USE OF LORAZEPAM AS A PREMEDICANT FOR CAESAREAN SECTION
An evaluation of its effects on the mother and the neonate

D. J. HOUGHTON

SUMMARY
The effects of lorazepam premedication on the mother and baby were compared with those of a placebo in a double-blind study of 10 patients undergoing elective Caesarean section. There was little anxiolytic effect on the mothers, and no harmful effects to the babies occurred in respect of blood-gas tensions, heart rate, temperature or feeding patterns. Lorazepam did produce a transient effect on the neonatal respiratory rate and initially the babies had a reduced score on the Brazelton Assessment System.

Although patients undergoing general surgical procedures have benefited from pre-medication, patients awaiting elective Caesarean section have been less fortunate since the premedicant drugs available had adverse effects on the neonate.

Lorazepam, a potent benzodiazepine, has been shown to have marked anxiolytic and sedative properties (Harry and Richards, 1972). It has a central depressant effect five times as potent as the same dose of diazepam, both in oral and parenteral forms (Comer et al., 1973).

Lorazepam differs from the other benzodiazepines both structurally and in its metabolic pathway. It has a much shorter half-life than diazepam. Less than 1% of the drug is transformed to other metabolites and, as it is excreted predominantly as the glucuronide, it should not be preferentially concentrated in the fetus nor have prolonged effects in the neonate.

In a double-blind trial using lorazepam or a standard premedication of papaveretum and hyoscine, Coleman and Bees (1974) found no difference in the degree of sedation provided. Paymaster (1976) found that lorazepam produced greater loss of recall of events than did papaveretum. Thus, lorazepam would seem to be as good as, if not better than, papaveretum as a premedicant in general surgery. Since papaveretum cannot be used as a premedicant before Caesarean section, because of the respiratory depressant effect on the newborn, lorazepam could prove a useful drug with which to allay anxiety before Caesarean section. Crawford (1979) studied the effects, on the feeding patterns of neonates, of lorazepam administered to the mother before Caesarean section, but no other study has examined the neuro-behavioural effects on the neonate.

PATIENTS AND METHODS
Ten patients were selected from healthy women, with a normal singleton pregnancy, regularly attending the antenatal clinic at Queen Charlotte’s Maternity Hospital. The patients were allocated randomly to one of two groups, in a double-blind manner by Wyeth Laboratories, who kept the coding until the end of the trial. One group received lorazepam and the other a placebo.

Those asked to participate were patients scheduled for elective Caesarean section in whom the fetus was not compromised. The fetus had to have a gestational age greater than 270 days and, to standardize the induction-delivery interval, obese patients were not included and an upper limit of 80 kg was imposed.

All the mothers gave informed consent to the administration of the drug and to the tests performed on themselves and their babies.

Each patient received dichloralphenazone 1.3 g (Welldorm tablets × 2) as night sedation at approximately 10 pm on the night before the Caesarean section. No other drug or additional sedation was permitted. Approximately 90 min before operation each patient received the contents of one randomized phial supplied by Wyeth Laboratories. Half of these contained lorazepam and the remainder lorazepam solvent only. The premedication was given i.m. and the dose calculated at 0.05 mg/kg body weight.
The effects of the premedicant on the patient's anxiety and memory were assessed by the one anaesthetist who anaesthetized all the patients, so that the effects of anaesthesia could be standardized. An objective assessment of anxiety was made by noting the patient's heart rate, arterial pressure and respiratory rate.

Anxiety was tested subjectively by presenting the patient with a card on which was drawn a 100 mm long visual analogue scale (VAS), the left hand of which was marked "I feel relaxed" and the other end of which was marked "I feel petrified". The patient was asked to make a mark at a point along the VAS which she felt represented her degree of anxiety. The distance was measured from the left hand end: the greater the figure, the greater the degree of anxiety.

The effect of the premedicant on the patient's memory was assessed by showing her an object before premedication (a specific coin) and asking her what it was when she came to the anaesthetic room. Then she received the trial medication. Approximately 90 min after premedication, the patient was brought to theatre and the anaesthetist re-assessed her anxiety subjectively and objectively by the same methods and any changes were noted. Memory was tested by asking the patient what object she had been shown before premedication, and she was shown a second object, the nature of which was to be recalled 24 h later.

A standard anaesthetic technique was used (thiopentone, nitrous oxide in oxygen; neuromuscular blockade). All the babies were delivered between 4 and 6 min after the induction of anaesthesia. All the mothers received the same analgesia after operation (papaveretum 10 mg, 6-hourly for 24 h). The anaesthetist saw the mother again 24 h after delivery and assessed the effect of the premedicant on her memory by asking her to recall the object shown her in the anaesthetic room.

The immediate effects on the infants were assessed by the 1-, 5- and 10-min Apgar scores as recorded by the paediatrician present at delivery.

The babies' PO2, PCO2 and pH were measured on capillary blood taken from a heel prick at 8, 24 and 48 h after birth.

The babies' respiratory rate, heart rate and rectal temperature were taken 8-hourly for the first 48 h and thereafter daily for the 1st week of life.

The neonate's feeding pattern was recorded by the nurses on the ward by giving the baby a score of 0 if it refused to feed. The score was 1 for a poor feed: if it required a great deal of urging to suck, or if bottle-fed, it took less than 30 ml. A score of 2 was given for an average feed: it required some urging to suck, or took 30–90 ml, or was slow to feed. The baby scored 3 for an excellent feed if it required little or no urging to suck, took 90 ml, or fed very quickly.

The final observations were those made by the paediatrician on the babies' neurobehaviour. These observations, at 2, 8, 24 and 48 h, then after 7 days, were based on the Brazelton Behavioural Assessment Scale (Brazelton, 1953). The scale is an overall measure of an infant's behavioural and neurological condition at the time of examination. Each index of neurobehaviour is given a score, and these are "clustered" or combined to give the baby an overall score, ranging from 1 (worrisome) to 4 (average) and to 7 (superior) performance.

Statistical methods

For each measurement, the mean and standard error of the mean (SEM) were calculated. Statistical significance was calculated by Student's t test.

RESULTS

Memory recall and maternal anxiety

Lorazepam had no effect on the recall of the items shown, since all the patients in both groups were able to remember the objects both 90 min after premedication and the following day.

The percentage changes (after premedication) in maternal vital signs and position of mark on the Visual Analogue Scale are shown in table I. No statistically significant differences were found between the two groups.

Neonatal vital signs

Table II shows the effect of lorazepam on the babies' respiratory and heart rates and rectal temperatures. The babies born to subjects who received lorazepam had a significantly (P<0.001) faster respiratory rate for the first 3 days; by 7 days (when the effects of the drug would have been eliminated) the difference was less marked (P = 0.02). The lorazepam produced tachycardia during the 1st day of life, but this was not statistically significant; by day 2 there was no difference between the two groups of babies. Rectal temperature was not affected by lorazepam at any time.

Neonatal feeding patterns

No significant difference in the feeding patterns (table III) was seen between the two groups.
TABLE I. Effect of lorazepam on maternal vital signs and anxiety. *0.05 < P < 0.02; **P = 0.01

<table>
<thead>
<tr>
<th></th>
<th>Lorazepam (Mean ± SEM)</th>
<th>Placebo (Mean ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate (beat min(^{-1}))</td>
<td>-1.6 ± 2.7 *</td>
<td>+9.4 ± 2.9</td>
</tr>
<tr>
<td>Systolic AP (mm Hg)</td>
<td>+3.4 ± 0.9 n.s.</td>
<td>+1.8 ± 5.1</td>
</tr>
<tr>
<td>Diastolic AP (mm Hg)</td>
<td>+11.1 ± 1.5 **</td>
<td>+5.1 ± 4.5</td>
</tr>
<tr>
<td>Respiratory rate (b.p.m.)</td>
<td>-0.3 ± 5.3 n.s.</td>
<td>+7.8 ± 4.7</td>
</tr>
<tr>
<td>Anxiety level (on 100 mm VAS)</td>
<td>-11.2 ± 14.9 n.s.</td>
<td>+12.2 ± 11.4</td>
</tr>
</tbody>
</table>

TABLE II. Effects of lorazepam on neonatal vital signs. *P = 0.02; **P < 0.001

<table>
<thead>
<tr>
<th></th>
<th>Lorazepam (Mean ± SEM)</th>
<th>Placebo (Mean ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory rate (b.p.m.)</td>
<td>54 ± 2 **</td>
<td>33 ± 3</td>
</tr>
<tr>
<td>Day 1</td>
<td>52 ± 3 **</td>
<td>34 ± 1</td>
</tr>
<tr>
<td>Day 2</td>
<td>49 ± 3 **</td>
<td>30 ± 2</td>
</tr>
<tr>
<td>Day 3</td>
<td>48 ± 5 *</td>
<td>35 ± 1</td>
</tr>
<tr>
<td>Day 4</td>
<td>48 ± 5</td>
<td>35 ± 1</td>
</tr>
<tr>
<td>Heart rate (beat min(^{-1}))</td>
<td>148 ± 5 n.s.</td>
<td>138 ± 5</td>
</tr>
<tr>
<td>Day 1</td>
<td>143 ± 2 n.s.</td>
<td>142 ± 2</td>
</tr>
<tr>
<td>Day 2</td>
<td>142 ± 5 n.s.</td>
<td>142 ± 1</td>
</tr>
<tr>
<td>Day 3</td>
<td>142 ± 7 n.s.</td>
<td>141 ± 5</td>
</tr>
<tr>
<td>Rectal temperature (°C)</td>
<td>36.4 ± 0.1 n.s.</td>
<td>36.8 ± 0.1</td>
</tr>
<tr>
<td>Day 1</td>
<td>37.0 ± 0.1 n.s.</td>
<td>37.0 ± 0.1</td>
</tr>
<tr>
<td>Day 2</td>
<td>36.9 ± 0.2 n.s.</td>
<td>36.9 ± 0.2</td>
</tr>
<tr>
<td>Day 3</td>
<td>36.9 ± 0.1 n.s.</td>
<td>37.0 ± 0.1</td>
</tr>
</tbody>
</table>

TABLE III. Effect of lorazepam on neonatal feeding patterns

<table>
<thead>
<tr>
<th></th>
<th>Lorazepam (Mean score ± SEM)</th>
<th>Placebo (Mean score ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>1.9 ± 0.4 n.s.</td>
<td>1.7 ± 0.2</td>
</tr>
<tr>
<td>Day 2</td>
<td>2.4 ± 0.2 n.s.</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>Day 3</td>
<td>2.4 ± 0.2 n.s.</td>
<td>2.2 ± 0.2</td>
</tr>
<tr>
<td>Day 4</td>
<td>2.8 ± 0.1 n.s.</td>
<td>2.5 ± 0.2</td>
</tr>
</tbody>
</table>

Apgar score and Brazelton categories
Lorazepam had no significant effect on the babies' Apgar scores at 1, 5 or 10 min (table IV). The babies born to mothers given lorazepam were, however, in a lower Brazelton category (0.01 > P > 0.001) 2 h after birth; and the difference remained significant until 8 h. From the age of 1 day, there was no statistically significant difference.

Neonatal blood-gas tensions
The neonatal pH, P\(_{O_2}\) and P\(_{CO_2}\) (table V) were not significantly different between the two groups at any time.

DISCUSSION
Previous investigations with lorazepam (Harry and Richards, 1972; Heisterkamp and Cohen, 1975; Paymaster, 1976) have shown it to be an effective
lorazepam have shown it to be a safe drug when given to the mother during labour, but no other trial has studied the neuro–behavioural effects on the neonate when given as a premedicant before Caesarean section. Lorazepam resulted in poorer scores on the more comprehensive Brazelton testing scheme, and so its use would be better restricted to specialized hospitals, as recommended by Whitelaw, Cummings and MCFadyen (1981).

It was unfortunate that only 10 subjects were studied, but within the time-span of the project it was not possible to recruit further patients. However, in the small group studied, the effects on respiration and neuro–behaviour were statistically significant.

ACKNOWLEDGEMENTS

I wish to thank the Consultant Obstetricians at Queen Charlotte’s for allowing me to study their patients. Thanks are also due to Mr. C. Pavlou for his guidance, to Dr. G. Stephen who anaesthetized all the patients, to Dr. D. Woo for the paediatric assessments and to all the nurses without whose co-operation the study would not have been possible. I am also indebted to Wyeth Laboratories for supplying the lorazepam.

REFERENCES


PREMEDICATION FOR CAESAREAN SECTION


LORAZEPAM IN DER PRÄMEDIKATION FÜR KAISERSCHNITT

ZUSAMMENFASSUNG


UTILISATION DU LORAZEPAM COMME AGENT DE PREMEDICATION POUR DES CESARIENNES

RESUME

Les effets d'une prémédication au lorazépam, sur la mère et le nouveau-né, ont été comparés à ceux d'un placebo dans une étude en double aveugle de 10 patientes subissant une césarienne réglée. Il y avait peu d'effets anxiolytiques chez les mères et on n'a pas constaté d'effets délétères sur les bébés en matière de gaz du sang, fréquence cardiaque ou schémas d'alimentation. Le lorazépam a entraîné un effet transitoire sur la fréquence respiratoire néonatale et le premier score des bébés sur l'échelle de Brazelton était diminué.

USO DE LORAZEPAM COMO MEDICACION PREVIA A LA INTERVENCIÓN POR CESAREA

SUMARIO

Se compararon los efectos de la premedicación con lorazepam en la madre y en el recién nacido, con los de un placebo utilizado en un estudio de doble anonimato efectuado en 10 pacientes sometidas a operación electiva de cesárea. Se observó un ligero efecto anxiolítico en las madres, sin que tuviera lugar efecto alguno en los recién nacidos en lo tocantes a las tensiones de gas en la sangre, régimen cardíaco, temperatura o modelos de alimentación. Lorazepam produjo un efecto temporal sobre el régimen respiratorio del recién nacido, inicialmente, estos presentaron una clasificación inferior bajo el Sistema de Evaluación de Brazelton.