA-seq reads (i.e., the location of reads in a transcript can be assumed to be roughly random, hence
uniform, across the transcript), this is not the case for single-cell protocols. At present, we still lack accurate
methods that model the underlying mechanism of ambiguous reads, and address the respective uncertainty in
a probabilistic way.

1.2 MCMC scheme

We alternately sample parameters and latent states from their conditional distributions, following a Metropolis-
within-Gibbs sampling scheme. In particular, we sample:
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• hyper-parameters δjπ from a Metropolis sampler, with an adaptive random walk proposal;

• parameters ρjX from Dirichlet Gibbs samplers;

• hierarchical parameters πjX, δ from Dirichlet Gibbs samplers;

• latent states XjZ, π from multinomial Gibbs samplers.

Below, we describe the prior specifications, and the details of each sampling scheme.

1.2.1 δjπ Metropolis sampling

For convenience, the δ parameters are sampled after applying a logarithmic transformation. The posterior
distribution of log(δ) is defined as: p(log(δ)jπ) / p(πjlog(δ))p(log(δ)), where p(log(δ)) is the informative prior
for log(δ) (defined below). Instead, p(πjlog(δ)), in the bulk case, is the product of the T beta densities defined
in (2.3) (main paper), while, in the single-cell model, is the product of the G Dirichlet densities defined in (2.6)
(main paper).

We use an empirical Bayes approach to formulate an informative prior for the hyper-parameters. In particular,
we randomly select 1,000 genes/transcripts, and, for each one of them, we use DRIMSeq (Nowicka and Robinson,
2016) to obtain an initial estimate of the following parameters: log(δ+), log(δS), and (in the single-cell model)
log(δU ). For each parameter, we compute the mean and standard-deviation of its 1,000 estimated values (1 per
selected gene): µ+ and σ+ for log(δ+), µS and σS for log(δS), and (in the single-cell model) µU and σU for
log(δU ).

These estimates are used to formulate the following informative prior distributions for the hyper-parameters:
log(δ+) � N

�
µ+, σ

2
+

�
, log(δS) � N

�
µS , σ

2
S

�
, and (in the single-cell model) log(δU ) � N

�
µU , σ

2
U

�
.

Hyper-parameters are sampled, in the logarithmic scale, from a Metropolis sampler; in particular, we sample
parameters (log(δS), log(δU ), log(δA)), (or simply (log(δS), log(δU )) in the bulk model), and, to obtain their
prior distributions, apply the change of variable via the Jacobian transformation (Murphy, 2012).

Values are proposed based on an adaptive random walk (Haario et al., 2001). In the initial 200 iterations,
we propose values from a normal distribution independently for each hyper-parameter. After 200 iterations, a
covariance matrix of the posterior chains is computed, and hyper-parameters are proposed from a multivariate
normal distribution, with this covariance matrix. The covariance matrix is then re-updated at 300, 400, 500
iterations, and at the burn-in (which is set to be at least 500 iterations).

1.2.2 ρjX Gibbs sampling

Below, we express densities in terms of Y , which is directly derived from X: in the bulk model, for each
transcript t, and sample i, Y (t)

i is obtained as Y
(t)
i = X

(t)
Si + X

(t)
Ui . Similarly, in the single-cell model, for gene g

and sample i, we have that Y
(g)
i = X

(g)
Si + X

(g)
Ui + X

(g)
Ai .

We assume a weakly informative Dirichlet prior distribution for ρ,

ρi � Dir (1, . . . , 1) , for i = 1, . . . , N. (1)

The posterior distribution of ρi can be obtained as: p(ρijYi) / p(Yijρi)p(ρi), where p(Yijρi) is the density of
the multinomial distribution, reported in the main paper in formula (2.1) for the bulk model, and (2.4) for the
single-cell model. Given the conjugacy of the Dirichlet and multinomial distributions, the posterior distribution
is again Dirichlet distributed, and, in the bulk model, it is equal to:

ρijYi � Dir
�
Y

(1)
i + 1, . . . , Y

(T )
i + 1

�
for i = 1, . . . , N. (2)

In the single-cell model, G (the number of genes) replaces T (the number of transcripts).
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1.2.3 πjX, δ Gibbs sampling

In the bulk model, for each sample i and transcript t, the posterior distribution of π
(t)
Si can be obtained as:

p
�
π
(t)
Si

���X(t)
Si , δ

(t)
�
/ p

�
X

(t)
Si

���π(t)
Si

�
p
�
π
(t)
Si

��δ(t)�, where p
�
X

(t)
Si

���π(t)
Si

�
is the density of the Binomial distribution

in (2.2) (main paper), and p
�
π
(t)
Si

��δ(t)� is the conjugate Beta hierarchical prior distribution in (2.3) (main

paper). These choices lead to the following Beta posterior distribution for π
(t)
Si :

π
(t)
Si

���X(t)
i , δ(t) � Beta

�
X

(t)
Si + δ

(t)
S , X

(t)
Ui + δ

(t)
U

�
, for t = 1, . . . T, i = 1, . . . N. (3)

Similarly, in the single-cell model, for each sample i and gene g, the posterior distribution of π
(g)
i can be

calculated as: p
�
π
(g)
i

���X(g)
i , δ(g)

�
/ p

�
X

(g)
i

���π(g)
i

�
p
�
π
(g)
i

��δ(g)�, where p
�
X

(g)
i

���π(g)
i

�
is the density of the

multinomial distribution in (2.5) (main paper), and p
�
π
(g)
i

��δ(g)� is the conjugate Dirichlet hierarchical prior

distribution in (2.6) (main paper). These results lead to the following Dirichlet posterior distribution for π
(g)
i :

π
(g)
i

���X(g)
i , δ(g) � Dir

�
X

(g)
Si + δ

(g)
S , X

(g)
Ui + δ

(g)
U , X

(g)
Ai + δ

(g)
A

�
, for g = 1, . . . G, i = 1, . . . , N. (4)

1.2.4 XjZ, π Gibbs sampling

Assume that a total of J equivalence classes (EC) are available. Each EC is defined by two elements, which
for the j-th EC are Wj and Vj : the former contains the list of gene(s)/transcript(s) compatible with the j-th
equivalence class, while the latter indicates the splice status of the corresponding gene(s)/transcript(s) (i.e., s
or u for bulk data, and s, u or a for single-cell data). Each EC is also associated to a count, zj for the j-th
class, indicating the number of (bulk or single-cell) RNA-seq reads compatible with it.

For each EC, we aim to allocate its counts to the gene(s)/transcript(s), and respective splice status, compatible
with it.

For simplicity, below we consider the bulk model; the single-cell model is a natural extension of it. We define
X

(t)
Sij and X

(t)
Uij as the contribution (i.e., counts) of the j-th EC to the spliced and unspliced versions of transcript

t in sample i.

Assume that the j-th EC is compatible with nj transcripts. The counts of the j-th EC from the i-th sample
are allocated according to the following multinomial distribution:�

X
(w1)
v1i

, . . . , X
(wnj )

vnj i

�����πi, Z �MN (πij , zj) , for i = 1, . . . , N, j = 1, . . . , J, (5)

where πij /
�
ρ
(w1)
i � ~π

(w1)
v1i

, . . . , ρ
(wnj )

i � ~π
(wnj )

vnj i

�
, Wj =

�
w1, . . . , wnj

�
, and Vj =

�
v1, . . . , vnj

�
, with w1, . . . , wnj 2

f1, . . . , Tg, and v1, . . . , vnj 2 fS,Ug.

For every sample, i = 1, . . . , N , once the counts of all J ECs have been allocated, we can recover the overall
s and u abundance of each transcript, t = 1, . . . , T , by adding elements across ECs: X

(t)
Si =

PJ
j=1X

(t)
Sij and

X
(t)
Ui =

PJ
j=1X

(t)
Uij ; then, the overall transcript-level counts can be retrieved as Y

(t)
i = X

(t)
Si + X

(t)
Ui .

In order to accelerate the runtime of our method, latent states are only sampled every 10 iterations (i.e.,
undersampling scheme).

1.3 Wald-type test for the single-cell model

Given two groups of samples, A and B, we aim to test if parameter πS , πU , and πA change between groups.
We consider the difference of these parameters across groups as: ω = (ωS , ωU ), with ωS = AπS � BπS , and

3



ωU = AπU � BπU . Under the null hypothesis, πS and πU (and consequently πA) do not change across groups;
therefore we test the following system of hypotheses: H0 : ωS = ωU = 0; H1 : otherwise.

We approximate the posterior distribution of ω with a bivariate normal (Gelman et al., 1995): ω _�N (ω̂, �̂ω),
with parameters ω̂ and �̂ω inferred from the posterior chains. Given this normal approximation, we use a
bivariate Wald test (Li et al., 1991): ω̂�̂−1

ω ω̂T _�χ2
2.

1.4 Simulation details

In the main paper (Section 2.5), we illustrate how, in both bulk and single-cell simulations, starting from a real
dataset as anchor data, we obtain the counts for each transcript (bulk data) or gene (single-cell data). Then, we
artificially introduce a differential effect in a randomly selected subset of the genes/transcripts. Finally, starting
from these counts, in order to introduce mapping uncertainty, we use read-level simulators (RSEM (Li and
Dewey, 2011) for bulk data and minnow (Sarkar et al., 2019) for single-cell data) to simulate read-level data.
Below, we explain how the differential effects are introduced.

To generate differentially regulated (DR) genes/transcripts, we first define a list of genes/transcripts that are
eligible for being chosen as DR. In particular, a gene/transcript is eligible when, if it was selected as DR, it would
lead to a difference, between groups A and B, in the (group-level) relative abundance of unspliced reads, �πU ,
of at least 0.2 (i.e., B�πU � A�πU � 0.2). Since DR is introduced by inverting spliced and unspliced reads in one
group, this condition can be easily checked, in the data where DR has not been introduced, as: B�πS�A�πU � 0.2.
This condition prevents us from simulating negligible differential effects (i.e., B�πU � A�πU < 0.2), which would
be uninteresting. Then, from the list of eligible genes/transcripts, we randomly select 2,000 transcripts (bulk
simulation), or 20% of the genes (single-cell simulation). For each one of the selected genes/transcripts, we
randomly select the group (A or B) where we will alter count data; this ensures that, on average, half of the
modifications will affect group A, and half group B. Finally, for each gene, in each sample belonging to the
selected group, we invert their spliced (s) and unspliced (u) counts. This introduces a difference in the relative
abundance of s and u reads between groups.

In our DGE simulation, additionally to DR genes/transcripts (see above for DR simulation design), we also
introduce a nuisance DGE effect. To this aim, we randomly sample 2,000 (bulk simulation) or 20% of the genes
(single-cell data). For each gene/transcript, we randomly sample a fold change FC between conditions, and a
group to alter: the gene counts in the selected group are then multiplied by FC (and rounded to the closest
integer). As for the DR effect, randomly sampling the group ensures that, on average, changes will equally
affect the two groups. In the simulations with average fold change 3, 6 and 9, FC is sampled as FC = 2 + Z,
FC = 5 + Z and FC = 8 + Z, respectively, with Z � exp(µ = 1), where exp(µ) is the exponential random
variable with mean µ. This generates random fold changes with variance 1, and mean 3, 6 or 9.

In our DAS simulation (bulk data only), after simulating DR transcripts (details above), we generate a nuisance
DAS effect. To do that, we first randomly sample 2,000 genes; in order to introduce DAS, for each selected
gene, we randomly sample a group: in the selected group, we invert the abundance (i.e., counts) of the two
most abundant transcripts in the gene. This is coherent with the design of previous simulation studies involving
DAS (Tiberi and Robinson, 2020; Soneson et al., 2016). Note that DAS is only introduced in bulk simulations,
because its simulation requires transcript-level resolution, which is not available in scRNA-seq protocols.

In the batch simulation study, we generate two DR effects: one between groups (of interest), and one between
batches (nuisance). First, we specify a design for batches: see Supplementary Tables 1 and 2 for the designs of
the bulk and single-cell data, respectively. Then, we generate a DR effect between groups (see details above),
and a second DR effect between batches. Clearly, the two DR effects are based on distinct sets of randomly
selected genes/transcripts. In each simulation, we simulate the same number of DR genes/transcripts between
groups (difference of interest) and between batches (nuisance effect): 2,000 transcripts for the bulk data, and
20% of the genes for the single-cell data.

In the dropout simulation study (single-cell data only), we generate three simulations where, for each gene in
every cell type, we only allow for 1, 5 and 10% of the cells to have non-zero abundance. In particular, for each
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gene and cell type, we add the abundance of s and u reads across all cells of the specific cell type; then, we
randomly allocate these s (and u) overall counts across a randomly selected fraction (1, 5 or 10%) of genes.
In this way the overall s and u abundances, of each gene in every cell type, are unchanged. Finally, starting
from this dataset, we introduce a DR effect between groups, as in the main DR simulation (details above), by
inverting the abundance of s and u reads in 20% of the genes (selected at random).

The null simulation study is trivially obtained by simulating no differential effects of any kind between groups.

Finally, note that, although BRIE2 can account for the sample-to-sample variability, we found that including
sample information led to a major decrease in power (Supplementary Figure 15); therefore, in all results, we
considered the results obtained by fitting BRIE2 with group as the only covariate in the model.
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2 Supplementary Tables

sample group batch
sample 1 group A batch 1
sample 2 group A batch 1
sample 3 group A batch 2
sample 4 group B batch 1
sample 5 group B batch 2
sample 6 group B batch 2

Supplementary Table 1: Design of the simulation study with batch effects; bulk data.

sample group batch
sample 1 group A batch 1
sample 2 group A batch 2
sample 3 group B batch 1
sample 4 group B batch 2

Supplementary Table 2: Design of the simulation study with batch effects; single-cell data.

P-value threshold 0.1 0.05 0.01
DEXSeq_TECs 0.1 0.1 0.1
DEXSeq_ECs 0.0 0.0 0.0
DRIMSeq 0.9 0.4 0.1
DifferentialRegulation 0.1 0.0 0.0
satuRn 5.3 2.2 0.4
SUPPA2 1.7 0.5 0.0
eisaR 1.2 0.4 0.0

Supplementary Table 3: Percentage of false positive results in the null simulation study (bulk data); i.e., raw p-values below thresholds 0.1,
0.05, and 0.01. For DifferentialRegulation, we considered a false positive detection when p, the probability of up-regulation, was close to 0 or
1: p < 0.05 or p > 0.95 (for threshold 0.1), p < 0.025 or p > 0.975 (for threshold 0.05), and p < 0.005 or p > 0.995 (for threshold 0.01).
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P-value threshold 0.1 0.05 0.01
BRIE2 4.0 2.5 0.9
DEXSeq_TECs 0.1 0.1 0.0
DifferentialRegulation 3.5 1.7 0.4
DifferentialRegulation_Wald 1.5 0.8 0.3
DRIMSeq 1.3 0.6 0.2
eisaR 4.9 2.1 0.3
satuRn 34.4 23.2 9.2
satuRn_SC 21.1 12.5 4.6

Supplementary Table 4: Percentage of false positive results in the null simulation study (single-cell data); i.e., raw p-values below thresholds
0.1, 0.05, and 0.01. For DifferentialRegulation, we considered a false positive detection when p, the probability of up-regulation, was close to 0
or 1: p < 0.05 or p > 0.95 (for threshold 0.1), p < 0.025 or p > 0.975 (for threshold 0.05), and p < 0.005 or p > 0.995 (for threshold 0.01).

cell type number of cells
oRG 6776
CPNs 6361
Immature CPNs 5983
Immature PNs 2954
Cycling 2389
RG 1093

Supplementary Table 5: Number of cells available, across all six brain organoids, for each cell type, in the real data analysis study.

Genes DiffReg DEXSeq_TECs eisaR SUPPA2 DRIMSeq DEXSeq_ECs satuRn
mouse
pancreas
development 12 12 11 11 10 9 6
ZNF800 1 0 0 0 0 0 0
overall 13 12 11 11 10 9 6

Supplementary Table 6: Bulk real data analysis. Number of interesting genes present among the top 1,000 results returned by every
method. “DiffReg” refers to DifferentialRegulation; “mouse pancreas development” and “ZNF800” indicate the 110 genes associated to the term
“mouse pancreas development”, and the 3 genes associated to “Znf800”, respectively; “overall” gathers all 112 genes from the previous two lists.
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3 Supplementary Figures

Supplementary Figure 1: Bulk simulation stud with DR + DGE. Top row: ROC curves; i.e., false positive rate (FPR) vs. true positive rate
(TPR). Bottom row: false positive (FP) results among top detections (topN). All simulations have di�erentially regulated and di�erentially
expressed genes, with average fold-change (FC) of 3 (left panel), 6 (middle panel) or 9 (right panel).
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Supplementary Figure 2: Results from the bulk simulations, with and without batch e�ects. Top row: ROC curves; i.e., false positive rate
(FPR) vs. true positive rate (TPR). Bottom row: false positive (FP) results among top detections (topN). Left panel (DR): simulation with
di�erential regulation only; right panel (DR + batch): simulation with di�erential regulation and batch e�ect.
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Supplementary Figure 3: ROC curves for the main bulk simulations, strati�ed by overall transcript abundance: false positive rate (FPR)
vs. true positive rate (TPR). Top row: low abundance (bottom 33% of abundant transcripts); middle row: medium abundance (middle 33%
of abundance); bottom row: high abundance (top 33% of abundant transcripts). Left column: DR only simulation; middle column: DR and
DGE simulation (average fold-change of 3); right column: DR and DAS simulation.
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Supplementary Figure 4: False positive (FP) results among top detections (topN) for the main bulk simulations, strati�ed by overall
transcript abundance: false positive rate (FPR) vs. true positive rate (TPR). Top row: low abundance (bottom 33% of abundant transcripts);
middle row: medium abundance (middle 33% of abundance); bottom row: high abundance (top 33% of abundant transcripts). Left column:
DR only simulation; middle column: DR and DGE simulation (average fold-change of 3); right column: DR and DAS simulation.
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Supplementary Figure 5: Histogram of p, the probability that group B is up-regulated (while 1 � p is the probability that B is down-
regulated), in the null simulation studies. Left: bulk simulation; right: single-cell simulation.

Supplementary Figure 6: Single-cell simulation study with DR + DGE. Top row: ROC curves; i.e., false positive rate (FPR) vs. true
positive rate (TPR). Bottom row: false positive (FP) results among top detections (topN). All simulations have di�erentially regulated and
di�erentially expressed genes, with average fold-change (FC) of 3 (left panel), 6 (middle panel) or 9 (right panel).
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Supplementary Figure 7: Single-cell simulation study with various fractions of zero-abundant cells. Top row: ROC curves; i.e., false
positive rate (FPR) vs. true positive rate (TPR). Bottom row: false positive (FP) results among top detections (topN). All simulations have
di�erentially regulated genes only (no DGE or DAS), with 90 (left column), 95 (middle column) and 99% (right column) of zero cells (i.e., gene
expression equal to 0). The average gene abundance is the same across simulations.
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