Potent inhibition by ropivacaine of metastatic colon cancer SW620 cell invasion and Na\(_{V1.5}\) channel function

D. T. Baptista-Hon\(^1\), F. M. Robertson\(^1\), G. B. Robertson\(^1\), S. J. Owen\(^1\), G. W. Rogers\(^1\), E. L. Lydon\(^1\), N. H. Lee\(^2\) and T. G. Hales\(^1,2*\)

Editor’s key points
- Colon cancer cells express voltage gated sodium channels, which mediate invasion.
- This cell culture study evaluated the effect of ropivacaine on voltage gated sodium channels on colon cancer cells.
- Ropivacaine inhibited colon cancer cells’ voltage gated sodium channels and invasion, implying a possible role for amide local anaesthetics in cancer surgery.

Background. Metastatic breast and colon cancer cells express neonatal and adult splice variants of Na\(_{V1.5}\) voltage-activated Na\(^+\) channels (VASCs). Block of VASCs inhibits cell invasion. Local anaesthetics used during surgical tumour excision inhibit VASC activity on nociceptive neurones providing regional anaesthesia. Inhibition of VASCs on circulating metastatic cancer cells may also be beneficial during the perioperative period. However, ropivacaine, frequently used to provide analgesia during tumour resection, has not been tested on colon cancer cell VASC function or invasion.

Methods. We used reverse transcription–polymerase chain reaction and sequencing to identify Na\(_{V1.5}\) variants in the SW620 metastatic colon cancer cell line. Recombinant adult and neonatal Na\(_{V1.5}\) variants were expressed in human embryonic kidney cells. Voltage-clamp recordings and invasion assays were used to examine the effects of ropivacaine on recombinant Na\(_{V1.5}\) channels and the metastatic potential of SW620 cells, respectively.

Results. SW620 cells expressed adult and neonatal Na\(_{V1.5}\) variants, which had similar steady-state inactivation profiles, but distinctive activation curves with the neonatal variant having a \(V_{1/2}\) of activation 7.8 mV more depolarized than the adult variant. Ropivacaine caused a concentration-dependent block of both Na\(_{V1.5}\) variants, with IC\(_{50}\) values of 2.5 and 3.9 \(\mu\)M, respectively. However, the reduction in available steady-state current was selective for neonatal Na\(_{V1.5}\) channel variants. Ropivacaine inhibited SW620 invasion, with a potency similar to that of inhibition of Na\(_{V1.5}\) channels (3.8 \(\mu\)M).

Conclusions. Ropivacaine is a potent inhibitor of both Na\(_{V1.5}\) channel activity and metastatic colon cancer cell invasion, which may be beneficial during surgical colon cancer excision.

Keywords: colorectal cancer; electrophysiology; ion channels; local anaesthetics

Accepted for publication: 13 February 2014

Colorectal cancer causes \(\sim 0.5\) million annual deaths worldwide.\(^4\) Death is caused by metastatic spread and up to 75% of fatalities are associated with liver metastases.\(^4\) Surgical tumour excision is the primary treatment for colorectal, breast and prostate cancer. However, surgery can liberate malignant cells into the circulation and disease prognosis is negatively correlated with the number of circulating cancer cells.\(^3\) \(^4\) Circulating cancer cells can either generate metastatic tumours in distant tissues or self-seed at the original tumour site, a process that participates in non-metastatic cancer progression.\(^7\) Approaches that reduce the perioperative spread of tumour cells, by inhibiting invasion, may significantly prolong disease-free survival after surgery.

Recent studies suggest that the use of regional anaesthesia (e.g. paravertebral and epidural block) during surgical tumour excision reduces the likelihood of cancer recurrence and metastasis.\(^6\) – \(^9\) Local anaesthetics administered in this way provide pain relief, an approach that reduces the requirement for general anaesthesia and opioid analgesia. General anaesthesia and opioids may suppress the patient’s immune response and inhibit natural killer cells possibly increasing the survival of circulating cancer cells during the perioperative period. These cells may reseed and/or metastasize to additional tissues. The ability of spinal local anaesthetics to reduce the requirement for general anaesthesia and opioids may contribute to their beneficial effects during cancer surgery.\(^9\)

Local anaesthetics relieve pain by inhibiting voltage-activated Na\(^+\) channels (VASCs) on nociceptive neurones; however, local anaesthetics also affect ion channels on other cells. Breast, colon, and prostate cancer cells express local anaesthetic-sensitive VASCs.\(^10\) – \(^13\) There are several genes that express different VASCs in distinct tissues. We previously
demonstrated that metastatic colon cancer cells express the cardiac NaV1.5 VASC α subunit. Primary colon cancer (SW420) cells have lower levels of NaV1.5 expression than metastatic (SW620) cells isolated from the same patient. Moreover, the level of NaV1.5 expression correlates with their invasive potential. Inhibition of NaV1.5 channels either by applying lidocaine or by siRNA-mediated knockdown reduces SW620 cell migration through a Matrigel membrane, an in vitro assay of metastatic invasion.

The local anaesthetic ropivacaine is frequently used to provide regional anaesthesia during surgical tumour excision. However, the effects of ropivacaine have not been tested on NaV1.5 VASCs expressed by metastatic colon cancer cells. In this study, we identified NaV1.5 VASC splice variants in SW620 cells and examined their sensitivities to block by ropivacaine. We also determined that ropivacaine potently inhibits the invasion of SW620 cells.

Methods

Cell culture and transfection

Human embryonic kidney (HEK293) cells and SW620 cells were obtained from American Type Culture Collection (Manassas, VA, USA) and cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin (Invitrogen, Paisley, UK) at 37°C and 5% CO₂. Adult and neonatal NaV1.5 cDNAs were subcloned into pcDNA3.1 vector (Invitrogen). As previously described, HEK293 cells were transfected using calcium phosphate precipitation with cDNA encoding green fluorescence protein to identify transfected cells. For immunocytochemistry, cells were seeded onto poly-l-lysine-coated coverslips in 24-well plates and transfected using lipofectamine (Invitrogen). HEK293 cells were transfected using calcium phosphate precipitation with cDNA encoding green fluorescence protein to identify transfected cells. For immunocytochemistry, cells were seeded onto poly-l-lysine-coated coverslips in 24-well plates and transfected using lipofectamine (Invitrogen). Mock transfections were performed, as necessary, using empty pcDNA3.1 vector.

Molecular biology

Total RNA from transfected HEK293 cells or SW620 cells was isolated using RNeasy (Qiagen, Manchester, UK) and reverse transcribed (RevertAid RT–PCR Kit, Thermo Scientific, Loughborough, UK) using a single reverse primer for the exon 10–11 boundary (primer P1, Table 1) of human SCN5A (RefSeq NG_008934.1). Single-stranded cDNAs were subsequently amplified by polymerase chain reaction (PCR) with high-fidelity Pfu polymerase (Thermo Scientific, Loughborough, UK) using primer P1, together with forward primers directed against the boundary of exon 5 and either exon 6A (primer P2, Table 1) or exon 6B (primer P3, Table 1) of human SCN5A. PCR products were analysed by agarose gel electrophoresis. Fragments corresponding to exon 6A or 6B from SW620 spanning two unique restriction sites (XhoI and EcoRI) within the open reading frame of SCN5A using primers P4 and P5 (Table 1). The fragments were replaced into the same region of pCDNA3.1-NaV1.5. The mixed population of plasmids (containing different cDNAs with exons 6A and 6B) were transformed into DH5α (Invitrogen), and screened by colony PCR with primers P1 and P2, which specifically amplifies fragments containing exon 6A (0.53 kb in size). Twenty out of 30 colonies screened contained exon 6A.

Immunocytochemistry

HEK293 cells or SW620 cells on coverslips were fixed using 2% paraformaldehyde and incubated with a mouse anti-NaV1.5 antibody (ASC-005, Alomone labs, Jerusalem, Israel) at a 1:1000 dilution. An anti-mouse secondary antibody conjugated to Alexa Fluor 488 (Invitrogen) was used to visualize primary antibody binding on a Leica SP-5 confocal microscope at 63× magnification. All image analyses were performed using ImageJ software (http://rsb.info.nih.gov/ij/index.html).

Electrophysiology

The whole-cell patch-clamp technique was used to record voltage-activated Na⁺ currents from HEK293 cells expressing recombinant NaV1.5 channels. A non-technical description of the patch-clamp technique is provided in the Supplementary material. The electrode solution contained (in mM) CsCl 130, NaCl 15, MgCl₂ 2, EGTA 10, and HEPES 10 (pH 7.4 with CsOH). Glass electrodes were fabricated using borosilicate glass capillaries and when filled with electrode solution had resistances of 1.3–2.3 MΩ. Cells were continually superfused with extracellular solution containing (in mM) NaCl 140, KCl 4.7, MgCl₂ 1.2, CaCl₂ 2.5, glucose 11, and HEPES 10 (pH 7.4 with NaOH). Currents were recorded using an Axopatch 200B amplifier, low-pass filtered at 2 kHz, digitized at 20 kHz using a Digidata 1320A interface, and acquired using pCLAMP8 software (Molecular Devices, CA, USA). Current–voltage relationships were recorded with depolarizing steps from −80 to 70 in 10 mV increments. Steady-state inactivation data were recorded from cells exposed to 100 ms prepulses to voltages between −140 and −10 mV before the activation voltage of 0 mV. Only currents with a peak amplitude of <5 nA were included for analysis and ≥80% series resistance compensation was used to minimize voltage errors. The perforated patch-clamp technique was used to establish the resting membrane potential of SW620 cells using 300 μg ml⁻¹ amphotericin B, added to the electrode solution which contained (in mM): KCl 145, MgCl₂ 1.2, CaCl₂ 2.5, glucose 10, and HEPES 10 (pH 7.4 with KOH). Membrane potentials were recorded under current-clamp.

<table>
<thead>
<tr>
<th>Table 1 Primers used for RT–PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer</td>
</tr>
<tr>
<td>P1</td>
</tr>
<tr>
<td>P2</td>
</tr>
<tr>
<td>P3</td>
</tr>
<tr>
<td>P4</td>
</tr>
<tr>
<td>P5</td>
</tr>
</tbody>
</table>
conditions and corrected for the calculated liquid junction potential.

Invasion assay
The Matrigel invasion assay was used to investigate SW620 invasion. Boyden invasion chambers (BD Biosciences, Oxford, UK) were coated with Matrigel. SW620 cells were resuspended in DMEM containing 0.1% FBS. DMEM containing 10% FBS was used as a chemoattractant. Chambers were incubated for 48 h at 37°C. Invading cells were fixed in 100% methanol and stained using 1% toluidine blue. Membranes were mounted onto coverslips and imaged using light microscopy. From each membrane, the number of cells in six random fields was counted using an inverted microscope at 10× magnification. Counting was performed under blinded conditions.

Analysis
Current amplitudes were measured using pCLAMP8 software. Activation curves were derived from current–voltage relationships. Na⁺ conductances were calculated by determining the driving force at each holding potential (up to 20 mV) established from the Na⁺ equilibrium potential. Conductances were normalized to peak values in each cell. Steady-state inactivation data were normalized to peak. Activation and inactivation data were fitted with the Boltzmann functions. Rapivacaine concentration–response data were fitted with a logistic function. Fit parameters were determined from data acquired from individual cells, and expressed as the mean [standard error of the mean (SEM)]. Statistical analyses were performed using the paired or unpaired t-test, or one-way analysis of variance (ANOVA), as appropriate. Fitting and statistical analyses were performed using GraphPad Prism software (La Jolla, CA, USA).

Results
SW620 colon cancer cells express adult and neonatal Naᵥ1.5 variants
Our previous immunocytochemical analysis of SW620 cells demonstrates that they express Naᵥ1.5 VASCs. We used a similar approach here to detect Naᵥ1.5 protein in SW620 cells and HEK293 cells transfected with cDNAs encoding either the adult or neonatal Naᵥ1.5 splice variant (Fig. 1a). The antibody labelled SW620 cells and both recombinant Naᵥ1.5 splice variants. We previously detected mRNA encoding the adult Naᵥ1.5 splice variant in SW620 cells. Here, we designed primers specific for the alternatively spliced variants encoded by exons 6A (neonatal) and 6B (adult), respectively (Fig. 1b; Table 1). There was no detectable neonatal Naᵥ1.5 transcript in mock-transfected HEK cells or in those transfected with cDNA encoding the adult Naᵥ1.5 splice variant (Fig. 1c, left and middle panels). These data demonstrate that the primer for the neonatal Naᵥ1.5 splice variant is specific and does not amplify the adult variant. In contrast, we detected transcripts for both the adult and neonatal Naᵥ1.5 splice variants in SW620 cells (Fig. 1c, right panel). Sequencing of the PCR product confirmed that both variants were indeed present. We constructed the full-length cDNA encoding the neonatal Naᵥ1.5 splice variant by replacing nucleotides for exon 6B with those of exon 6A from SW620 transcripts (see the Methods section). Sequencing confirmed successful incorporation of exon 6A and this construct was used for immunocytochemistry in Figure 1a and for comparison with adult Naᵥ1.5 in subsequent electrophysiological experiments.

Functional properties of adult and neonatal Naᵥ1.5 VASCs
Since SW620 cells contain adult and neonatal splice variants of Naᵥ1.5, it is necessary to establish the properties of each VASC subtype. We used the whole-cell patch-clamp technique to characterize Na⁺ currents mediated by recombinant adult and neonatal Naᵥ1.5 VASCs expressed either alone or in combination in HEK293 cells. Currents were activated by depolarizing cells from −80 mV to between −70 and +70 mV in 10 mV increments (Fig. 2a). The plot of current density vs voltage reveals that the peak amplitude occurred at −10 and 0 mV for adult and neonatal Naᵥ1.5 channels, respectively (Fig. 2a). There was no difference between the peak current density values obtained from cells expressing either variant (Table 2). Activation curves were generated by plotting the conductance at each voltage (normalized to maximum conductance) from HEK293 cells expressing recombinant Naᵥ1.5 channels. The mean values for V½ of activation (SEM) were established from the Boltzmann fits to the data recorded from each cell (Table 2). Figure 2c represents the averaged activation curves for adult and neonatal Naᵥ1.5 channels both alone and in combination. Consistent with previous reports, neonatal Naᵥ1.5 channels exhibited a significantly more depolarized V½ of activation compared with adult Naᵥ1.5 channels (Fig. 2c and Table 2).

Interestingly, in HEK293 cells transfected with equal amounts of cDNAs encoding the adult and neonatal variants, the V½ of activation of Naᵥ1.5 channels resembled that determined from cells expressing neonatal Naᵥ1.5 channels alone.

Steady-state inactivation data were recorded from HEK293 cells expressing adult and neonatal Naᵥ1.5 splice variants, either alone or in combination (Fig. 2d). Cells were exposed to 100 ms prepulses to voltages between −140 and −10 mV, as illustrated in the inset voltage protocol (Fig. 2a). There was no significant difference between the values for V½ derived from the Boltzmann fits to the inactivation curves (Table 2). When superimposed, the activation and inactivation curves reveal the window current (Fig. 2e). The region bounded by the curves indicates a range of steady-state voltages at which tonic current is available. Using amphotericin B perforated patch technique under current-clamp conditions, we found the membrane potential of SW620 cells to be −42 (8) mV (n = 4). The window current plots indicate a greater available steady-state current at −40 mV for neonatal compared with adult Naᵥ1.5 channels (Fig. 2f). Indeed, as predicted by the window current analysis, the average residual current amplitudes remaining at the end of 20 ms voltage steps to −40 mV were significantly greater in cells expressing neonatal Naᵥ1.5 channels alone or in combination with adult Naᵥ1.5.
SW620 colon cancer cells express adult and neonatal variants of the Na\(_v\)1.5 channels. (a) Na\(_v\)1.5 immunofluorescence in (a) mock, (b) Na\(_v\)1.5, and (c) nNa\(_v\)1.5 transfected HEK cells. SW620 colon cancer cells (d) also show strong Na\(_v\)1.5 immunofluorescence. (B) The top panel illustrates the topology of the Na\(_v\)1.5 \(\alpha\) subunit, with the region affected by alternative splicing of exons 6A and 6B highlighted in red. Exon 6 encodes part of the voltage sensor in the first domain of Na\(_v\)1.5 channel.\(^{15}\) The lower panels illustrate the exon structure of adult (middle) and neonatal (bottom) isoforms of Na\(_v\)1.5. Alternative usage of either exon 6A or exon 6B leads to mRNA encoding nNa\(_v\)1.5 (neonatal) or Na\(_v\)1.5 (adult), respectively. The amino acid sequences encoded by the two exons are provided with non-conserved residues highlighted in red. (C) Ethidium bromide-stained DNA from RT–PCR products of mock or Na\(_v\)1.5-transfected HEK cells and SW620 cells. Either exon 6A or exon 6B specific primers were used. The presence of either exon 6A or exon 6B resulted in a 0.53 kb band. Na\(_v\)1.5-transfected HEK cells yielded a strong 0.53 kb band only when the exon 6B specific primer was used. SW620 cells yielded 0.53 kb bands when either exon 6A or 6B primers were used, suggesting that SW620 cells contain mRNA transcripts for Na\(_v\)1.5 and nNa\(_v\)1.5. Subsequent sequencing of these bands revealed that they indeed correspond to exon 6A and exon 6B of SCN5A, respectively.
Fig 2 Electrophysiological properties of adult NaV1.5 and neonatal NaV1.5. (a) Representative traces of currents recorded from HEK293 cells expressing recombinant nNaV1.5. The top panel shows the voltage protocols (and corresponding currents) from which the voltage-dependence of activation was established. The bottom panel shows the voltage protocol for recording the voltage-dependence of inactivation. (b) The current–voltage relationship of NaV1.5 (solid circles and line) and nNaV1.5 (open circles and dashed line). The data for nNaV1.5 lie to the right of those for adult NaV1.5, the maximum current occurs at a more depolarized potential. (c) Voltage-dependence of activation. Conductances (derived from the current–voltage relationships) were plotted as a percentage of the respective maximum conductances. A Boltzmann function was fitted to the data. Fitting parameters are summarized in Table 2. Data for nNaV1.5 (open circles) exhibit a significantly dextral-shifted voltage-dependence of activation compared with NaV1.5. (c) Voltage-dependence of inactivation. Currents evoked using the voltage protocol in (a, bottom panel) were converted into conductance values and plotted as a percentage of maximum. Data were fitted with a Boltzmann function (see fitting parameters in Table 2). The voltage dependence of inactivation of NaV1.5 (solid circles), nNaV1.5 (open circles), and a combination of both isoforms (triangles) did not significantly differ (Table 1). (d) Plots of current availability (window currents) highlighting the region bounded by the Boltzmann fits of activation and inactivation for NaV1.5 (solid lines) and nNaV1.5 (dashed lines). The peak window current occurs with more depolarized potentials in nNaV1.5 compared with NaV1.5. (i) Sustained current amplitude at −40 mV. Bar graph shows the current remaining (as a percentage of maximum) after a step from a holding voltage of −80 to −40 mV. The residual current is significantly larger in cells expressing nNaV1.5 or both NaV1.5 and nNaV1.5 compared with cells expressing NaV1.5 alone (P < 0.05, one-way ANOVA, post hoc Tukey test), consistent with the shift in peak window current seen in (c).
We investigated whether ropivacaine mediated by recombinant adult and neonatal Na\textsubscript{V}1.5 by using a logistics function. The fits yielded IC\textsubscript{50} values of 2.9 \(\mu \text{M} \) for adult and neonatal Na\textsubscript{V}1.5 channels, respectively. Paired recordings before and during application of ropivacaine (2.5 \(\mu \text{M} \)) showed no significant difference.

Inhibition of adult and neonatal Na\textsubscript{V}1.5 VASCs by ropivacaine

We examined the effects of ropivacaine (0.25–25 \(\mu \text{M} \)) on currents mediated by recombinant adult and neonatal Na\textsubscript{V}1.5 channels expressed in HEK293 cells (Fig. 3). Ropivacaine caused a potent inhibition of both variants. There was no difference in the concentration-dependence of inhibition fitted using a logistics function. The fits yielded IC\textsubscript{50} values of 2.9 (0.7) \(\mu \text{M} \) (n = 3) and 3.5 (0.1) \(\mu \text{M} \) (n = 3). There was no significant difference between the potencies of ropivacaine as an inhibitor of currents mediated by either Na\textsubscript{V}1.5 or nNa\textsubscript{V}1.5 (P > 0.1, t-test). Inset shows a representative example of ropivacaine inhibition of nNa\textsubscript{V}1.5 currents, elicited by a voltage step from -80 mV to 0 mV. The grey trace was recorded in the absence of ropivacaine.

Ropivacaine inhibits invasion of SW620 cells through Matrigel

SW620 cells invade through Matrigel, a proprietary matrix used to mimic the epithelial basement membrane. We examined the ability of SW620 cells to invade by using a range of Matrigel concentrations (10–100 \(\mu \text{g ml}-1 \)). We found that SW620 cells exhibit optimal invasion through a 50 \(\mu \text{g ml}-1 \) Matrigel membrane (Fig. 5A). We previously demonstrated that tetrodotoxin and lidocaine both inhibit invasion of SW620 metastatic colon cancer cells through Matrigel, suggesting that invasion is attenuated by VASC inhibition. Indeed, this action is likely to be mediated by inhibiting Na\textsubscript{V}1.5 channels, since selective knockdown of the ion channel’s expression using siRNA caused a similar reduction in invasion. We confirmed that lidocaine (10 \(\mu \text{M} \)) inhibits invasion at all Matrigel concentrations tested (Fig. 5A). We also examined the effects of the VASC activator veratridine. Veratridine (10 \(\mu \text{M} \)) caused a significant increase in SW620 invasion, consistent with a positive contribution of Na\textsubscript{V}1.5 activity to this process (Fig. 5A). Ropivacaine caused a concentration-dependent inhibition of SW620 invasion. The IC\textsubscript{50} for the inhibition of SW620 invasion by ropivacaine (determined by fitting the data using a logistics function) was 3.8 \(\mu \text{M} \) (Fig. 5C), similar to the IC\textsubscript{50} for its inhibition of Na+ currents mediated by Na\textsubscript{V}1.5 channels (Fig. 3).
Fig 4 Ropivacaine affects the voltage-dependence of current availability. Voltage-dependence of activation and inactivation and Boltzmann fits were performed as described in Figure 2. Solid circles and lines show the voltage-dependence of activation and inactivation of Na\textsubscript{v}1.5 (A) and nNa\textsubscript{v}1.5 (B). Open circles and dashed lines show the voltage dependence of activation and inactivation in the presence of ropivacaine (2.5 μM). Data points were normalized to the maximum under control conditions. Ropivacaine significantly shifted the voltage-dependence of inactivation of Na\textsubscript{v}1.5 and nNa\textsubscript{v}1.5 from $-74.3 (3.4)$ mV to $-80.3 (4.6)$ mV ($n=6; P<0.05$; paired t-test) and $-71.4 (1.8)$ mV to $-78.6 (2.1)$ mV ($n=5; P<0.05$; paired t-test), respectively. There was no statistically significant effect on the voltage-dependence of activation. Inset shows the effect of ropivacaine on the window current. Ropivacaine shifted the peak of the nNa\textsubscript{v}1.5 window current to more hyperpolarized potentials (see text).
similar steady-state inactivation profiles, but different values for \(V_{1/2} \) of activation. As reported previously, the neonatal variant requires significantly higher voltages for activation.\(^1\) This is consistent with alternative splicing of exon 6 affecting the sequence of the initial voltage sensor. Neonatal Na\(_{\text{v}}\)1.5 VASCs also mediate a greater proportion of available sustained current at more depolarized potentials, such as \(-40\) mV, the approximate membrane potential of SW620 cells. When expressed together, the functional characteristics of the neonatal variant were dominant. These findings suggest that the neonatal Na\(_{\text{v}}\)1.5 variant likely mediates a low level of tonic inward Na\(^+\) current in SW620 cells.

Ropivacaine inhibited currents mediated by either adult or neonatal Na\(_{\text{v}}\)1.5 channels with similar potency. When applied at a concentration close to IC\(_{50}\), ropivacaine inhibited Na\(^+\) currents mediated by either variant, regardless of the holding voltage, shifting inactivation to more hyperpolarized potentials without affecting the voltage-dependence of activation. These findings suggest that ropivacaine inhibits Na\(_{\text{v}}\)1.5 channels by stabilizing the inactivated state, a common mechanism of high potency block of VASCs by local anaesthetics.\(^1\)\(^6\) Importantly in the context of colon cancer cells, ropivacaine caused a reduction in the availability of sustained current mediated by neonatal Na\(_{\text{v}}\)1.5 channels. It is this reduction in steady-state current that likely underlies the observed inhibition of SW620 cell invasion through Matrigel. The potency of ropivacaine as an inhibitor of Na\(_{\text{v}}\)1.5-mediated current and SW620 cell invasion is similar, in keeping with the demonstration that invasive behaviour in SW620 cells requires functional Na\(_{\text{v}}\)1.5 channels.\(^1\)\(^3\) Consistent with this, the VASC activator veratridine enhanced SW620 invasion through Matrigel.

Retrospective analyses suggest that local anaesthetics reduce the likelihood of cancer recurrence after surgical tumour excision.\(^5\)\(^–\)\(^9\) If so, there are several mechanisms that may contribute to their beneficial effect. Regional nerve block reduces the requirement for general anaesthesia and opioids, which may have negative effects on the immune system, the stress response, and/or natural killer cells. Local anaesthetics may also have direct beneficial effects. Some local anaesthetics may be anti-inflammatory and/or interact with second messenger systems to reduce cell proliferation and migration.\(^1\)\(^7\) The presence of VASCs on metastatic cancer cells (including those derived from breast, colon, prostate, and lung tissue) provides another direct target for the beneficial effects of local anaesthetics.\(^1\)\(^0\)\(^–\)\(^1\)\(^3\) Our demonstration that ropivacaine potently inhibits the activity of neonatal Na\(_{\text{v}}\)1.5 channels, a variant expressed by metastatic cancer cells derived from both colon and breast suggests that systemic local anaesthetic might contribute to the apparent beneficial effect of regional anaesthesia during tumour excision.\(^1\)\(^5\) VASCs expressed by cancer cells are likely to be predominantly in the inactivated state, which has a high affinity for local anaesthetics. In contrast, high concentrations of local anaesthetics are required to block impulses in nerves in which VASCs rarely visit the inactivated state.\(^1\)\(^6\) Clinical studies demonstrate that maximum circulating free ropivacaine concentrations after peripheral nerve block and epidural infusion range between 0.2 and 0.7 mg ml\(^{-1}\).\(^1\)\(^8\)\(^–\)\(^2\)\(^2\) This equates to a
maximum concentration of 2.4 μM, close to the IC50 values for inhibition of both NaV1.5 channel function and SW620 invasion. Therefore, it is possible that during regional anaesthesia, circulating ropivacaine may inhibit NaV1.5 channel function on circulating colon cancer cells, an action that attenuates invasion.

While regional anaesthesia may help reduce cancer recurrence and metastases after tumour excision, direct local anaesthetic administration onto tumours and/or i.v. would likely maximize any direct beneficial effects. A drawback is the possibility of toxicity which occurs largely through the block of ion channels in cardiac tissue. It is ironic that the NaV1.5 channel, which may contribute to beneficial effects of local anaesthetics on metastatic breast and colon cancer cells, is also found in the heart where its block would be detrimental. The presence of the neonatal variant and a predominance of the inactivated state may provide an opportunity to selectively target NaV1.5 channels in cancer cells by the systemic administration of low concentrations of local anaesthetics or other state-dependent VASC inhibitors.

Supplementary material
Supplementary material is available at *British Journal of Anaesthesia* online.

Authors’ contributions
D.T.B-H.: performed experiments, data analysis, wrote first draft of manuscript, and study design; F.M.R.: performed experiments and data analysis; G.B.R.: performed experiments and data analysis; G.W.R.: performed experiments and data analysis; S.J.O.: performed experiments and data analysis; G.B.R.: performed experiments and data analysis; T.G.H.: study design and editing manuscript; T.G.H.: study design and writing final draft of manuscript.

Acknowledgements
We thank Lisa Wright for expert technical assistance and Taha Elajnef for help with immunocytochemistry.

Declaration of interest
None declared.

Funding
This work was supported by a BJA/RCoA grant awarded via NIAA to T.G.H.

References
6 Exadaktylos AK, Buggy DJ, Moriarty DC, Mascha E, Sessler DJ. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? *Anesthesiology* 2006; 105: 660–4
14 Safa P, Boulter J, Hales TG. Functional properties of CaV1.3 (α1a) L-type Ca2+ channel splice variants expressed by rat brain and neuroendocrine GH3 cells. *J Biol Chem* 2001; 276: 38727–37
19 Bleckner LL, Bina S, Kwon KH, McKnight G, Dragovich A, Buckenmaier CC III. Serum ropivacaine concentrations and systemic local anesthetic toxicity in trauma patients receiving long-term continuous peripheral nerve block catheters. *Anesth Analg* 2010; 110: 630–4

Handling editor: D. J. Buggy