Sparing the anterior cruciate ligament remnant: is it worth the hassle?

Rocco Papalia†, Francesco Franceschi†, Sebastiano Vasta†, Alberto Di Martino†, Nicola Maffulli‡*, and Vincenzo Denaro†

†Department of Orthopaedic and Trauma Surgery, Campus Biomedico University of Rome, Via Alvaro del Portillo 200, Rome, Italy, and ‡Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK

Introduction: Anterior cruciate ligament (ACL) rupture is the most common surgically treated ligament injury. Many efforts have been taken to reconstruct it as anatomically as possible to restore knee stability and, possibly, prevent knee osteoarthritis.

Sources of data: A literature search was performed using the isolated or combined keywords ‘ACL augmentation remnant’, ‘ACL reconstruction and remnant and stump’, ‘ACL reconstruction and remnant and stump preserving and stability’ and ‘ACL remnant complete tear’ with no limit regarding the year of publication. We identified seven published studies.

Areas of agreement: The ACL remnant might accelerate the vascularization and the ligamentization of the graft and contribute to faster graft innervation leading to a better proprioception.

Areas of controversy: The role of the ACL remnant is debated, because, although it may increase the risk of impingement and the formation of cyclops lesion, its preservation can improve proprioception, biomechanical functions and vascularity. However, the current assessment methods to assess proprioception, vascularization and the ligamentization do not lead to hard evidence that preservation of the remnant confers clinically relevant advantages over its excision.

Growing points: The ACL remnant has been demonstrated in experimental studies to have a role in improving revascularization, ligamentization and reinnervation of the graft, but these findings are still not supported by clinical findings. A more direct way to assess proprioceptive function after ACL reconstruction and appropriately conducted powered and rigorously prospective randomized double-blind studies comparing the clinical outcomes of excising the remnant to leaving it in situ are necessary.

Keywords: anterior cruciate ligament injury/remnant/proprioception/reconstruction

Accepted: December 5, 2011
Introduction

The anterior cruciate ligament (ACL) is a restraint to anterior tibial displacement and a stabilizer of tibial rotation. Of the 200 000 ACL tears occurring each year in the USA, ~50% undergo arthroscopic reconstruction. The goal of management of ACL insufficiency is to restore knee function, primarily to allow patients to return to pre-injury activity levels and possibly to prevent meniscal tears to avoid the onset and progression of knee osteoarthritis (OA). The ACL is often described as composed of two bundles, namely the antero-medial bundle (AM) and the postero-lateral bundle (PL). The functional tensioning of the two bundles depends on the position of the knee. Close to extension, the AM bundle is relatively loose and the PL bundle is tight. When the knee is flexed, the AM bundle is tight and the PL bundle is loose. Recently, several authors have proposed anatomical reconstruction of the AM and PL bundles (double-bundle reconstruction) as to obtain optimal anterior–posterior and rotational stability. The concept of double-bundle ACL reconstruction arises from biomechanical studies demonstrating the inability of some single-bundle techniques, reconstructing only the AM bundle, to fully restore knee stability and longitudinal studies showing the development of OA in patients who received single-bundle ACL reconstruction. The knee joint works in an optimal fashion through the precise complex interaction of the nervous and musculoskeletal systems. However, these mechanical concepts do not translate into superior clinical performance of double-bundle reconstruction over traditional single-bundle reconstruction.

Proprioceptive afferent neural input is at the basis of neuromuscular coordination that influences the biomechanical behaviour of the knee, including the ACL. In essence, restoration of stability of the ACL deficient knee does not depend only on a surgical technique, but is also affected by anatomical, biomechanical and functional (neuromuscular) factors. Recently, there has been a great interest on the possible role of the remnant of the ACL following its tear. Although the preservation of the remnant may increase the risk of impingement and the formation of cyclops lesion, it can improve proprioceptive, biomechanical functions and vascularity. The aim of our study is to understand whether preserving the remnant of the injured cruciate ligaments can improve knee proprioception reaching better results in terms of knee stability using a systematic review approach.
Search and study selection

A literature search was performed using the isolated or combined, ‘ACL reconstruction and remnant’, ‘ACL reconstruction and remnant and stump preserving and stability’ and ‘ACL remnant complete tear’ with no limit regarding the year of publication.

At the first electronic search, 816 articles were identified. Two authors (RP and AT) independently reviewed the text of each abstract. Full-text versions were obtained to include or exclude the study. The reference lists of the selected articles were reviewed by hand to identify articles not identified at the electronic search. All journals were considered and all relevant articles were retrieved. Studies focusing on clinical status of patients who had undergone ACL reconstruction with a preserving stump were selected. Biomechanical reports, studies on animals, cadavers, in vitro, case reports, literature reviews, technical notes, letters to editors and instructional course were also excluded.

Thirty-two articles investigating outcomes following ACL reconstruction with or without preservation of the ACL remnant were identified. To avoid bias, all these articles were reviewed and discussed by all the authors: 25 articles were excluded because either they did not report clinical data or reported data on the reconstruction of the one ruptured bundle in the case of isolated antero-medial or postero-lateral ACL tears. Finally, seven publications relevant to the topic at hand were included (Fig. 1).

Quality assessment

Two investigators (RP and AT) separately evaluated each article using the Coleman Methodology Score (CMS), a 10 criteria validated scoring system assessing the study methodological quality, with a final score ranging from 0 to 100. An investigation scoring 100 would represent a perfect study design with no influence of chance, various biases and confounding factors. The two investigators discussed scores where more than a two point difference was evident, until consensus was reached.
Additionally, data on gender, age, types of surgery, comorbidities and complications and scores were assessed.

Results

Seven studies (one randomized controlled clinical trial and six retrospective studies) were evaluated in the present review.

Pre-operative features

The mean age at surgery was 28.32 years, ranging from 20.6 to 32.2 years.

Study size and follow-up

A total of 369 patients who had undergone ACL surgery were involved (250 males and 119 females). The mean follow-up of these patients was 22.6 months (ranging from 12 to 50; Table 1). The average modified CMS was 67.9 (range: 56–86; Table 2).
Table 1 Sample data and study evidence level.

<table>
<thead>
<tr>
<th>Study and year</th>
<th>Type of study</th>
<th>Level of evidence (Av. 3.14; SD 1.07)</th>
<th>No. patient recruited (Av. 85.71, SD 71.58)</th>
<th>No. of effective patients (Av. 58.57, SD 49.66)</th>
<th>M (Av. 35.71, SD 32.61)</th>
<th>W (Av. 17.71, SD 17.77)</th>
<th>Mean follow-up (months) (Av. 22.63, SD 15.69)</th>
<th>Mean age at surgery (years) (Av. 28.32, SD 5.23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anh et al.20</td>
<td>Retrospective cohort study</td>
<td>3</td>
<td>68</td>
<td>41 (remnant) + 41 (control group)</td>
<td>35</td>
<td>6</td>
<td>6.3 ± 0.7</td>
<td>NA</td>
</tr>
<tr>
<td>Anh et al.21</td>
<td>Case series</td>
<td>4</td>
<td>63</td>
<td>53</td>
<td>42</td>
<td>11</td>
<td>27.7</td>
<td>32.2</td>
</tr>
<tr>
<td>Gao et al.24</td>
<td>Retrospective cohort study</td>
<td>4</td>
<td>235</td>
<td>159</td>
<td>105</td>
<td>54</td>
<td>50</td>
<td>30 +/− 7</td>
</tr>
<tr>
<td>Gohil et al.19</td>
<td>Randomized controlled clinical trial</td>
<td>1</td>
<td>49</td>
<td>25 (control group) + 24 (remnant)</td>
<td>13 + 14</td>
<td>12 + 13</td>
<td>12</td>
<td>30.50</td>
</tr>
<tr>
<td>Kim et al.25</td>
<td>Retrospective cohort study</td>
<td>3</td>
<td>27</td>
<td>21</td>
<td>14</td>
<td>7</td>
<td>12</td>
<td>NA</td>
</tr>
<tr>
<td>Lee et al.23</td>
<td>Retrospective cohort study</td>
<td>4</td>
<td>42</td>
<td>16</td>
<td>12</td>
<td>4</td>
<td>35.1</td>
<td>NA</td>
</tr>
<tr>
<td>Nakamae et al.22</td>
<td>Diagnostic study of non-consecutive patients</td>
<td>3</td>
<td>116</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>15.3</td>
<td>20.6</td>
</tr>
</tbody>
</table>

Av., average; NA, not available; SD, standard deviation.
Table 2 CMS system.

<table>
<thead>
<tr>
<th>Study and year</th>
<th>(1) Size of the study</th>
<th>(2) Mean follow-up</th>
<th>(3) Number of different surgical procedures</th>
<th>(4) Type of study</th>
<th>(5) Diagnostic certainty</th>
<th>(6) Description of surgical technique</th>
<th>(7) Description of post-operative rehabilitation</th>
<th>(8) Outcome criteria</th>
<th>(9) Procedure for outcome</th>
<th>(10) Description of subject selection process</th>
<th>Coleman Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anh et al. 20</td>
<td>7</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>62</td>
</tr>
<tr>
<td>Anh et al. 21</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>69</td>
</tr>
<tr>
<td>Gao et al. 24</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>66</td>
</tr>
<tr>
<td>Gohil et al. 19</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>86</td>
</tr>
<tr>
<td>Kim et al. 25</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>80</td>
</tr>
<tr>
<td>Lee et al. 23</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>Nakamae et al. 22</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>12</td>
<td>8</td>
<td>56</td>
</tr>
</tbody>
</table>
Year of publication

There was no evidence of a statistically significant association between the year of publication and CMS data (R: 0.04), and more recently published investigations did not score better than older studies.

Subject selection

A satisfying description of the patient’s selection criteria was described in five of the seven (71.4%)19–21,23,24 studies.

Surgical description and post-operative rehabilitation

The description of the surgical technique was adequately given in all studies, and five of seven studies reported exhaustively (10/10 at the Coleman Score) on post-operative rehabilitation.21,25,19,23,24 In the other two studies, the description of the rehabilitation programme was incomplete or not reported.22,20

Surgical technique

ACL reconstructions are performed using different techniques (Table 3).

<table>
<thead>
<tr>
<th>Study and year</th>
<th>Coleman Score</th>
<th>Type of surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anh et al.20</td>
<td>62</td>
<td>ACL reconstruction using quadrupled hamstring tendon autografts: remnant bundle preservation versus standard technique</td>
</tr>
<tr>
<td>Anh et al.21</td>
<td>69</td>
<td>ACL reconstruction using remnant preservation and a femoral tensioning technique</td>
</tr>
<tr>
<td>Gao et al.24</td>
<td>66</td>
<td>ACL reconstruction with LARS artificial ligament</td>
</tr>
<tr>
<td>Gohil et al.19</td>
<td>86</td>
<td>ACL reconstruction with autologous double hamstring: conventional clearance of inter-condylar notch or minimal debridement leaving the ACL remnant</td>
</tr>
<tr>
<td>Kim et al.25</td>
<td>80</td>
<td>ACL reconstruction remnant-preserving technique, using a quadrupled hamstring graft</td>
</tr>
<tr>
<td>Lee et al.23</td>
<td>56</td>
<td>Remnant-preserving technique in a modified arthroscopic ACL double-bundle reconstruction technique with an autogenous quadriceps tendon graft</td>
</tr>
<tr>
<td>Nakamae et al.22</td>
<td>56</td>
<td>ACL reconstruction with a remnant-preserving technique</td>
</tr>
</tbody>
</table>
Outcome measures

The scores used to collect the outcome measures, the assessment time and whether the assessors were blinded or not are reported in Table 4.

The most frequently used tests are the Lachman test, the pivot shift and the IKDC score. Five studies19,21,23–25 used the Lachman test; the pivot shift test was used in four studies,21,23–25 the IKDC score was administered in five studies.19,21,23–25 Two studies21–23 used KT-2000 and other two studies19,24 used KT-1000; two24,25 studies used the Lysholm score and one used the Tegner score;24 the results of each study are collected in Table 5.

Outcome data

Three19,20,23 of the seven studies compared the remnant-preserving technique with a standard (non-preserving) technique, giving clinical and/or MRI data. Anh et al.20 studied the following variables at MRI: the dimension of the ACL graft (significantly larger in the group in whom the stump had been preserved than in the control group); the signal/noise quotient (SNQ) values of the ACL graft (which showed as the remnant bundle preservation group got values not significantly lower than those of the standard reconstruction group); the MRI signal intensity and continuity of the preserved remnant bundle [which showed 14 knees with a Grade I signal (homogeneous low intensity) and a Grade II signal (a portion of the preserved bundle was oedematous) in 21 knees]; the orientation of the ACL (without significant differences between the two groups in the mean ACL angle, ACL-Blumensaat line angle and mean coronal ACL angle).

Lee et al.23 compared objective, subjective and functional outcomes in two groups of patients, divided on the basis of the extent of ACL remnant, \(\geq 20\% \). No significant differences were found in all objective tests (including Lachman test, pivot shift test and manual maximum displacement test by the use of KT-2000 arthrometer). The Hospital for Special Surgery (HSS) score improved from the pre- to the post-operative assessment, without significant differences between groups, as did the IKDC score. For the single-legged hop test, a significant post-operative improvement was obtained in the group with the preserved stump >20%. The same group reached better and statistically significant results at 15 and 30\(^\circ\) in the reproduction of passive positioning (RPP) test, compared with the other group which achieved lower but no statistically significantly different values at 45\(^\circ\). The threshold to detection of passive motion (TTDPM) test at 15, 30 and 45\(^\circ\) showed statistically significant better result only at 30\(^\circ\) for the group where the
Table 4 Outcome measurement.

<table>
<thead>
<tr>
<th>Study</th>
<th>Assessment method</th>
<th>Assessment time</th>
<th>Assessors: blinded or not</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anh et al.²⁰</td>
<td>MRI</td>
<td>5–7 months after surgery</td>
<td>Assessors were blinded to clinical and arthroscopic findings</td>
</tr>
<tr>
<td>Anh et al.²¹</td>
<td>MRI, HSS, IKDC, Lysholm score</td>
<td>6.9 months after surgery for MRI; last follow-up for subjective assessments</td>
<td>Assessors were blinded to clinical and arthroscopic findings</td>
</tr>
<tr>
<td>Gao et al.²⁴</td>
<td>MRI; Lachman, pivot shift, KT-1000, Lysholm, Tegner, IKDC</td>
<td>Last follow-up (50 ± 6 months)</td>
<td>Blinded assessors</td>
</tr>
<tr>
<td>Gohil et al.¹⁹</td>
<td>MRI; Lachman, KT-1000, IKDC, one-legged hop test</td>
<td>2, 6 and 12 months post-operatively for MRI; 2 weeks, 2, 6 and 12 months post-operatively for all the other tests</td>
<td></td>
</tr>
<tr>
<td>Kim et al.²⁵</td>
<td>Lachman, pivot shift, Lysholm, IKDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee et al.²³</td>
<td>Lachman, pivot shift, KT-2000, HSS, IKDC, one-legged hop test, reproduction passive positioning, threshold to detection of passive motion, single limb standing test</td>
<td>Last follow-up (35.1 months)</td>
<td></td>
</tr>
</tbody>
</table>
Table 5 Study results.

<table>
<thead>
<tr>
<th>Study</th>
<th>Static stability measures</th>
<th>Functional scores</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahn et al.²⁰</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACL graft: remnant group: 293.4 ± 73.6 mm²; standard group: 219 ± 51.7 mm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRI signals: remnant group: Grade I 14 patients, Grade II 21 patients, Grade III 6 patients; standard group: Grade I or II 35 patients (85%).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRI continuity: remnant group: complete 20 patients, partial 17 patients; standard group: partial or complete 37 patients (90%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ACL angle: remnant group: 61.4 ± 10.6°; standard group: 63.7 ± 10.4°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ACL-Blumensaat: remnant group: 13.8 ± 7.3°; standard group: 15.2 ± 5.9°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoronaL ACL angle: remnant group: 76.7 ± 5.8°; standard group: 78.9 ± 6.1°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean centre of ACL graft in sagittal plane at tibial insertion: remnant group: 38.2 ± 5.8%; standard group: 42.5 ± 4.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean centre of ACL graft in coronal plane at tibial insertion: remnant group: 46.7 ± 2.1%; standard group: 47.3 ± 2.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ahn et al.21

KT-2000: <3 mm: pre-operative 2, post-operative 33; 3–5 mm: pre-operative 3, post-operative 15; 5–10 mm: pre-operative 35, post-operative 2; >10 mm: pre-operative 13, post-operative 3

Lachman test: pre-operative negative: 0 patients; 1+, 2 patients; 2+, 38 patients; 3+, 13 patients; post-operative negative: 32 patients; 1+, 18 patients; 2+, 1 patient; 3+, 2 patients

Pivot shift: pre-operative negative, 0 patients; 1+, 31 patients; 2+/3+, 22 patients, negative post-operative, 47 patients; 1+, 4 patients; 2+/3+, 2 patients

IKDC A: pre-operative 0, post-operative 32, B: pre-operative 4, post-operative 15; C: pre-operative 31, post-operative 4; D: pre-operative 18, post-operative 2

Lysholm score: preoperative, 56.2 ± 18.6; postoperative, 92.8 ± 5.9

HSS score: preoperative, 79.5 ± 12.3; postoperative, 98.8 ± 2.0

Graft incorporation: fair in 27 cases and poor in 21

Tibial tunnel placement: the mean sagittal and coronal centers of the ACL graft were 38.8 ± 5.9% (range, 25.2–43.6%) and 45.1 ± 2.3% (range, 40.7–49.1%), respectively

Gao K. et al.24

KT-1000: <3 mm: pre-operative 0, post-operative 121; 3–5 mm: pre-operative 42, post-operative 31; >5 mm: pre-operative 114 post-operative 4

Lachman test: pre-operative 0, 0 patients; 1+, 49 patients; 2+, 107 patients; 3+, 0 patients. Post-operative 0, 135 patients; 1+, 17 patients; 2+, 4 patients; 3+, 0 patients

Pivot shift: pre-operative 0, 0 patients; 1+, 61 patients; 2+, 95 patients; 3+, 0 patients; post-operative: 0, 138 patients; 1+, 14 patients; 2+, 4 patients; 3+, 0 patients

Isokinetic strength quadriceps: 93.6 ± 10.7 and hamstring 95.8 ± 12

IKDC A: pre-operative 0, post-operative 81; B: pre-operative 0, post-operative 65; C: pre-operative 126, post-operative 9; D: pre-operative 30, post-operative 1

Lysholm score: pre-operative, 65.1 ± 12.3; post-operative, 94.5 ± 7.0

Tegner score: pre-operative, 3.1 ± 1.6; post-operative, 6.1 ± 1.6

Synovitis: one patient showed obvious synovitis of the knee

Tunnel positioning: tibial tunnel and femoral tunnel were found to be too anterior in two patients, and the tibial tunnel was too anterior in another patient
Table 5 Continued

<table>
<thead>
<tr>
<th>Study</th>
<th>Static stability measures</th>
<th>Functional scores</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gohil et al.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results 2 month

- **Extension (°):** normal 1.4 (0–5), minimal debridement 0.8 (0–5); flexion (°): normal 113 (90–135), minimal debridement 120 (85–130), anterior translation (mm): normal 3.1 (2–7), minimal debridement 3.5 (2–6)

Results 6 month

- **Extension (°):** normal 0.6 (0–5), minimal debridement 0.7 (0–5); flexion (°): normal 130.7 (120–145), minimal debridement 135.5 (120–140); anterior translation (mm): normal 2.8 (2–6), minimal debridement 3.2 (2–5)

Results 12 month

- **Extension (°):** normal 0.3 (0–5), minimal debridement 0.5 (0–5); flexion (°): normal 138.5 (120–150), minimal debridement 137.6 (120–145); anterior translation (mm): normal 2.75 (2–5), minimal debridement 3.2 (2–5)

Mean signal/noise quotient readings at different time intervals for each region of interest:

Results 2 month

- Near femoral insertion: normal, 2.71 (0.79–6.99); minimal debridement, 3.05 (0.58–4.65)
- Mid-substance ACL: normal, 3.07 (0.79–7.25); minimal debridement, 4.82 (1.55–11.2)
- Near tibial insertion: normal, 3.53 (0.96–7.33); minimal debridement, 4.76 (2.2–10.82)
- Within tibial tunnel: normal, 4.56 (0.96–7.46); minimal debridement, 7.12 (2.6–15.41)
- Mid-substance PCL: normal, 4.1 (0.42–9.39); minimal debridement, 6.13 (2.54–13.08)

Results 6 month

- Near femoral insertion: normal, 3.75 (1.22–8.31); minimal debridement, 2.69 (1.32–6.21)
- Mid-substance ACL: normal, 4.72 (0.87–8.02), minimal debridement, 2.45 (1.06–4.22)
- Near tibial insertion: normal, 4.61 (0.86–8.55); minimal debridement, 3.63 (0.98–9.71)
- Within tibial tunnel: normal, 4.79 (0.8–12.02); minimal debridement, 4.66 (1.2–10.47)
- Mid-substance PCL: normal, 7 (1.1–10.37); minimal debridement, 3.3 (0.64–8.64)

Results 12 month

- Near femoral insertion: normal, 2.45 (1.1–4.58); minimal debridement, 2.17 (1.01–4.34)
- Mid-substance ACL: normal, 3.49 (0.86–11.28); minimal debridement, 2.53 (0.97–4.03)
- Near tibial insertion: normal, 3.48 (1.0–7.37); minimal debridement, 3.09 (0.8–9.65)
- Within tibial tunnel normal, 3.64 (1.58–8.42); minimal debridement, 3.35 (1.6–8.23)
- Mid-substance PCL: normal, 3.47 (0.98–8.42); minimal debridement, 2.22 (0.63–5.23)
Kim et al.25

- Lachman test: pre-operative: 2+ 15 patients; 3+ 6 patients.
 - Post-operative: 1+, 3 patients; 2+, 0 patient; 3+ 0 patients
- Pivot shift: pre-operative: 1+, 1 patient; 2+, 17 patients; 3+, 3 patients; post-operative: no abnormal test

Lee et al.23

- Lachman test: 4 case +, 1 case ++ in Group 1 (remnant >20%), 3+ and 1++ in Group 2 (remnant <20%)
- Pivot shift: 1; Groups 1 and 2
- KT-2000: Group 1 2.33 ± 0.32 mm; Group 2 2.43 ± 0.36 mm

IKDC: pre-operative: Grade A or B 4 patients; post-operative: Grade A or B 18 patients

LYSHOLM score: pre-op: 74.6; post-op: 94.2

HSS score: improved from 62.7 to 95.4, Group 1; from 69.7 to 94.8, Group 2

IKDCG: Group 1: normal 2, nearly normal 6, abnormal 1, severely abnormal 0, Tot 9; Group 2: normal 1, nearly normal 6, abnormal 0, severely abnormal 0, Tot 7

RPP test angle: Group 1: 15°, 3.48 ± 0.83°; 30°, 4.76 ± 1.9°; 45°, 7.41 ± 0.78°. Group 2: 15°, 7.38 ± 1.53°; 30°, 9.09 ± 1.32°; 45°, 6.43 ± 1.33°. P value 0.032, 0.024, 0.739

TTDPM test: 15° and 30° better results in Group 1, 45° no difference

Nakamae et al.22

- Group 1: no. patients 18; KT-2000 6.14 ± 1.76 mm; AP displacement of tibia (mm): 30° of knee flexion, 11.17 ± 3.63
 - 60° of knee flexion, 6.94 ± 2.24; total range of tibial rotation (°): 30° of knee flexion, 13.94 ± 5.43; 60° of knee flexion, 15.28 ± 6.42

Continued
Table 5 Continued

<table>
<thead>
<tr>
<th>Study</th>
<th>Static stability measures</th>
<th>Functional scores</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 2: no. patients 12; KT-2000 5.69 ± 2.48 mm; AP displacement of tibia (mm): 30° of knee flexion, 11.00 ± 4.11; 60° of knee flexion, 7.92 ± 3.99; total range of tibial rotation (°): 30° of knee flexion, 15.67 ± 7.87 60° of knee flexion, 17.08 ± 6.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 3: no. patients 14; KT-2000 3.28 ± 1.77 mm; AP displacement of tibia (mm): 30° of knee flexion, 9.71 ± 3.00; 60° of knee flexion, 7.14 ± 2.51; total range of tibial rotation (°): 30° of knee flexion, 12.79 ± 5.59; 60° of knee flexion, 14.07 ± 5.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 4: no. patients 6; KT-2000 2.97 ± 1.14 mm; AP displacement of tibia (mm): 30° of knee flexion, 8.67 ± 2.94; 60° of knee flexion, 7.67 ± 1.97; total range of tibial rotation (°): 30° of knee flexion, 14.00 ± 5.62; 60° of knee flexion, 13.33 ± 5.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 5: no. patients 50; KT-2000 6.77 ± 1.90 mm; AP displacement of tibia (mm): 30° of knee flexion, 11.56 ± 2.88; 60° of knee flexion, 8.82 ± 2.57; total range of tibial rotation (°): 30° of knee flexion, 16.28 ± 5.54; 60° of knee flexion, 14.82 ± 4.66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Changes in AP knee laxity after resection of ACL remnant at 30° of knee flexion

ACL scar pattern (mm)

Group 1 chronicity: ≤1 year, 1.40 ± 1.58; >1 year, 0.25 ± 0.46; total, 0.89 ± 1.32

Group 2 chronicity: ≤1 year, 3.25 ± 2.44; >1 year, 0; total, 2.17 ± 2.52

Total chronicity: ≤1 year, 2.22 ± 2.16; >1 year, 0.17 ± 0.39
Changes in AP knee laxity after resection of ACL remnant at 60° of knee flexion
ACL scar pattern (mm)
Group 1 chronicity: \(\leq 1 \) year, 0.70 ± 0.82; >1 year, 0.38 ± 0.74; total, 0.56 ± 0.78
Group 2 chronicity: \(\leq 1 \) year, 0.63 ± 1.06; >1 year, 0.5 ± 1.00; total, 0.58 ± 1.00
Total chronicity: \(\leq 1 \) year, 0.67 ± 0.91; >1 year, 0.42 ± 0.79

Changes in rotational knee laxity after resection of ACL remnant at 30° of knee flexion
ACL scar pattern (°)
Group 1 chronicity: \(\leq 1 \) year, −0.60 ± 2.22; >1 year, −0.25 ± 1.04; total, −0.44 ± 1.76
Group 2 chronicity: \(\leq 1 \) year, 2.13 ± 5; >1 year, −0.25 ± 1.71; total, 1.33 ± 4.25
Total chronicity: \(\leq 1 \) year, 0.61 ± 3.85; >1 year, −0.25 ± 1.22

Changes in rotational knee laxity after resection of ACL remnant at 60° of knee flexion
ACL scar pattern (°)
Group 1 chronicity: \(\leq 1 \) year, 1.10 ± 2.03; >1 year, 0.13 ± 2.70; total, 0.67 ± 2.33
Group 2 chronicity: \(\leq 1 \) year, 0.00 ± 4.07; >1 year, 0.25 ± 3.10; total, 0.08 ± 3.63
Total chronicity: \(\leq 1 \) year, 0.61 ± 3.05; >1 year, 0.17 ± 2.69
remnant had been preserved. Gohil et al.19 compared standard versus minimal debridement techniques: at MRI, the SNQ values were significantly higher in the minimal debridement group at 6 months, while after 1 year significance was lost. On the contrary, no statistically significant differences were found in tunnel placement, blood loss, IKDC scores, range of movement or results of the Lachman test between the two groups.

Four21,22,24,25 of the seven studies evaluated the potential benefits that the preserved remnant could have on revascularization, on the ligamentization of the intra-articular graft and on improved knee stability. Gao et al.24 reported on 159 patients in whom the ACL was reconstructed with a ligament advanced reinforced system (LARS) artificial ligament. The knee stability measured by the KT-1000 arthrometer, the Lachman test and the pivot shift test improved significantly after surgery. Similarly, knee function evaluated by Lysholm, Tegner and IKDC scores achieved significantly better values post-operatively compared with pre-operative ones. Of the patients, 81\% (127/159) were highly satisfied, while eight required a second operation. Nakamae et al.22 evaluated the biomechanical properties of different patterns of ACL remnants. Comparing patients in whom the remnant bridges between the posterior cruciate ligament and the tibia (Group 1) or the intercondylar notch and the tibia (Group 2), the authors outlined how the remnant contributed to the antero-posterior knee stability at 30° for the first year after injury, while beyond that time this effect was lost. Kim et al.25 reported on the outcomes of a new technique in which a double-bundle ACL is reconstructed using an autogenous quadriceps tendon graft and preserving the remnant. Both knee stability tests (Lachman test, pivot shift test and KT-2000 arthometer) and knee function tests (IKDC and Lysholm) improved after surgery. The authors suggest that their remnant-preserving technique may be effective in promoting vascularization, stability and proprioception.

Ahn et al.21 evaluated a new ACL reconstruction technique with preservation and femoral tensioning of the ACL remnant. Statistically significant post-operative improvements in all the clinical scores (Lachman tests, pivot shift tests and KT-2000 arthometer measurements) were achieved. Post-operative MRI assessment, available in 48 of 53 patients, showed an intact graft in 45 patients, 2 partial tears and 1 complete loss of graft.

\textbf{Complications}

Cyclops lesions and extension loss were the main complications. The rate per each study is reported in Table 6.
An important role has been attributed to the preservation of the remnant in ACL reconstruction. However, its actual effectiveness is still controversial. For example, we do not know whether it really accelerates vascularization and ligamentization of the graft, or whether it improves proprioception compared with standard techniques. We wished to review in a systematic fashion the currently available literature on this issue, assessing the methodological quality and the clinical outcomes of the seven studies investigating the role of the ACL remnant in ACL reconstruction. The CMS was used. Although it was developed to assess the methodological quality for studies investigating surgical management of patellar tendinopathy, it has been largely used for Achilles tendinopathy, patellar tendinopathy, cartilage injuries, posterior cruciate ligament treatment, cervical spine fractures, rotator cuff partial thickness management and knee arthroplasty. The average Coleman’ score value was 67.8, showing overall a moderate methodological quality. All but one study are retrospective with a low level of evidence (Level IV), and the only prospective randomized controlled study has a short follow-up (1 year). Of the seven studies analysed, only three included a control group, while the others report on the clinical and the MRI post-operative results of a single technique. The size of the studies was generally small, with only one study reporting on >60 patients and 3 of the studies did not specify the diagnostic process, introducing potential biases. Although the clinical and functional outcome assessments were methodologically satisfying (each study achieved the maximum score at the ‘Outcome procedure’ section of the Coleman), the heterogeneity of the scores used does not allow to statistically analyse and compare the relevant outcomes.

<table>
<thead>
<tr>
<th>Study</th>
<th>Complication: type and rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anh et al.20</td>
<td>Extension loss of 5° in two patients of the remnant-preserving group and in two of the standard technique group; cyclop lesion in two patients of the remnant group and in three of the standard technique group with extension loss in one patient per group</td>
</tr>
<tr>
<td>Anh et al.21</td>
<td>Five cyclops-like lesions, without any clinical symptoms or extension limitation</td>
</tr>
<tr>
<td>Gao et al.24</td>
<td>Not reported</td>
</tr>
<tr>
<td>Gohil et al.19</td>
<td>Cyclop lesion: in 9 patients treated with normal debridement and in 13 patients treated with minimal debridement</td>
</tr>
<tr>
<td>Kim et al.25</td>
<td>Extension deficit >5° in one patient</td>
</tr>
<tr>
<td>Lee et al.23</td>
<td>Not reported</td>
</tr>
<tr>
<td>Nakamae et al.22</td>
<td>Not reported</td>
</tr>
</tbody>
</table>

Discussion

An important role has been attributed to the preservation of the remnant in ACL reconstruction. However, its actual effectiveness is still controversial. For example, we do not know whether it really accelerates vascularization and ligamentization of the graft, or whether it improves proprioception compared with standard techniques. We wished to review in a systematic fashion the currently available literature on this issue, assessing the methodological quality and the clinical outcomes of the seven studies investigating the role of the ACL remnant in ACL reconstruction. The CMS was used. Although it was developed to assess the methodological quality for studies investigating surgical management of patellar tendinopathy, it has been largely used for Achilles tendinopathy, patellar tendinopathy, cartilage injuries, posterior cruciate ligament treatment, cervical spine fractures, rotator cuff partial thickness management and knee arthroplasty. The average Coleman’ score value was 67.8, showing overall a moderate methodological quality. All but one study are retrospective with a low level of evidence (Level IV), and the only prospective randomized controlled study has a short follow-up (1 year). Of the seven studies analysed, only three included a control group, while the others report on the clinical and the MRI post-operative results of a single technique. The size of the studies was generally small, with only one study reporting on >60 patients and 3 of the studies did not specify the diagnostic process, introducing potential biases. Although the clinical and functional outcome assessments were methodologically satisfying (each study achieved the maximum score at the ‘Outcome procedure’ section of the Coleman), the heterogeneity of the scores used does not allow to statistically analyse and compare the relevant outcomes.
Preserving the remnant in ACL reconstruction surgery may have potential benefits. The remnant tissue might accelerate the vascularization and the ligamentization process of the graft, improving its incorporation. Moreover, the proprioceptive structures of the distal tibial remnant fibres may contribute to faster graft innervation leading to a better proprioception. Ligamentous branches originate from the middle genicular artery, forming a synovial network from which a periligamentous net of vessels that transversely cross the ACL and anastomose with longitudinally oriented intraligamentous vessels provide most of the vascular supply to the ACL fibres. Preserving the remnant and its synovial sheet may accelerate the process of vascularization. Gohil et al. showed that the signal intensity at MRI was higher in the minimal debridement group compared with the standard group up to the first 6 months. After 1 year, no differences were found, supporting the idea that the revascularization process occurred earlier in the debridement group. Ahn et al. found larger ACL graft in the remnant-preserving group at MRI assessment, but the clinical significance of these data is not clear. At immunohistology, the presence of proprioceptive structures such as Golgi tendon organs, Pacinian corpuscles and Ruffini endings within the ACL fibre structures within the remnant has been demonstrated. The shorter the time between the injury and the surgery, the greater the presence of proprioceptive structure and the longer the remnant adherent to the posterior cruciate ligament. These findings support the idea that preserving the remnant may allow the retention of proprioceptive function, and that the stump may be a source for graft innervations, contributing to better clinical and functional outcomes. However, we lack studies comparing the number and the quality of mechanoreceptors in reconstructed ACL with and without preservation of the remnant. Lee et al. found that the remnant-preserving technique obtained statistically better proprioceptive and functional outcomes compared with the standard technique. The authors used the single-legged hop test, the RPP, the TTDPM and the single-limb standing test for the functional assessments, but these tests are not specific and validated for a proprioceptive assessment. The same authors proposed that appropriate proprioception testing should include pre-operative proprioception assessment and comparison with uninjured subjects to reach a more accurate cause–effect analysis.

Although there are no studies investigating the role of remnant in preventing tibial tunnel widening, preservation of the ACL remnant may result in decreased post-operative arthroscopic and synovial fluid leakage into the tibial tunnel. Given the close adhesion between graft and remnant, cytokines scattering may be reduced and their osteolytic effects could be avoided. On the other hand, the advantages of a...
traditional ACL reconstruction technique with complete debridement of the remnant fibres are a clearer vision and a more evident landmark and a decreased risk of cyclops formation or impingement,43 even though the latter point is controversial.44 However, the studies analysed reported no tunnel misplacements, and the rates of cyclop lesions and loss of extension in the remnant-preserving technique are comparable with those observed in the remnant excision technique.19,21

Establishing the real advantages of preserving the remnant is necessary to support its use despite the disadvantages and its technical difficulties. Comparing the outcomes of the standard and the remnant-preserving techniques is the only way to prove its potential effectiveness. However, it is difficult to report on the benefits of leaving the ACL remnant using only clinical scores. Experimental studies demonstrated a role for the ACL remnant in improving revascularization, ligamentization and reinnervation of the graft, but these findings are still not supported by clinical findings. A more direct way to assess proprioceptive function after ACL reconstruction and appropriately conducted powered and rigorously prospective randomized double-blind studies comparing the clinical outcomes of excising the remnant to leaving it in situ are necessary. The present published evidence does not support, or refute, the benefits of ACL remnant sparing.

Funding

None.

References