Impaired visual processing preceding image recognition in Parkinson’s disease patients with visual hallucinations

Anne Marthe Meppelink,1,2,3 Bauke M. de Jong,1,2,3 Remco Renken,2 Klaus L. Leenders,1,2,3 Frans W. Cornelissen3,4 and Teus van Laar1,2,3

1 Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
2 Neuro Imaging Center (NIC) Groningen, University of Groningen, Groningen, The Netherlands
3 School of Behavioral and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
4 Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Correspondence to: Anne Marthe Meppelink, MD, Department of Neurology, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
E-mail: a.m.meppelink@neuro.umcg.nl

Impaired visual processing may play a role in the pathophysiology of visual hallucinations in Parkinson’s disease. In order to study involved neuronal circuitry, we assessed cerebral activation patterns both before and during recognition of gradually revealed images in Parkinson’s disease patients with visual hallucinations (PDwithVHs), Parkinson’s disease patients without visual hallucinations (PDnonVHs) and healthy controls. We hypothesized that, before image recognition, PDwithVHs would show reduced bottom-up visual activation in occipital-temporal areas and increased (pre)frontal activation, reflecting increased top-down demand. Overshoot of the latter has been proposed to play a role in generating visual hallucinations. Nine non-demented PDwithVHs, 14 PDnonVHs and 13 healthy controls were scanned on a 3 Tesla magnetic resonance imaging scanner. Static images of animals and objects gradually appearing out of random visual noise were used in an event-related design paradigm. Analyses were time-locked on the moment of image recognition, indicated by the subjects’ button-press. Subjects were asked to press an additional button on a colour-changing fixation dot, to keep attention and motor action constant and to assess reaction times. Data pre-processing and statistical analysis were performed with statistical parametric mapping-5 software. Bilateral activation of the fusiform and lingual gyri was seen during image recognition in all groups (P < 0.001).

Several seconds before image recognition, PDwithVHs showed reduced activation of the lateral occipital cortex, compared with both PDnonVHs and healthy controls. In addition, reduced activation of extrastriate temporal visual cortices was seen just before image recognition in PDwithVHs. The association between increased vulnerability for visual hallucinations in Parkinson’s disease and impaired visual object processing in occipital and temporal extrastriate visual cortices supported the hypothesis of impaired bottom-up visual processing in PDwithVHs. Support for the hypothesized increased top-down frontal activation was not obtained. The finding of activation reductions in ventral/lateral visual association cortices in PDwithVHs before image recognition further helps to explain functional mechanisms underlying visual hallucinations in Parkinson’s disease.

Keywords: fMRI; Parkinson’s disease; visual hallucinations

Abbreviations: BDI = Beck depression inventory; CBS = Charles Bonnet syndrome; FAB = frontal assessment battery; FIR = finite impulse response; fMRI = functional magnetic resonance imaging; LEDD = Levodopa-equivalent daily dose; MMSE = Mini Mental...
Introduction

Parkinson’s disease is a multisystem neurodegenerative disorder, in which deterioration of dopaminergic neurons in the substantia nigra, that project to the striatum, is a classical hallmark (Lang and Lozano, 1998; Braak et al., 2004). Motor symptoms like bradykinesia, rigidity and tremor are dominant characteristics of Parkinson’s disease, while non-motor symptoms such as cognitive impairment and visual hallucinations (VH) may additionally occur (Barnes and David, 2001; Aarsland et al., 2005). VHs in Parkinson’s disease typically consist of complex visual, commonly moving, images lasting for seconds to minutes, experienced in the alert state with eyes open, affecting 30%–50% of all Parkinson’s disease patients (Barnes and David, 2001; Williams and Lees, 2005). Animals, people and objects define the three categories of images that are most frequently seen by hallucinating Parkinson’s disease patients. Mostly, these VHs are non-threatening and the patient maintains insight in the fact that the experiences do not reflect real events (Fenelon et al., 2000; Barnes and David, 2001). Nevertheless, VHs may progress to hallucinations with loss of insight or delusions in 80% and constitute an important risk factor for nursing home placement (Goetz and Stebbins, 1993). In the present study, we employed functional magnetic resonance imaging (fMRI) in Parkinson’s disease patients with visual hallucinations (PDwithVHs), Parkinson’s disease patients without visual hallucinations (PDnonVH) and healthy control (healthy control) subjects. By assessing functional differences in brain regions implicated in visual perception, we aimed to gain more insight in the origin of VHs in Parkinson’s disease. In this respect, we were particularly interested in visual processing stages preceding actual image recognition.

Hallucinations are defined as involuntary perceptual experiences in the waking state without external visual stimulation (Collerton et al., 2005). Particularly, auditory hallucinations and VHs are core symptoms in schizophrenia and can be treated with dopamine receptor antagonists. This suggests involvement of the striatum in the pathophysiology of hallucinations. Such association is indeed supported by functional imaging with H2O–positron emission tomography in schizophrenia, showing increased striatum (and cingulate) activation during hallucinations, together with activations in distinct auditory and visual cortical regions during auditory hallucinations and VHs, respectively (Silbersweig et al., 1995). VHs may, however, also occur without psychiatric or neurological disease. For example, in Charles Bonnet Syndrome (CBS), complex VHs occur secondary to profound visual loss in cognitively normal people (Teunisse et al., 1996). These observations have provided support for the concept that impaired processing of externally presented stimuli may lead to an increased reliance on ‘top-down’ mechanisms, in which an ‘internal generator’ may contribute to activations in appropriate perceptive cortical regions (Silbersweig et al., 1995; Stebbins et al., 2004).

Visual hallucinations in Parkinson’s disease

With regard to VHs in Parkinson’s disease, a combination of impaired visual processing and attention has been reported (Flowers and Robertson 1995; Collerton et al., 2005; Diederich et al., 2005; Meppelink et al., 2008). VHs in Parkinson’s disease have been commonly viewed as an adverse effect of dopaminergic treatment for Parkinson’s disease, causing a relative overstimulation of the limbocortical dopaminergic receptors (Bosboom et al., 2004). However, VHs in Parkinson’s disease may not be associated with the dose or duration of treatment of dopaminergic drugs (Goetz et al., 1998; Holroyd et al., 2001). Moreover, VHs have already been reported in the pre-levodopa era (Fenelon et al., 2006). Neuropathologically, VHs in Parkinson’s disease are associated with increased Lewy body deposition in the temporal lobe (Harding et al., 2002), suggesting that VHs in Parkinson’s disease are at least partially caused by the disease itself. With functional magnetic resonance imaging (fMRI), increased caudate activation has been demonstrated during visual stimulation in PDwithVHs, compared with PDnonVHs, thus showing some resemblance with the above described functional imaging findings in schizophrenia (Stebbins et al., 2004). This raises the question of how the basal ganglia play a role in the generation of hallucinations. The basal ganglia are involved in switching behaviour to internal or external sensory stimuli (Redgrave et al., 1999). Their well-structured interconnections with the cerebral cortex by cortico-basal ganglia-thalamo-cortical circuits are organized in parallel loops, which enable the regulation of normal adaptive behaviour by selection of motor and non-motor behavioural responses (Redgrave et al., 1999; de Jong and Paans, 2007). Some imaging studies have further shown hyperperfusion of the frontal lobe during VHs in Parkinson’s disease (Kataoka et al., 2008) and schizophrenia (Silbersweig et al., 1995). Joint activations in the basal ganglia and frontal lobes might thus reflect an aspect of internal image generation in these patient groups. In patients with Parkinson’s disease, schizophrenia and CBS, increased perfusion or activation of visual association cortices was seen during the occurrence of VHs (Silbersweig et al., 1995; Ffytche et al., 1998; Kataoka et al., 2008), while in other studies reduction of either activation, perfusion or metabolism in visual association cortices was seen during rest or simple visual stimulation (Okada et al., 1999; Stebbins et al., 2004; Matsui et al., 2006a; Boecker et al., 2007). In CBS, the latter probably reflects reduced visual cortical processing due to visual deprivation (Ffytche et al., 1998). In PDwithVHs, cortical visual processing itself seems to be impaired, as explained below.

Impaired visual processing

A wide range of visual perceptual disturbances has been associated with VHs in Parkinson’s disease, including reduced visual
acuity (Matsui et al., 2006b), contrast sensitivity (Diederich et al., 1998), colour discrimination, visual space perception (Ramirez-Ruiz et al., 2007a) and visual object perception (Barnes et al., 2003; Ramirez-Ruiz et al., 2006). Relative hypometabolism of the ventral visual stream in Parkinson’s disease patients compared with patients with progressive supranuclear palsy has been proposed to reflect the vulnerability for VHs particularly in Parkinson’s disease (Klein et al., 2005). Relatively impaired visual processing in PDwithVH could hypothetically lead to compensatory visual processing and internal image generation. In this respect, some resemblance can be seen with the occurrence of VHs in CBS, although the cause of underlying visual dysfunction is different.

VHs in Parkinson’s disease tend to occur in dim suboptimal visual circumstances, mostly during the evening (Fenelon et al., 2000). In suboptimal visual circumstances, top-down processes are considered to play an important role in the recognition of objects (Bar et al., 2006). It is thought that a partially analysed version of the input image is rapidly projected from early visual areas to the prefrontal cortex, where it activates an ‘initial guess’, which is projected back to the temporal cortex (Bar et al., 2006). There, it is integrated in bottom-up visual processing, in which the visual image is processed from primary visual cortex (V1) to the occipital-temporal cortex. Several techniques have been used to mimic these suboptimal visual situations, such as backward masking, in which briefly presented images are immediately followed by a masking stimulus, and gradual revelation of objects using panels and visual noise (Grill-Spector et al., 2000; James et al., 2000; Bar et al., 2001). By presenting images that slowly and dynamically appear out of random noise, the speed and content of conscious perception of images can be assessed (James et al., 2000; Kleinschmidt et al., 2002; Reinders et al., 2006; Meppelink et al., 2008). This dynamic presentation of stimuli probably mimics a situation of more natural visual perception. Previous data from our own group has shown that non-demented PDwithVHs were slower in recognizing images dynamically popping-out of noise, compared with both PDnonVHs and healthy controls (Meppelink et al., 2008).

Hypothesis

The aim of the current study was to investigate the distribution of cerebral activations during visual processing in non-demented PDwithVHs compared with non-demented PDnonVHs and healthy controls. Our hypothesis was that in PDwithVHs, impaired bottom-up visual processing induces top-down compensation. During actual hallucinations, this compensation may change into an overshoot of top-down exerted activity, resulting in an increase of activations within a visuo-frontal neuronal network. In the present fMRI study, we did not aim to detect the effect of actual hallucinations, because the included PDwithVHs did not perceive them during scanning. The employed paradigm was designed to provoke and identify successive activation patterns during the observation of a display with gradually revealed images. By focusing particularly on activation in the stage preceding image recognition, we aimed to investigate whether the previously found delay in image recognition in PDwithVHs (Meppelink et al., 2008) is reflected in changed activations in ventral extrastriate visual cortex, basal ganglia and prefrontal cortex, respectively.

Methods

Subjects

Thirty-six subjects participated in this study, divided into three groups; 9 Parkinson’s disease patients who experienced complex VHs at least weekly during the last month, 14 PDnonVHs and 13 healthy controls. Originally, 12 PDwithVHs and 14 healthy controls were included in this study. Two subjects (one healthy control and one PDwithVH) were excluded because of motion artefacts and two PDwithVHs were excluded because they were unable to perform the task as instructed once they were in the scanner, e.g. they pressed the ‘recognition-button’ several times per movie while only one response was requested. Parkinson’s disease was diagnosed according to the criteria of the UK Parkinson’s Disease Society Brain Bank. These three groups were matched for age and level of education. The latter was rated with a Dutch education scale ranging from 1 (elementary school not finished) to 7 (university degree). Both Parkinson’s disease groups were also matched for cognition [assessed with the Mini Mental State Examination (MMSE); Folstein et al., 1975] and for their level of executive functioning [assessed with the Frontal Assessment Battery (FAB); Dubois et al., 2000]. All Parkinson’s disease patients were ‘on’ during the assessment. The levodopa-equivalent daily dose (LEDD) was calculated for all patients, according to the formula: $LEDD = \text{levodopa dose (mg)} + (0.3 \times \text{levodopa dose if using entacapone with each dose}) + (\text{slow release levodopa} \times 0.7) + (\text{bromocriptine} \times 10) + (\text{ropinirole} \times 20) + (\text{ergolide} \times 100) + (\text{pramipexole} \times 100) + (\text{apomorphine} \times 10)$ (Esselink et al., 2004). Visual acuity was assessed with the Snellen chart. Demographic and clinical characteristics are described in Table 1. Exclusion criteria were dementia (MMSE score <24), neurological disorders other than Parkinson’s disease, psychiatric disorders, visual acuity <50% (Snellen chart) and visual field defects. This study was approved by the Medical Ethical Committee of the University Medical Centre Groningen. All participants signed an informed consent prior to study inclusion.

Clinical tests and statistics

Contrast sensitivity was assessed in all subjects using the Mars contrast sensitivity test (Arditi, 2005). All Parkinson’s disease patients were asked to fill in a self-report depression scale [Beck Depression Inventory, BDI (Beck et al., 1961)]. The severity of motor symptoms in Parkinson’s disease patients was rated with the Unified Parkinson’s Disease Rating Scale (UPDRS), part III. Severity of VHs in Parkinson’s disease patients was assessed with part B ‘Hallucinations’ of the Neuropsychiatric Inventory and a questionnaire based on the characteristics of VHs in Parkinson’s disease patients as described by Barnes and David (2001).

Not all variables were normally distributed in all three groups. Therefore, the non-parametric Mann–Whitney and Kruskal–Wallis tests were used to investigate these non-normally distributed variables. An analysis of variance (ANOVA) was used to compare normally distributed variables. The three groups were compared concerning their contrast sensitivity and visual acuity using the Kruskal–Wallis test. In addition, the Mann–Whitney test was used to investigate firstly, if PDwithVHs differed from PDnonVHs and secondly, if...
Table 1 Demographic and illness characteristics of PDwithVHs (n = 9), PDnonVHs (n = 14) and healthy controls (n = 13)

<table>
<thead>
<tr>
<th></th>
<th>PDwithVH</th>
<th>Range</th>
<th>PDnonVH</th>
<th>Range</th>
<th>Healthy controls</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>61.2 (8.2)</td>
<td>45–75</td>
<td>64.6 (7.8)</td>
<td>47–74</td>
<td>58.5 (7.5)</td>
<td>47–71</td>
</tr>
<tr>
<td>Education</td>
<td>5.7 (0.7)</td>
<td>5–7</td>
<td>5.7 (0.7)</td>
<td>5–7</td>
<td>5.9 (0.8)</td>
<td>5–7</td>
</tr>
<tr>
<td>Disease duration</td>
<td>8.1 (5.0)</td>
<td>2–18</td>
<td>8.7 (4.7)</td>
<td>4–24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEDD</td>
<td>855 (543)</td>
<td>240–1970</td>
<td>794 (362)</td>
<td>375–1830</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPDRS-III</td>
<td>21.4 (7.0)</td>
<td>9–30</td>
<td>20.4 (7.3)</td>
<td>6–30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMSE</td>
<td>26.8 (1.0)</td>
<td>25–28</td>
<td>27.4 (1.3)</td>
<td>25–29</td>
<td>27.9 (0.9)</td>
<td>26–29</td>
</tr>
<tr>
<td>FAB</td>
<td>15.7 (1.8)</td>
<td>12–17</td>
<td>16.8 (1.5)</td>
<td>13–18</td>
<td>17.4 (1.2)</td>
<td>14–18</td>
</tr>
<tr>
<td>Visual acuitya (Snellen)</td>
<td>0.94 (0.1)</td>
<td>0.8–1.0</td>
<td>0.91 (0.1)</td>
<td>0.8–1.0</td>
<td>0.95 (0.1)</td>
<td>0.5–1.0</td>
</tr>
<tr>
<td>Males: n (%)</td>
<td>5 (55)</td>
<td></td>
<td>11 (79)</td>
<td></td>
<td>9 (69)</td>
<td></td>
</tr>
<tr>
<td>Females: n (%)</td>
<td>4 (45)</td>
<td></td>
<td>3 (21)</td>
<td></td>
<td>4 (31)</td>
<td></td>
</tr>
</tbody>
</table>

a Corrected with glasses, when necessary.

PDnonVHs differed from healthy controls. Differences in age were investigated using an ANOVA. Scores of Parkinson’s disease patients on the BDI, LEDD, MMSE and UPDRS-III were compared using the Mann–Whitney test.

fMRI paradigm and experimental procedure

A total of 50 pictures of animals (22), well-known objects (22) and meaningless objects (6, control) were used to create a paradigm in which pictures gradually pop out of random uniform visual white noise (Fig. 1A). Movie stimuli were generated in Matlab 5 on an Apple Macintosh computer running Mac OS 9.2.1 using some of the routines of the Psychtoolbox (Brainard, 1997; Pelli, 1997). Movies were created from grey-scale pictures that were first normalized to have their mean luminance equal to the background level. Noise contrast remained constant throughout the duration of the 30 s movie. Image contrast (and thus signal-to-noise) increased linearly over time causing the image to gradually appear out of the noise. Perceptual recognition (‘pop-out’) occurred from 10 to 28 s after initial movie onset. All movies were created from grey-scale pictures with a resolution of 300 × 300 pixels. Movies were shown at twice this size (600 × 600 pixels). The movies were presented using the ‘Presentation’ program (Neuro Behavioural Systems, Inc., CA, USA). They were projected by a beamer (resolution 1024 × 768 pixels, Barco, Belgium) on a screen (display dimensions 44 × 34 cm), viewed by the subject via a mirror placed at a distance of 11 cm from the face. The distance between the mirror and the screen was 64 cm and the stimuli covered ~18° of the visual field. If necessary, visual acuity of the subject was corrected using MRI-compatible lenses.

During presentation of the movie, a central fixation square changed colour with random intervals. Subjects had to report such change (to keep attention constant) by pressing a button with their right middle finger on an MRI compatible response-box (FORP, Current designs, Inc., USA). Per subject, the mean reaction time of the response to the colour change was calculated. Subjects were further instructed to press a button with their right index finger at the moment that they recognized the object or animal, i.e. at the moment of the perceptual pop-out. Before each session, this paradigm was practiced outside the scanner, while verbal responses were used to verify recognition of the images. In this way, we assessed whether subjects understood the task correctly and whether they indeed recognized the images. The mean reaction time on the colour change was subtracted from the image recognition times. Movie stimuli were presented in two runs, 25 per run. In between the two runs, an anatomical, T1-weighted scan was acquired.

MRI characteristics

Data acquisition was performed using a 3 Tesla Philips MR system (Best, The Netherlands) with a standard six-channel SENSE head coil. Functional images were acquired with a gradient echo, i.e. echo planar imaging, T2* Blood Oxygen Dependent Level contrast technique in an ascending order with an echo time (TE) of 35 ms, a repetition time (TR) of 2.3 s, 35 slices per TR, 450 volumes per run, isotropic voxels 3 × 3 × 3 mm3 and an axial orientation. A T1-weighted three dimensional anatomical scan was acquired to obtain high-resolution anatomical information, isotropic voxels 1 × 1 × 1 mm3, matrix size = 256 × 256 and an axial orientation.

Psychophysics

The mean reaction time on the colour change of the fixation square was calculated per subject and averaged over groups. Reaction times were not normally distributed; differences between groups were investigated using the non-parametric Kruskal–Wallis test. The Mann–Whitney test was used to investigate between which groups differences exist (PDwithVH versus PDnonVH, PDwithVH versus healthy controls, PDnonVH versus healthy controls).

The mean image recognition time over all movies was calculated per subject and averaged over groups. The percentage of unrecognized images was calculated per subject and averaged over groups as well. Unrecognized movies were considered as missing values. Mean image recognition times were normally distributed, differences between groups were investigated using ANOVA. A Helmert contrast was used to determine firstly, if healthy controls differed significantly from both Parkinson’s disease patients with and without VHs and secondly, if PDnonVHs differed from PDwithVHs.

fMRI data analysis

Image processing and statistical analysis were conducted with Statistical Parametric Mapping (SPM, Friston et al., 1995) version 5 (2005, Wellcome Department of Cognitive Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/spm). Pre-processing included slice time...
correction, realignment, co-registration of functional and anatomical scans and spatial normalization (to the template of the Montreal Neurological Institute, MNI). Images were smoothed using a Gaussian filter of 8 mm full width at half maximum (FWHM). Analyses were time-locked on the perceptual pop-out in an event-related design. In addition to the hemodynamic response function, temporal and dispersion derivatives were also modelled (Friston et al., 1998). Apart from the pop-out, a 30 s block of visual input and motor response, as well as a block of the visual percept, lasting from the pop-out until the end of the movie, were modelled (Fig. 1B). Movement parameters were included as covariates. T-contrasts of the pop-out with respect to baseline (passive viewing of a fixation cross, projected on a dark background) were made for each subject. A finite impulse response (FIR) analysis was used to investigate temporal dynamics. Again analyses were time-locked to the pop-out (\(t/3\) TR). Basis functions (FIR) were generated using the following settings: duration 3.5 TR, order 7. Thus, mean whole brain activations in seven time bins of 0.5 TR (=1.15 s) each, were assessed from 3 TR (=6.9 s) before pop-out until 1 TR (=1.15 s) after the pop-out. On a second level (random effect analysis), the T-contrasts of the pop-out were analysed per group, using an ANOVA (flexible factorial). The ANOVA was also used to make comparisons between PDwithVHs, PDnonVHs and healthy controls. FIR data on a second level were also analysed using an ANOVA (flexible factorial), to assess temporal dynamics on a group level and to make group comparisons. FIR results for the six time bins before pop-out, the seventh bin being non-informative due to excess activation at the given threshold, were rendered on 3D standard MNI brains.

Regions of interest were defined based on the FIR group comparisons that showed significant activation differences in PDwithVH, compared with PDnonVH and healthy controls. Time courses of activation in these regions of interest were plotted for all three groups.

Results

Characteristic subjects

The three groups were matched for age (ANOVA: \(F=2.13, P=0.13\)) and level of education (Kruskal-Wallis Test: \(\chi^2=0.82, P=0.70\)). Parkinson’s disease groups were matched for cognition (MMSE; \(z=-1.09, P=0.27\)) and executive functioning (FAB; \(z=-1.77, P=0.08\)).

In the group of nine PDwithVHs, one reported having VHs about once a week, six had VHs several times per week and two reported having VHs several times a day. Thirty-three percent of the hallucinating Parkinson’s disease patients reported that they became upset during their VHs and 44% considered their VHs as a moderate to severe emotional burden. Forty-four percent experienced VHs of people and animals, 33% of only people, 11% of only animals and 11% of animals and objects. None of the PDwithVHs experienced VHs during the testing. Neither did they report a relationship between their VHs and the intake of dopaminergic medication. LEDD scores were also not significantly
different in PDwithVH, compared with PDnonVH (t = 0.33, P = 0.74). Two subjects (PDwithVH) used clozapine for their VHs, while none of the subjects used cholinesterase-inhibitors or anti-cholinergics. Of PDwithVHs, two patients also experienced visual illusions and two other patients from this group occasionally experienced ‘presence of a person’ hallucinations.

With regard to visual abilities, the Kruskal–Wallis showed a significant difference on contrast sensitivity (χ² = 9.19, P = 0.01) between the three groups. Healthy controls had significantly higher contrast sensitivity compared with both PDnonVHs (z = –2.88, P = 0.004) and PDwithVHs (z = –2.14, P = 0.032), while no significant differences were found between the two Parkinson’s disease patients groups (z = –0.20, P = 0.84). Visual acuity was equal in all three groups (Kruskal–Wallis: χ² = 1.83, P = 0.40).

Task performance

All subjects were able to perform the task adequately. Mean reaction time on the colour change of the fixation square (SD) was 761 (150) ms for PDwithVH, 814 (337) ms for PDnonVH and 575 (126) ms for healthy controls. The Kruskal–Wallis test showed significant differences between groups (χ² = 11, P = 0.004). The Mann–Whitney showed no significant difference between PDwithVH and PDnonVH (z = –0.25, P = 0.80), while both PDwithVH and PDnonVH were significantly slower, compared with healthy controls (z = –2.6, P = 0.009 and z = –3.0, P = 0.003, respectively). Some pop-out movies were more difficult than others, leading to delayed recognition of the image. The mean percentage of images that were recognized in healthy controls was 96%, whereas the mean percentage of recognized images was 86% in PDnonVH and only 76% in PDwithVH. Mean image recognition time (SD) over all movies was 17.41 s (1.82) in healthy controls, 20.18 s (2.18) in PDnonVHs and 20.19 s (2.23) in PDwithVHs. The ANOVA showed significant differences between groups for the mean image recognition time (F = 7.58, P = 0.002). The Helmert contrast showed that healthy controls were significantly faster than PDnonVH and PDwithVH (P = 0.001), while PDwithVH and PDnonVH had the same mean image recognition time (P = 0.98).

Activation at the moment of pop-out

At the moment of pop-out, robust bilateral activations were seen in the fusiform gyrus and lingual gyrus in all groups (P < 0.001, corrected, Fig. 2 and Table 2, panel A). When groups were compared, no differences were observed.

Activation before pop-out, within group analysis

The dynamic presentation in which images gradually appeared was associated with the temporal evolution of a changing pattern of cerebral activations that was different for each of the three groups (Fig. 3A). In the healthy controls, the fusiform gyrus was already activated before pop-out (P < 0.001, corrected at –1.2 to pop-out).

PDnonVHs did not show significant activation of the fusiform gyrus before pop-out, but showed activation of the middle occipital cortex and the inferior frontal gyrus at this stage (P < 0.001, corrected and P < 0.001, uncorrected, respectively).

PDwithVHs did not show significant activation of the fusiform gyrus before pop-out either, but showed activation of the parietal cortex bilaterally. At a lower threshold (P < 0.05), the occipital and frontal cortices were activated as well in PDwithVHs (data not shown).

Activation before pop-out, group differences

PDwithVHs, compared with PDnonVHs and healthy controls

PDwithVHs showed a significant reduction of cortical activation, compared with both PDnonVHs and healthy controls, while no increases were seen in PDwithVHs when compared with the other two groups. The decrease of activation in PDwithVHs was already seen several seconds before pop-out. All changes in activation before pop-out at P < 0.001 (cluster-level, uncorrected for the entire brain volume) are reported (Table 2, panel B). At volume correction, corrected statistical significance concerning these effects are partly influenced by the summed size of confluent clusters. At –5.8 to –4.6 s PDwithVHs showed significantly decreased activation of bilateral occipital cortex compared with both PDnonVHs (P < 0.001, uncorrected) and healthy controls (P < 0.001, corrected). In addition, PDwithVHs showed significantly decreased activation of the left inferior parietal cortex, compared with healthy controls (P < 0.001, uncorrected, Fig. 3B and Table 2, panel B).

At –3.5 to –2.3 s PDwithVHs showed decreased activation of the superior frontal gyrus, compared with PDnonVHs (P < 0.001, corrected), while a trend towards decreased activation in this region was seen in PDwithVHs when compared with healthy controls (data not shown).

At –1.2 s to pop-out, PDwithVHs showed significantly decreased activation of the fusiform gyrus bilaterally and the left lingual gyrus, compared with both PDnonVHs and healthy controls (P < 0.001, corrected). In addition, PDwithVHs showed decreased activation of the cingulate cortex and the right middle frontal gyrus, compared with both PDnonVHs and healthy controls (P < 0.001, uncorrected and corrected, respectively).

No increased activations in PDwithVHs were observed, compared with either PDnonVHs or healthy controls. Time courses of pre-pop-out effects in the left fusiform gyrus, which were similar to that of the right fusiform gyrus, the inferior and middle frontal gyri, are plotted in Fig. 4.

PDnonVHs, compared with healthy controls

PDnonVHs and healthy controls showed quite similar activation patterns and showed no differences at P < 0.05, uncorrected until –1.2 s to pop-out (Fig. 4).
Discussion

The paradigm applied in this fMRI study was designed to identify activation changes in circuitry particularly related to visual processing preceding image recognition. With the visual task involving the gradual revelation of complex images (animals and objects), we demonstrated that PDwithVHs, compared with PDnonVHs and healthy controls, had similar activation patterns.
Impaired visual processing in Parkinson’s disease with VH

Brain 2009: 132; 2980–2993 | 2987

Table 2 Regions of cerebral activations in healthy controls, PDnonVHs and PDwithVHs at the moment of pop-out (panel A) and before pop-out (panel B)

<table>
<thead>
<tr>
<th>Contrast</th>
<th>Anatomical region</th>
<th>MNI-coordinates</th>
<th>T (voxel level)</th>
<th>P-value (cluster level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Activation at the moment of pop-out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy controls</td>
<td>Fusiform R</td>
<td>30, –36, –21</td>
<td>9.08</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Fusiform L</td>
<td>–39, –69, –15</td>
<td>5.34</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Lingual R</td>
<td>18, –42, 0</td>
<td>6.01</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Lingual L</td>
<td>–21, –54, 0</td>
<td>6.40</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td>PD</td>
<td>Fusiform R</td>
<td>30, –57, –15</td>
<td>6.25</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Fusiform L</td>
<td>–35, –43, –15</td>
<td>4.76</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Lingual R</td>
<td>15, –45, 3</td>
<td>8.14</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Lingual L</td>
<td>–18, –57, 3</td>
<td>7.47</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td>VH</td>
<td>Fusiform R</td>
<td>30, –36, –21</td>
<td>7.52</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Fusiform L</td>
<td>–31, –73, –16</td>
<td>4.40</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Lingual R</td>
<td>18, –45, 3</td>
<td>6.01</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Lingual L</td>
<td>–12, –69, –6</td>
<td>6.19</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td>Panel B:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Before pop-out: PDnonVH versus PDwithVH</td>
<td>Calcarine L</td>
<td>–3, –81, 18</td>
<td>2.62</td>
<td><0.001, uncorrected</td>
</tr>
<tr>
<td></td>
<td>Occipital sup. R</td>
<td>18, –84, 18</td>
<td>2.41</td>
<td><0.001, uncorrected</td>
</tr>
<tr>
<td></td>
<td>Occipital sup. R</td>
<td>24, –75, 30</td>
<td>3.08</td>
<td><0.001, uncorrected</td>
</tr>
<tr>
<td></td>
<td>Occipital mid. R</td>
<td>42, –81, 12</td>
<td>2.62</td>
<td><0.001, uncorrected</td>
</tr>
<tr>
<td></td>
<td>Frontal sup. R</td>
<td>21, 30, 48</td>
<td>3.32</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Frontal mid. R</td>
<td>33, 39, 9</td>
<td>3.64</td>
<td><0.001, uncorrected</td>
</tr>
<tr>
<td></td>
<td>Cingulate ant. R</td>
<td>15, 33, 24</td>
<td>3.47</td>
<td><0.001, uncorrected</td>
</tr>
<tr>
<td></td>
<td>Cingulate mid. L</td>
<td>–3, –15, 42</td>
<td>3.21</td>
<td><0.001, uncorrected</td>
</tr>
<tr>
<td></td>
<td>Lingual R</td>
<td>–15, –84, 0</td>
<td>3.33</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Fusiform L</td>
<td>–33, –51, –3</td>
<td>2.99</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Fusiform R</td>
<td>36, –63, –18</td>
<td>2.65</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td>II. Before pop-out: healthy controls versus PD withVH</td>
<td>Parietal inf. L</td>
<td>–45, –51, 39</td>
<td>3.10</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Occipital sup. L</td>
<td>18, –84, 18</td>
<td>2.69</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Occipital sup. R</td>
<td>21, –78, 27</td>
<td>2.34</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Occipital mid. R</td>
<td>33, –72, 24</td>
<td>2.29</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Occipital mid. L</td>
<td>–30, –78, 18</td>
<td>2.06</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Frontal mid. R</td>
<td>33, 42, 9</td>
<td>3.98</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Lingual L</td>
<td>–21, –57, 0</td>
<td>3.27</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Cingulate mid. L</td>
<td>–3, –12, 42</td>
<td>3.00</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Fusiform R</td>
<td>36, –63, –18</td>
<td>2.75</td>
<td><0.001, corrected</td>
</tr>
<tr>
<td></td>
<td>Fusiform L</td>
<td>–30, –36, –18</td>
<td>2.71</td>
<td><0.001, corrected</td>
</tr>
</tbody>
</table>

Panel A: All three groups showed robust activation of bilateral fusiform and lingual gyrus (at $P<0.001$, $k=20$). In the group comparisons, no differences between groups were observed at the moment of pop-out (data not shown). Panel B: Before pop-out, differences were observed between PD and VH and between healthy controls and VH in the time frames 2–6 (frame $2=5.8$ to $–4.6$ s; frame $3=–4.6$ to $–3.5$ s; frame $4=–3.5$ to $–2.3$ s; frame $5=–2.3$ to $–1.2$ s; frame $6=–1.2$ to pop-out) at $P<0.05$, $k=20$. Relatively increased activation in Parkinson’s disease, compared with VH (I) and also in healthy controls, compared with VH (II) was seen (i.e. relatively decreased activation in VH, compared with both PD and healthy controls). In 2B, statistical significance at cluster-level, after volume correction, may be influenced by the summed size of confluent clusters.

at the moment of image recognition, but that marked differences occurred in the stage preceding image recognition. This underscored the importance to apply the dynamic paradigm with gradually revealed images, instead of clear static images.

Visual object processing

The moment of pop-out, i.e. the moment at which the images of animals and objects were recognized after gradually appearing out of random noise, was related to marked activation in appropriate secondary visual regions such as the fusiform and lingual gyri in all groups. This provided support for the robustness of our paradigm. The mean time it took to recognize the image was similar in PDwithVHs and PDnonVHs, while both groups were significantly slower in recognizing the images than healthy controls. Because PDwithVHs recognized only 76% of the images, compared with 86% in PDnonVHs, these results are probably an underestimation. When images were not recognized in 30 s, a missing value was scored the importance to apply the dynamic paradigm with gradually revealed images, instead of clear static images.
Figure 3 Cerebral activation patterns before image recognition. FIR results showing activations arranged in six timeframes (from 6.9 s before pop-out until pop-out) of all groups separately at $P<0.01$ uncorrected, $k=20$ (A), group comparisons between PDwithVH and PDnonVH at $P<0.05$ uncorrected, $k=20$ (B) and group comparisons between PDwithVH and healthy controls at $P<0.05$ uncorrected, $k=20$ (C). Activations are rendered onto the standard brain volume (MNI dimensions, SPM 2005). Coordinates of activated regions are reported in Table 2.
was corrected for bradykinesia, by means of subtracting the mean reaction time per subject on the colour change from the recognition time. The fact that appropriate extrastriate visual areas were activated at pop-out in all three groups supported the adequacy of our strategy to define this event after correction for reaction time. Mean reaction times on the colour changing fixation square were similar in PD with VHs and PD non VHs, supporting our view that reduced activations were not explained by a generally reduced psycho-motor speed.

Impaired extrastriate visual processing

By using FIR models, we were able to assess successive changes in the cerebral distribution of activations during the presentation of gradually revealed images. Just before and during pop-out, activation of occipito-temporal, inferior parietal and inferior prefrontal areas was seen in healthy controls. This is consistent with previous studies that have addressed visual perception and image recognition of gradually revealed images (James et al., 2000; Kleinschmidt et al., 2002; Eger et al., 2006).

We showed that specifically PD with VHs, as compared with both PD non VHs and healthy controls, had reduced activation of the lateral occipital cortex several seconds before pop-out and reduced activation of the ventral temporal cortex just before pop-out. This might indicate a disturbance at a processing stage beyond V1 in which the normal brain uses scant information to predict the structure of features in an impoverished scenery (Summerfield and Koechlin, 2008). Indeed cortical regions at the lateral and ventral occipito-temporal junctions are important for visual object recognition (Malach et al., 1995; Grill-Spector, 2003). The fusiform gyrus, lateral occipital complex and middle temporal gyrus are involved in the visual perception of a range of both living and non-living objects, while the parahippocampal gyrus is predominantly involved in the perception of scenes (Malach et al., 1995; Downing et al., 2006). Therefore our finding provides support for our first hypothesis that bottom-up visual processing is impaired in PD with VHs. It is important to notice that this impaired visual processing was independent of visual acuity, which was equal in all groups, or contrast sensitivity, which was similar in Parkinson’s disease patients with and without VHs. To what extend other variables, like the angle of view of

![Figure 4](image_url) Time courses. Plots showing the time courses in healthy controls, PD non VH (PD) and PD with VH (VH) from 6.9 s before pop-out (–6.9 to –5.8 s, time bin 1) until 1.15 s after pop-out (pop-out → +1.15 s, time bin 7) in the right lateral occipital cortex (A), left fusiform gyrus (B), right inferior frontal gyrus (C) and right middle frontal gyrus (D). The locations of the changes in activation during frames 1–6 are depicted in Fig. 3. The onset of frame 7 includes the moment of pop-out. The regional activations associated with this event are shown in Fig. 2.
objects or colour discrimination are involved, could be a topic for future research. Reduced activation of the lateral occipital cortex was already present from 5.8 s before pop-out in PDwithVHs. Reduced activation of the inferior temporal cortex occurred just before pop-out in PDwithVHs, while both occipital and temporal activation appeared to normalize (i.e., no differences between groups) when the image was fully perceived (Fig. 2). Following this early reduced activation of the lateral occipital cortex, significantly reduced activation before pop-out of frontal regions was seen, compared with PDnonVHs, while a trend towards reduced frontal activation was seen when compared with healthy controls (data not shown). Just before pop-out, significantly decreased activation of the ventral temporal cortex was observed. Such a time-dependent defect underscores the importance to apply a dynamic paradigm in which images are gradually revealed, probably providing a more natural visual perceptual situation.

Clinical studies have shown impaired object perception in Parkinson’s disease patients compared with healthy controls (Barnes et al., 2003; Laatu et al., 2004). More interestingly, several studies have shown that non-demented PDwithVHs had more severely impaired object perception than PDnonVHs (Barnes et al., 2003; Ramirez-Ruiz et al., 2006; Meppelink et al., 2008). Impaired processing within cortical visual pathways has further been inferred from functional imaging with N-isopropyl-p-123I iodoamphetamine -single photon emission computed tomography and F18-fluorodeoxyglucose-positron emission tomography that have demonstrated baseline hyperperfusion or hypometabolism of temporal gyri (Okada et al., 1999; Oishi et al., 2005; Matsui et al., 2006a; Boecker et al., 2007) and the occipital cortex (Nagano-Saito et al., 2004; Matsui et al., 2006a; Boecker et al., 2007) in PDwithVHs, compared with PDnonVHs. One of these studies reported hyperperfusion of the fusiform gyrus, together with hyperperfusion of the middle and superior temporal lobe (Oishi et al., 2005). Structural indicators for impaired visual cortex function in Parkinson’s disease are further provided by MRI that has revealed atrophy of the (occipital) lingual gyrus in PDwithVHs, compared with PDnonVHs and healthy controls (Ramirez-Ruiz et al., 2007b). Future studies might investigate whether cortical atrophy is confined to the occipital lobe or if the temporal cortex is also affected. Finally, neuropathological examination has shown that a higher density of Lewy bodies in the temporal lobe was associated with VHS in Parkinson’s disease (Harding et al., 2002). These findings lead to the conclusion that impairment of the ventral and lateral extrastriate visual cortex in Parkinson’s disease patients indicates a risk for the occurrence of VHS.

Partial sensory deprivation is a long-appreciated risk factor for hallucinations in other clinical contexts like CBS. In CBS, complex VHS occur in patients with acquired visual impairment without psychiatric disorders. The current view on its pathogenesis is that VHS result from the release of visual cortical activity following the loss of visual inputs, also referred to as deafferentation (Burke, 2002). Relative impairment of visual processing in the occipito-temporal cortex in PDwithVHs might thus predispose to the occurrence of VHS via a ‘release’ of higher order visual cortices within attentional and visual perceptual networks like the prefrontal cortex (Collerton et al., 2005).

Fronto-parietal visual processing

Our second hypothesis was that reduced bottom-up visual cortical processing in PDwithVHs might lead to an increased reliance on top-down visual processing, reflected by activation of the basal ganglia and/or prefrontal cortex (e.g. Silbersweig et al., 1995). No such increases of activation were observed, which implied that we did not gain arguments in favour of a compensatory role of these systems during visual processing in PDwithVHs.

In contrast, in the period before image recognition decreased activation of the right superior frontal gyrus was seen in PDwithVHs, compared with PDnonVHs, and decreased activation of the middle frontal gyrus was seen in PDwithVHs compared with both PDnonVHs and healthy controls. In addition, a decreased activation of the inferior parietal cortex was seen in PDwithVHs, compared with healthy controls only. The ventral prefrontal and inferior parietal regions have been implicated in previous studies that investigated visual perception of gradually revealed images in healthy controls and seem to play an important role in the integration of sensor and mnemonic information. Like in our healthy control group, visual awareness (i.e., perception) in these studies activated a network of ventral visual cortex, inferior frontal gyrus and lateral/inferior parietal cortex (Kleinschmidt et al., 2002; Eger et al., 2006). These parietal and prefrontal cortex activations were interpreted as involvement of higher order areas in top-down facilitation of image recognition (Eger et al., 2006). So it seems that, apart from impaired bottom-up visual processing before image recognition, a broader network including especially frontal cortical areas involved in top-down processing is impaired as well in PDwithVHs.

A recent fMRI study has also shown reduced activation of the right ventro-lateral prefrontal cortex during face perception in cognitively impaired PDwithVHs, compared with both PDnonVHs and healthy controls (Ramirez-Ruiz et al., 2008). Dysfunction of the lateral prefrontal cortex was proposed to reflect a deficit in suppression of irrelevant stimuli, which might predispose to VHS (Ramirez-Ruiz et al., 2008). Another implication of the reduced activation of ventro-lateral prefrontal cortex in PDwithVHs is that these patients may have reduced tendency to address external stimuli. While lateral prefrontal regions are associated with externally cued behaviour, medial prefrontal activation is associated with internally guided behaviour (de Jong and Paans, 2007). The superior frontal gyrus plays a role in endogenously allocated and maintenance of visual attention and was shown to be involved in the inhibition of internally represented information (Corbetta et al., 2002; de Jong and Paans, 2007).

In the present study, frontal hypoactivation was only seen in the stage preceding image recognition and not when the image was fully perceived. In contrast, Ramirez-Ruiz et al. (2008) found relative frontal hypoactivation in PDwithVHs during image perception. One might speculate that the preserved prefrontal activation during image recognition in the present study reflected the relative cognitive preserved patient sample in our study. Generally, it seems that non-demented PDwithVHs indeed have
Visual hallucinations in Parkinson's disease, proposed mechanism

Because none of the participating subjects experienced VHs during scanning, our pop-out movies are an indirect way to measure functional cerebral impairments associated with VHs. While in the present study we showed that the ventral/lateral temporal cortex and part of the prefrontal cortex were relatively impaired in PDwithVHs, one may still assume that activation increases occur in these regions during VHs in these patients. It was shown before that perfusion of the inferior frontal gyrus was increased during VHs of a spider in one Parkinson’s disease patient; together with increased perfusion of visual association areas (Kataoka et al., 2008). A comparable cerebral activation pattern was seen during hallucinations in patients with schizophrenia. Auditory and visual association cortices showed increased perfusion during auditory hallucinations or VHs, respectively. Additionally, increased perfusion of the orbitofrontal cortex and the striatum was seen during hallucinations in these patients with schizophrenia (Silbersweig et al., 1995).

It is unclear however, which cortical region initiates activation increases within the visual perceptual network of temporal, frontal and perhaps parietal cortical activation during VHs. An intra-operative stimulation study in epilepsy patients showed that stimulation of the prefrontal cortex (inferior frontal gyrus) can evoke complex VHs, probably by propagation of activity from the prefrontal cortex along white matter tracts (uncinate fasciculus; Catani and Mesulam, 2008) to the ventral occipito-temporal lobe (Blanke et al., 2000). Furthermore, orbitofrontal seizures can present with complex VHs, probably also by propagation of epileptic activity to temporal regions (La Vega-Talbot et al., 2006).

Conclusion

Increased vulnerability for VHs in Parkinson’s disease is associated with impaired visual object processing in ventral/lateral visual association cortices, providing support for our hypothesis of impaired bottom-up visual processing in PDwithVHs. Moreover, reduced activation in a wider network including lateral prefrontal in PDwithVHs suggested that early stages at which top-down information is given are additionally impaired. We did not find arguments for compensatory increases of activation in PDwithVHs, and thus no support for a link between vulnerability for VHs and increased reliance on top-down processing during visual perception.

Acknowledgements

The authors would like to thank Richard Jacobs, MSc, for his help with the design of the presentation program. They thank Jan-Bernard Marsman, MSc, for his help with the region of interest analysis and the group plots and Dave Langers, PhD, for his help with the FIR analysis.

References

Pei DG. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 1997; 10: 437–42.

