Currently, this treatment option is only available in a small number of centres worldwide and only at our unit in the UK. Increasing interest suggests that in future more anaesthetists may be asked to provide anaesthesia for patients receiving intralesional bleomycin treatment.

Bleomycin chemotherapy is a recognized cause of pulmonary pathology. The risk of developing bleomycin-related pulmonary injury is known to be increased by alveolar hyperoxia even in cases where there has been an interval of 6–12 months between bleomycin exposure and hyperoxic anaesthesia. Animal studies have shown that the risk of developing bleomycin-related pulmonary pathology is increased if bleomycin is administered concurrently with the alveolar hyperoxia. This has implications for the anaesthetic management of our patients where, despite a lower dose of bleomycin required than that used in chemotherapy, the drug is administered during general anaesthesia.

In our unit, we use the following protocol. Before admission, adult patients are referred to a respiratory physician for assessment by history, examination, baseline spirometry, transfer factor (DLCO), and a chest radiograph. Children are assessed by a paediatrician with a special interest in respiratory disease; baseline respiratory function tests being obtained where possible. Patients are reviewed by the respiratory team midway through a course of treatments and after completion of treatment.

The aim is to provide safe anaesthesia while avoiding alveolar hyperoxia. Pre-oxygenation is avoided and supplemental oxygen is restricted, aiming for a normal end-tidal oxygen concentration and a target minimum aO_2 of 94%. Ventilation is assisted to prevent hypoxaemia resulting from alveolar hypoventilation. Most cases can be managed with a laryngeal mask airway or oropharyngeal airway, thus avoiding any desaturation associated with extubation. The procedure is performed in the anaesthetic room to avoid hypoxic events upon transfer into theatre. If difficulties arise, the anaesthetist is encouraged to use oxygen supplementation as necessary until problems are resolved. Before transfer to recovery, the patient should have resumed satisfactory spontaneous respiration on air. During recovery, no supplemental oxygen is prescribed unless the oxygen saturation decreases below 94% and, if required, the lowest effective supplementation is used.

We have reviewed our first 3 yr experience of providing general anaesthesia for these patients. Forty-nine patients received a total of 187 general anaesthetics. Nineteen (42.9%) of the patients were children, with seven (14.3%) under 1 yr old. The majority (65.3%) of procedures were performed in children, with seven (14.3%) procedures required the patient to receive oxygen in recovery. There were no cases of bleomycin-related pulmonary disease. Two patients reported bleomycin-related skin reactions.

With careful respiratory assessment and monitoring, and using an anaesthetic technique that attempts to avoid alveolar hyperoxia, intralesional bleomycin therapy of vascular malformations under general anaesthesia has not been associated with the development of pulmonary complications in patients treated at our unit.

G. Kessel*
S. Panchatsharam
E. Kothmann
P. Finn
A. Fall
A. Guhan
T. Muir
Middlesbrough, UK
*E-mail: gareth.kessell@stees.nhs.uk

4 Goldiner PL, Schweizer O. The hazards of anesthesia and surgery in bleomycin-treated patients. Semin Oncol 1979; 6: 121–4
5 Berend N. The effect of bleomycin and oxygen on rat lung. Pathology 1984; 16: 136–9

doi:10.1093/bja/aen395

Target controlled infusion of opioids for bariatric surgery and morphine loading dose

Editor—I read with interest the useful study by De Baedemaeker and colleagues, but wish to raise some concerns about the paper. First, the authors did not declare
Y. Al-Tamimi
Perth, Australia
E-mail: altamimiy@ramsayhealth.com.au

Editor—we thank Dr Al-Tamimi for his comments and his interest in our paper and for the opportunity to reply to him. We will address his points in turn. First, details of the sample size calculation and patient selection can be found in our Methods section. Since the primary endpoint of the study was the postoperative morphine consumption, power analysis was based on a similar protocol performed in non-obese patients. Group allocation was at random with blinded envelopes.

Secondly, we would like to point out that the patients in both study groups received acetaminophen 2 g i.v. and diclofenac 150 mg i.v. at the beginning of surgery. Thus, the patients in the remifentanil group received non-opioid transitional postoperative analgesia. The initial mean (sd) visual analogue scale (VAS) score in the remifentanil group on admission in the PACU was 4.3 (1.7) and this reflects suboptimal analgesia, but to our opinion not in the group on admission in the PACU was 4.3 (1.7) and this visual analogue scale (VAS) score in the remifentanil and colleagues found that morphine dosing rate (mg kg
obesity on the morphine requirements using PCIA, Graves
body weight (IBW) in morbidly obese patients. When
an intraoperative loading dose of morphine based on ideal
are no clear guidelines in the literature on the safe use of
the end of surgery for the immediate postoperative analge-
sia can be achieved.

L. De Baerdemaeker*
S. Jacobs
Gent, Belgium
*E-mail: luc.debaerdemaeker@ugent.be

1 De Baerdemaeker LEC, Jacobs S, Pattyn P, Mortier EP, Sruys MMRF. Influence of intraoperative opioid on postoperative pain and pulmonary function after laparoscopic gastric banding; remi-
opioid on postoperative pain after major abdominal surgery: sufen-
3 Graves DA, Batcnhorst RL, Bennett RL, et al. Morphine require-
ments using patient-controlled analgesia: influence of diurnal vari-
4 Choi YK, Brolin RE, Wagner BK, et al. Efficacy and safety of patient-controlled analgesia for morbidly obese patients following
analgesia is an acceptable pain management strategy in morbidly
obese patients undergoing gastric bypass surgery. A retrospective
comparison with epidural analgesia. Can J Anaesth 2003; 50:
672–8
6 Ahmad S, Nagle A, McCarthy RJ, et al. Postoperative hypoxemia in
morbidly obese patients with and without obstructive sleep apnea
undergoing laparoscopic bariatric surgery. Anesth Analg 2008; 107:
138–43
morbidly obese patients: an effective modality if used correctly. Anesthesiology 1992; 76: 857–8