Cognitive impairment is a core element shared by a large number of different neurological and neuropsychiatric diseases. Irrespective of their different aetiologies and symptomatologies, most appear to converge at the functional deficiency of the auditory-frontal cortex network of auditory discrimination, which indexes cognitive impairment shared by these abnormalities. This auditory-frontal cortical deficiency, and hence cognitive decline, can now be objectively measured with the mismatch negativity and its magnetic equivalent. The auditory-frontal cortical network involved seems, therefore, to play a pivotal, unifying role in the different abnormalities. It is, however, more likely that the dysfunction that can be detected with the mismatch negativity and its magnetoencephalographic equivalent manifests a more widespread brain disorder, namely, a deficient N-methyl-D-aspartate receptor function, shared by these abnormalities and accounting for most of the cognitive decline.

Keywords: neuropsychiatric disorders; neurological disorders; central auditory processing; cognitive decline; mismatch negativity (MMN)

Abbreviation: MMN = mismatch negativity
Introduction

In all major neuropsychiatric and neurological disorders, with different aetiologies and symptomatologies, there seems to exist a common core, i.e. cognitive impairment. For instance, in schizophrenia, there is often a gradual cognitive and functional decline (Umbricht and Krijes, 2005). Cognition is also affected in bipolar disease (Thompson et al., 2005), stroke (Ilvonen et al., 2003; Dhawan et al., 2010), epilepsy (Boatman et al., 2008; Kaaden and Helmstaedter, 2009), Parkinson’s disease (Rongve and Aarsland, 2006), multiple sclerosis (Jung et al., 2006), Alzheimer’s disease and other neurodegenerative brain disorders. In addition, cognition is also affected in ageing (Cansino, 2009) and, for example, in patients with HIV infection (Schroeder et al., 1994) and in survivors of coma (Fischer et al., 2004) and the persistent vegetative state (Wijnen et al., 2007). Importantly, in almost all of these cases, this cognitive decline seems to be indexed by temporofrontal functional deficiency expressed as deficient auditory discrimination and orienting.

This functional deficiency, and hence cognitive decline, can now be objectively assessed, even in the absence of the patient’s attention and task performance, by means of a relatively simple electrophysiological measure, the mismatch negativity (MMN; Näätänen et al., 1978). The MMN is generated by the temporofrontal network of automatic auditory change (or regularity-violation) detection (Alain et al., 1998), and its magnetoencephalographic equivalent, magnetoencephalographic MMN (Hari et al., 1984), even in the absence of attention (in fact, the MMN is usually recorded under ignore conditions, with the subject or patient, for example, watching videos or reading a book). This is a major advantage of the MMN relative to other cognitive event-related potentials such as the P3 (Sutton et al., 1965), which depend on attention and cannot therefore be reliably used in several clinical populations. The magnetoencephalographic MMN selectively reflects the temporal component of the MMN since magnetoencephalography is insensitive to the frontal generators of the MMN (Hämäläinen et al., 1993). Therefore, the magnetoencephalography is particularly well-suited for detecting cognitive deficits specific for the temporal lobes. The combined use of the electroencephalography and magnetoencephalography recordings help to determine to what extent the temporal and frontal MMN components are impaired, since with electroencephalography, both components can be detected (Hämäläinen et al., 1993).

Figure 1 illustrates that the MMN indexes the behavioural discrimination accuracy. In addition, the MMN can also index sensory–memory traces (their duration, accuracy and capacity) formed on the basis of the preceding stimulation, that provide the necessary prerequisite for the detection of change (regularity-violation) (Näätänen et al., 2007). In this review, we firstly show that this functional deficit indexed by the MMN and the magnetoencephalographic MMN reflects cognitive decline in the different neuropsychiatric and neurological abnormalities and in ageing. Thereafter, we will review converging evidence indicating that the auditory neural function involved is enhanced by different cognition-enhancing drugs and is dampened by drugs decreasing cognitive performance and, further, that it reflects cognitive variation even in normal healthy individuals. In addition, we will also review relevant data involving the visual-modality analogy of the auditory MMN. To complement our personal collections forming the literature basis of the present review, we also conducted a literature search with terms ‘mismatch negativity and cognition’ and included all studies published in English-language refereed journals, from 2005–2010, that report clinical data pertinent to the MMN–cognition relationship. To sharpen the focus of the review, we have, however, omitted the extensive developmental literature.

The MMN is generated by a temporofrontal network of auditory change detection, in which bilateral auditory-cortex activation, underling pre-perceptual change detection, triggers—with a very short time delay (Rinne et al., 2000)—a predominantly right hemispheric frontal process associated with involuntary attention switch to auditory change (Näätänen and Michie, 1979; Giard et al., 1990; Rinne et al., 2005, 2006). Consequently, the MMN has two overlapping subcomponents, one bilaterally and feature-specialy generated (Rosburg, 2003) by the auditory cortices (the supratemporal MMN subcomponent) and the other by the frontal cortex (the frontal MMN subcomponent). In magnetoencephalographic MMN recordings, only the supratemporal component can be seen, with the radially oriented frontal component being absent. In contrast, both subcomponents have their functional MRI (Celsis et al., 1999; Schall et al., 2003; Molholm et al., 2005; Opitz et al., 2009), PET (Tervaniemi et al., 2000; Dittmann-Balcar et al., 2001; Müller et al., 2002) and
optical-imaging (Tse and Penney, 2008) equivalents. Furthermore, the MMN has its equivalents in other sensory modalities too [the visual MMN (Alho et al., 1992; Tales et al., 1999, 2002; Hesenfeld, 2003; Pazo-Alvarez et al., 2003; Czigler 2007); the somatosensory MMN (Kekoni et al., 1997); and the olfactory MMN (Krauel et al., 1999)], and can also be recorded in different animals [e.g. in monkey (Javitt et al., 1992); cat (Csepe et al., 1987; Pinzce et al., 2001, 2002); rat (Astikainen et al., 2006; Ruusuvirta et al., 2007); guinea pig (Kraus et al., 1994); and mouse (Umbricht et al., 2005; Ehrlichman et al., 2008)]. Recently, it was shown by Restuccia et al. (2009) and Spackman et al. (2010) that, similarly to the auditory MMN, the somatosensory MMN, too, has sensory-specific (somatosensory cortex) and frontal subcomponents.

Sometimes, reliable MMN data cannot be obtained, usually because of a weak signal-to-noise ratio. Moreover, even though the MMN procedure usually provides satisfactory, and often excellent results at the group level, much work is still needed until the MMN can reliably be used in the objective assessment of discrimination of individual subjects and patients. Fortunately, considerable progress toward this end has recently been made (e.g. Marco-Pallares et al., 2005; Kalyakin et al., 2007, 2008a, b, 2009; Cong et al., 2009, 2010a, b).

Neuropsychiatric disorders

Schizophrenia

Shelley et al. (1991), in a pioneering study, found that the MMN amplitude for an occasional duration increment of a repetitive tone was considerably attenuated in patients with schizophrenia compared with that of controls, suggesting that patients’ duration discrimination was compromised. Javitt (1993), in turn, was the first to demonstrate frequency-MMN deficiency in patients with schizophrenia. The duration-MMN deficit was subsequently corroborated by Catts et al. (1995) and Michie et al. (2000). Michie (2001) also found that the MMN abnormalities for duration change, particularly those for duration increments, were even more robust than those for frequency change (Davalos et al., 2003). Importantly, Catts et al. (1995) found that in bipolar patients, the duration-change MMN was not affected, suggesting the specificity of the duration-MMN deficiency in patients with schizophrenia. Fisher et al. (2008), who recorded five different MMNs in parallel (Nääätänen et al., 2004; Thönnesen et al., 2008), reported that the MMN attenuation for duration decrement only occurred in patients with schizophrenia with auditory hallucinations.

In the meta-analysis of Umbricht and Krijés (2005), most of the 32 MMN studies published by the end of 2003, meeting the inclusion criteria, showed that schizophrenia is associated with a MMN-amplitude decrease for frequency or duration changes. There was also a systematic increase in the effect size of the MMN deficit as a function of illness duration, indicating that this attenuation reflects disease progression.

A correlation of the MMN deficit for tone-duration increment with neuropsychological impairment (as indexed by Digit Span Test and Rivermead Behavioural Memory Test) in patients with chronic schizophrenia was reported by Baldeweg et al. (2004). These authors introduced a novel paradigm, the so-called roving paradigm (in which the standard is frequently replaced by another), to schizophrenia research, which seemed to provide a better index for the degree of cognitive impairment of patients than that provided by the traditional constant-standard paradigm. Furthermore, Light and Braff (2005a) showed that the MMN deficit for tone-duration prolongation specifically indexes gradual functional deterioration; there was a strong correlation between the clinical ratings on the Global Assessment of Functioning and the MMN amplitude in these patients (Fig. 2). Moreover, the MMN was highly predictive of patients’ level of independence in their community-living situations. The authors concluded that ‘…the MMN deficits represent a core neurophysiological dysfunction that is linked to global impairments in everyday functioning in patients with schizophrenia’ (Light and Braff, 2005a, p. 127). Furthermore, this correlation between the MMN deficit and the Global Assessment of Functioning ratings was replicated in longitudinal studies 1–2 years later, indicating a stable relationship (Light and Braff, 2005b). For corroborating results, see Hermens et al. (2010). Interestingly, this relationship was also found in normal healthy subjects (Light et al., 2007).

Subsequently, using a visual-MMN paradigm, Urban et al. (2008) found that patients with schizophrenia below the median on the Global Assessment of Functioning ratings had smaller visual-MMN amplitudes for change of the direction of a peripheral movement than normal controls and patients who were above the median on the Global Assessment of Functioning ratings. Moreover, Wynn et al. (2010) found that the (auditory) MMN for duration increment can also index social cognition and functioning in patients with schizophrenia. Further evidence for the MMN-cognition relationship in patients with schizophrenia was provided by Turetsky et al. (2009). Umbricht et al. (2006) found that first-episode patients, in general, did not show an attenuated MMN for tone-frequency and -duration changes except for those with a low premorbid educational level.

The results of Baldeweg et al. (2002, 2004) and Sato et al. (2003) suggested that the frontal generator of the MMN in particular is affected in schizophrenia. This pattern of results, interpreted by Baldeweg et al. (2002) as reflecting a dampened frontal involuntary attention-switching function, correlated with the negative symptoms in the Baldeweg et al. (2004) study. For corroborating results, see Sato et al. (2003). This dampening of the frontal involuntary attention-switching function might, according to Nääätänen and Kähkönen (2009), contribute to patients’ negative symptoms (such as social withdrawal) by diminishing involuntary attention switches to socially relevant auditory cues such as stress and loudness, changes in speaker voice, or the change from one speaker to another (Oades et al., 1996; Javitt et al., 1998). Consistent with this, Matthews et al. (2007) obtained MMN and behavioural data for change of the locus of sound origin suggestive of a selective impairment in the encoding of inter-aural time cues in patients with schizophrenia. The authors proposed that this impairment could have a detrimental effect on a patient’s ability to locate sounds in natural settings, and thus it could contribute to their social communication problems. In particular, as spatial loci of origin of sounds function as a central cue when
selectively attending to a certain speaker in the presence of multiple speakers, any decline in the capacity to use spatial cues will interfere with the ability to control the focus of attention effectively and further impair communication skills.

On the basis of such evidence, Näätänen and Kääkönen (2009), regarding it unlikely that the structural (Hirayasu et al., 1998; Salisbury et al., 2007) and functional central auditory system changes occurring in patients with schizophrenia directly cause the cognitive and functional decline, suggested that it might be the cognitive, intellectual deprivation (in analogy to sensory deprivation) that gradually leads to the long-term cognitive and functional loss. According to these authors, this deprivation would be caused by the blurring of the auditory input, and by the dampening of the automatic attention-switching function supporting the adequate reception and analysis of speech-related and other auditory stimulation and thus the continuous contact with the environment (Shenton et al., 1997; Toyomaki et al., 2008).

Magnetoencephalographic studies (e.g. Kreitschmann-Angermahr et al., 1999, 2001; Thennesen et al., 2008) have also shown a magnetoencephalographic MMN deficit for auditory change in patients with schizophrenia, indicating the involvement of the auditory cortices too, in particular the left auditory cortex (Hirayasu et al., 2000), in the magnetoencephalographic MMN deficit of these patients.

Subsequently, the relationship between the MMN for tone-duration increment and the functional status of patients with schizophrenia was also found by Kiang et al. (2007) who reported that this MMN deficiency was associated with proverb-interpretation abnormalities and deficits in auditory verbal memory. In addition, Rasser et al. (2011) found that MMN deficit for tone-frequency change indexed low socio-occupational function levels of the patients. This frequency-MMN deficit also indexed widespread cortical grey matter loss not only in the left hemisphere Heschl’s gyrus but also in the motor and executive regions of the frontal cortex, while MMN-amplitude reduction for duration increment also correlated with grey matter loss in the right Heschl’s gyrus. Kawakubo et al. (2007) showed that, in patients with schizophrenia, the MMN to across-phoneme change (but not that to tone- or phoneme-duration prolongation) was predictive of the acquisition of social skills during a 3-month social skills training programme. In addition, Toyomaki et al. (2008) found that MMN deficits for tone-duration increment in patients with schizophrenia were related to impairments in executive functioning. Moreover, Kawakubo et al. (2006) observed that MMN deficit for duration decrement of a speech sound (but not that of a simple tone) predicted verbal memory deficits in these patients.

Further, medication did not abolish MMN abnormality in patients with schizophrenia (Catts et al., 1995; Schall et al., 1998; Umbricht et al., 1998, 1999; Korostenskaja et al., 2005). Moreover, the MMN deficit was present irrespective of the stimulus-onset-asynchrony used (Javitt et al., 1998), indicating...
that it is the memory-trace formation (and thus perception; Näätänen and Winkler, 1999) that is affected rather than memory-trace duration. Consequently, this data pattern is orthogonal to that obtained in patients with Alzheimer’s disease who show a normal MMN with short stimulus-onset-asynchronies, suggesting normal memory-trace formation and perception, but no MMN with long stimulus-onset-asynchronies such as 3 s, indicating that their sensory-memory trace duration is abnormally short (Pekkonen et al., 1994).

The MMN amplitude is also attenuated in different (healthy) schizophrenia risk groups, such as individuals with velo-cardio-facial (DiGeorge syndrome (Baker et al., 2005), healthy first-order relatives of patients with schizophrenia (Jessen et al., 2001; Michie et al., 2002), prodromal subjects (Brockhaus-Dumke et al., 2005), subjects with an ‘ultra-high’ risk of schizophrenia (Shin et al., 2009), and children at ‘high’ risk for schizophrenia (Schreiber et al., 1992). Importantly, it was recently shown by Bodatsch et al. (2011) that the duration-decrement MMN of high-risk individuals predicted who of them would convert to first-episode psychosis within 2 years and when this might happen. These results consequently contribute not only to the prediction of conversion but also to a more individualized risk estimation and thus risk-adopted prevention.

Bipolar disease

In contrast to schizophrenia, bipolar disease is usually not associated with MMN attenuation (Catts et al., 1995; Umbricht et al., 2003; Hall et al., 2007, 2009; Salisbury et al., 2007; Takei et al., 2010). Takei et al. (2010), however, found that the magnetoecephalographic MMN peak latencies for tone-duration increment and frequency change were prolonged in the right hemisphere of patients with bipolar disease, in comparison with those of controls. There was also an equivalent-current-dipole location difference in the left hemisphere between the patients and controls. Anderson et al. (2008), studying patients with bipolar I disorder, found that their MMN for tone-duration decrement was attenuated in amplitude and prolonged in latency in comparison to that of controls and, further, that patients performed worse than controls in different neuropsychological tasks. Reite et al. (2009) recently described structural and functional auditory-cortex abnormalities in bipolar patients which, according to the authors, may relate to the cognitive impairments found in these patients (Bruder et al., 1975, 1981, 1994).

Chronic alcoholism

Chronic use of alcohol induces neurotoxicity and results in cognitive impairment (Campanella et al., 2009), particularly in that associated with the frontal-cortex functioning (Pfefferbaum et al., 1997; George et al., 2001; Polo et al., 2003; Park et al., 2010). Kathmann et al. (1995) reported delayed MMN peak latencies in chronic alcoholics, in comparison with their healthy peers. Polo et al. (1999) found MMN attenuation for tone-frequency change in patients relative to age-matched control subjects, particularly after a certain critical age, of ~40 years. Furthermore, this MMN deficiency was increased with age and was more prominent when a longer (2 s) than shorter (0.75 s) stimulus-onset asynchrony was used, suggesting the presence of an additional effect of alcoholism in the form of the accelerated age-related shortening of the auditory sensory-memory duration (Polo et al., 1999; Grau et al., 2001).

Neurological and neurodegenerative disorders

Stroke and aphasia

In patients with stroke, a focal cerebral infarction in the affected core territory is often accompanied by damage even in brain regions that can be quite remote from the locus of infarction (including even contralateral regions), explaining, in part, the widespread cognitive and other neurological defects in these patients (Biegon et al., 2004; Dhawan et al., 2010). In addition, the MMN in these patients is considerably attenuated in amplitude, correlating with the cognitive loss, and permitting the objective monitoring of the latent post-stroke recovery process when reliable behavioural measurements are not yet possible (Ilvonen et al., 2003). Ilvonen et al. (2003) found that at 4 and 10 days after left-hemisphere stroke onset, patients’ sound discrimination was impaired in their left hemisphere, as suggested by attenuated MMNs for duration and frequency change in a harmonically rich tone, especially when presented to the right ear. At 3 months after stroke onset, the MMN for right-ear duration change had considerably increased in amplitude, and was again of approximately normal size. Moreover, a remarkable increase in the left-ear frequency MMN was observed between 3 and 6 months post-stroke. During the follow-up period, progressive improvement in speech comprehension test scores was also found. There was a close relationship between the duration-MMN amplitude increase and improvement in the Boston Diagnostic Aphasia Examination speech-comprehension test from 10 days to 3 months post-stroke.

Särkämö et al. (2010a), dividing their 60 middle cerebral artery stroke patients into music and audio-book listening and control groups, recorded their magnetoecephalographic MMN to frequency and duration changes in a binaurally delivered complex tone (in addition, all patients received normal hospital treatment and rehabilitation of stroke patients). It was found, as expected, that the magnetoecephalographic MMN amplitudes were generally smaller in the lesioned than opposite hemisphere. Importantly, the frequency-magnetoecephalographic MMN amplitude increased more in both music and audio-book groups than in the control group during the 6-month post-stroke period (Fig. 3). In addition, the duration-magnetoecephalographic MMN amplitude increased more in the audio-book group than in the other groups. The frequency-magnetoecephalographic MMN amplitude increase correlated with the behavioural improvement of verbal memory and focused attention induced by music listening. The authors interpreted their results as demonstrating that merely listening to music or speech starting early in
the post-stroke period can induce long-term plastic changes in early sensory processing, as reflected by the magnetoencephalog-"graphic MMN enhancement, which, in turn, may facilitate the recovery of higher cognitive functions. These remarkable results encourage the use of music and speech stimulation in the early post-stroke period.

In another study Särkämö et al. (2010b; see also Särkämö et al., 2009) addressed amusia caused by left or right middle cerebral
artery stroke. They found that amusia caused by right hemisphere
damage, especially that to temporal and frontal areas, was more
severe than that caused by left hemisphere damage. Furthermore,
the severity of amusia correlated with weaker frequency-
magnetoencephalographic MMN responses in amusic right hemi-
sphere patients. Within the right hemisphere-damage group, the
amusia patients who had damage in the auditory cortex showed
worse recovery from amusia as well as weaker magnetoencepha-
lographic MMN responses throughout the 6-month follow-up
than did the non-amusic patients or the amusic patients with no
auditory-cortex damage. The amusic patients (both with and
without auditory-cortex damage) performed worse than the
non-amusic patients on a number of tests of different aspects of
cognitive performance (including working memory, attention and
cognitive flexibility). These findings suggested, according to the
authors, domain-general cognitive deficits as the primary mechan-
ism underlying amusia without auditory-cortex damage, whereas
amusia with auditory-cortex damage is associated with both audi-
tory and cognitive deficits. Previously, Kohlmetz et al. (2001)
found a gross frequency-MMN amplitude reduction in left hemi-
spheric stroke patients with amusia whereas left hemispheric stroke patients with no amusia showed a normal-sized MMN.

Auther et al. (2000) found that the presence of the MMN for
speech-sound change indicated better auditory comprehension
than did MMN absence. In addition, poor comprehension and
MMN absence were related to temporal-lobe lesions. Subsequently, Pettigrew et al. (2005) found a strong correlation
between the MMNs both to complex-tone duration decrement
and consonant-vowel syllable change (from word to non-word and vice versa) with auditory comprehension. Such complex
changes appear to be better in separating aphasic patients from
control subjects than simple tone-frequency changes (Aaltonen
et al., 1993; Csepe et al., 2001). Wertz et al. (1998) found that
the MMN for speech-sound (consonant-vowel syllable) change
was present in 100% of control subjects, whereas it was present
only in 54% of aphasic subjects. Among those patients who
showed this response, the MMN duration was shorter with
more severe aphasia on The Western Aphasia Battery, Porch
Index of Communicative Ability and The Token Test.

Multiple sclerosis

Jung et al. (2006), studying 46 patients with multiple sclerosis,
found that, besides the exogenous N1–P2 complex, the MMN
and P3a for duration decrement were attenuated in amplitude in
patients with multiple sclerosis, concluding that these changes
might suggest that patients with multiple sclerosis are prone to
pre-attentive auditory information processing deficits, besides previous-
described controlled processing difficulties (Kujala et al.,
1995; Foong et al., 1999). In addition, the N1–P2 complex alter-
ations might, according to these authors, signify that the basic
cortical auditory processing is altered in multiple sclerosis.

The MMN was considerably smaller in amplitude in patients showing
cognitive decline (assessed by using a battery of cognitive tests)
than in those with no cognitive decline (Fig. 4). The authors con-
cluded that MMN alterations may represent an objective index of
cognitive disturbances in patients with multiple sclerosis.

Consistent with this, Santos et al. (2006) found that the absence
of the MMN for tone-duration decrement in patients with multiple
sclerosis was closely related to cognitive impairment, assessed with
the Paced Auditory Addition Test, observed in some of the pa-
tients. Similar results were also obtained with the frequency MMN,
corraborating the previous results of Gil et al. (1993). In patients
with no cognitive decline, the MMN response was similar to that
in healthy control subjects.

Velo-cardio-facial syndrome

Individuals with the velo-cardio-facial (DiGeorge) syndrome
(Goldberg et al., 1993), who have a greatly increased schizophre-
nia risk (Baker et al., 2005), also show an MMN deficit. It was
found by Baker et al. (2005) that the MMNs for different
speech-sound and non-speech-sound changes of adolescents and
young adults with the velo-cardio-facial syndrome were consid-
erably attenuated in amplitude. Moreover, these MMN effects were
considerably stronger and the cognitive deficiencies more severe in
the subjects with velo-cardio-facial syndrome carrying the
COMT108/158Met allele (a greater risk of schizophrenia) than
the COMT108/158Val allele (a smaller risk of schizophrenia).

Epilepsy

Studying children of 7–11 years of age with benign rolandic epi-
lepsy, Boatman et al. (2008) found that in approximately half of
them, the MMN to speech-sound change was absent and its peak
latency was prolonged in the remainder of the patients. Those
who had no MMN for speech sounds also had the most severe
cognitive impairments on behavioural testing. Liasis et al. (2001)
found no MMN to syllable change in children with benign rolandic epilepsy, who usually suffer from language
difficulties (Staden et al., 1996). Borghetti et al. (2007), studying adult patients with epilepsy, obtained some frequency-MMN results suggesting that the MMN could be used as an index of the improvement of pre-attentive central processing in audition as a result of the implantation of a vagus-nerve stimulator.

Korostenskaja et al. (2010), using the five features MMN paradigm of Näätänen et al. (2004), found that the magnetoencephalographic MMN of their patients with a mean age of 13 years was attenuated in amplitude for each of these deviations (tone duration, frequency, intensity, perceived locus of origin, silent gap in the middle of the tone). Lin et al. (2007) found that the magnetoencephalographic MMN peak latency for tone-duration decrement in young adult patients was longer than that of the controls. Interestingly, the magnetoencephalographic MMN was accompanied and temporally overlapped by a phase-locking response of alpha and theta oscillations (revealed by using a wavelet-based analysis). In the five patients who subsequently became seizure-free after the successful surgical removal of right temporal epileptic focus, the phase-locking response was enhanced in amplitude, which did not occur in patients with a less successful surgical operation.

Dementia, Alzheimer’s disease and Huntington’s disease

Schroeder et al. (1995) found that the MMN to novel stimuli was delayed in peak latency in all elderly subjects compared with that of the young. Further, it was smaller in amplitude in the demented than non-demented elderly subjects. The MMN for frequency change was smaller only in the low-functioning but not in the high-functioning elderly, compared with that of the young. Consistent with this, Nakagawa et al. (2002) found that in middle-aged individuals with intellectual disabilities, the MMN was considerably attenuated in amplitude, related to that in controls, in response to a small tone-frequency change. Ikeda et al. (2004) found an MMN deficit for tone-frequency and vowel changes in young adults with intellectual disability.

In patients with, or possible, Alzheimer’s disease, the MMN is smaller in amplitude than that in age-matched controls (Pekkonen et al., 1994; Kazmerski et al., 1997; Gaeta et al., 1999). This MMN deficit is dramatically increased when the stimulus-onset-asynchrony is prolonged (e.g. from 1 to 3 s; Pekkonen et al., 1994), suggesting a pathologically shortened sensory-memory duration in Alzheimer’s disease. Tales and Butler (2006) found a qualitatively and quantitatively abnormal visual MMN in Alzheimer’s disease; for corroborating results, see Tales et al. (2008). Important for the prognostic perspectives, the mild cognitive impairment group showed a visual MMN data pattern resembling that of the patients with Alzheimer’s disease (Tales and Butler 2006; Tales et al., 2008) and, important for the therapeutic perspectives, Engeland et al. (2002) found that nicotinergic stimulation tended to normalize the amplitude and latency of the auditory MMN for tone-frequency change in patients with Alzheimer’s disease.

Huntington’s disease provides an interesting exception to the general rule that cognitive functions deteriorate globally in late stages of various neurodegenerative disorders. Beste et al., (2008) found that symptomatic patients with Huntington’s disease performed better than presymptomatic gene-mutation carriers and controls in an auditory signal-detection task. These patients also had a larger MMN amplitude (above the right hemisphere) and shorter peak latency for tone-frequency change than those of controls and the presymptomatic subjects. The authors attributed this surprising result to an increased activity of the N-methyl-D-aspartate-receptor system, an assumed pathogenic mechanism in Huntington’s disease, proposing that this increased activity might facilitate signal propagation at the striatal level. In other kinds of cognitive tasks, this data pattern was not replicated however; thus the authors concluded that improved functioning of specific cognitive processes can emerge together with deterioration of other cognitive functions in late stages of Huntington’s disease.

Parkinson’s disease

In patients with Parkinson’s disease, the MMN for tone-frequency change was attenuated in amplitude (Pekkonen et al., 1995). These patients also tend to show some cognitive impairment, at least at later stages of the disease (Parkinson’s disease dementia; Rongve and Aarsland, 2006). Brønnick et al. (2010) found an MMN deficit for tone-frequency decrement in patients with Parkinson’s disease who were also demented, whereas patients with no dementia showed normal-sized MMNs, as was previously shown by Karayanidis et al. (1995) for tone-duration decrement. Brønnick et al. (2010) proposed that the MMN attenuation in patients with Parkinson’s disease is associated with the pathological processes leading to dementia in these patients and might be caused by subcortical serotonin depletion or a severe cholinergic deficit.

Down’s syndrome

Down’s syndrome is a congenital disorder caused by the presence of an extra 21st chromosome and it is almost always characterized by intellectual deficiency (Roizen and Patterson, 2003). Lalo et al. (2005) found that the MMN for a wide tone-frequency change was often absent in young adult patients (mean age 25 years) and, further, that when the MMN was present, it tended to be of a smaller amplitude and longer latency than that in the control group.

Neurodegenerative changes secondary to medical illness

In advanced stages of diabetes mellitus, some cognitive decline can often be observed (Helkala et al., 1995). In a group of these patients, the MMN for tone-frequency change was attenuated in amplitude, and there was also a trend towards impaired performance in the Digit Span backward test (Vanhanen et al., 1996). The authors estimated that the diabetic subjects of their study might have had a slight impairment of their verbal working memory.
In HIV infection, the later stages are usually accompanied by cognitive decline (Navia et al., 1990). In these patients, the MMN peak latency for a wide tone-frequency change was considerably prolonged with the declining immunological capacity (Schroeder et al., 1994). The authors concluded that the MMN peak latency may be a useful indicator of the progression of the disease, suitable for use in clinical practice and as a marker of therapeutic response to anti-viral or neuroprotective treatments.

Normal ageing

The MMN amplitude is systematically attenuated and its peak latency prolonged with ageing (Verleger et al., 1991; Schroeder et al., 1995; Pekkonen et al., 1996; Jääskeläinen et al., 1999; Gaeta et al., 2001, 2002; Bertoli et al., 2002; Ikeda et al., 2004; Kisley et al., 2005; Cooper et al., 2006; Horvath et al., 2007; Kiang et al., 2007, 2009; Schiff et al., 2008). A particularly convincing characterization of the MMN-age relationship was provided by Kiang et al. (2009), who carefully plotted MMN and P3a amplitudes for tone-duration increment across adulthood for 147 normal subjects and 253 patients with schizophrenia. Along with the MMN changes by age, the level of performance in different cognitive tasks was gradually decreased (Cansino, 2008). There is evidence linking these MMN changes to cognitive deterioration. For example, it was found by Kisley et al. (2005) that the MMN for an occasional stimulus-onset-asynchrony shortening was much smaller in amplitude in elderly (55–85 years) than young (18–23 years) subjects and, further, that in the elderly, the MMN was smaller in amplitude in those with weaker performance in a memory task and in the Tower of London task requiring a number of psychological processes attributed to the frontal cortex, including planning and working memory, than that in those with a better performance. In addition, Gaeta et al.'s (2001) elderly subjects (mean age 71.8 years) had an MMN for tone-frequency change with a smaller amplitude and longer latency than that in their young subjects (mean age 22.6 years). The elderly had poorer scores on neuropsychological tests of executive function than the young. In addition, the visual analogue of the auditory MMN was also attenuated with ageing (Tales et al., 2002; Tales and Butler, 2006).

There is an additional effect of ageing in the form of the shortening of the sensory–memory durations as estimated from the MMN-data pattern obtained by varying the stimulus-onset-asynchrony across the stimulus blocks (Pekkonen et al., 1996; Cooper et al., 2006). Interestingly, in the early years of life, there is a corresponding change of the memory-trace duration but in the opposite direction, of course (Glass et al., 2008a, b).

Altered states of consciousness

Sleep

With increasing drowsiness, the MMN tends to be attenuated; yet, an MMN with a low amplitude can usually be recorded in light sleep (Stages 1 and 2) (Paavilainen et al., 1987; Sallinen et al., 1994). Furthermore, the MMN is absent, or very small, at sleep stages III and IV, whereas it tends to reappear in rapid eye movement sleep (Sallinen et al., 1996; Atienza and Cantero, 2001; Atienza et al., 2002).

Sleep and rapid-eye movement sleep deprivation

Sleep deprivation results in performance decrement in a number of cognitive tasks. Zerouali et al. (2010) found that the MMN for frequency and duration changes was attenuated in amplitude by rapid eye movement sleep deprivation, which also decreases the level of cognitive performance. In addition, Raz et al. (2001) observed that the MMN for tone-frequency change was somewhat attenuated in amplitude at the end of a 36-h continuous sleep deprivation. By this time, there is also clear evidence of cognitive decline (Binks et al., 1999).

Coma

In patients in a comatose state, no MMN can usually be recorded unless a latent recovery process has started, leading to the return of consciousness and cognitive capacities in the near future. Therefore, the MMN can be used in coma-outcome prediction (Kane et al., 1993, 1996; Fischer et al., 1999, 2004, 2006a, b; Morlet et al., 2000; Fischer and Luauté, 2005; Luauté et al., 2005). Moreover, the MMN peak latency, measured at hospitalization, of survivors of coma caused by a severe head injury predicted, to some extent, their expressive language ability and visuo-spatial performance 1 year after the injury (Kane et al., 2000). Kotchoubey et al. (2003) showed that in using the MMN for the objective assessment of the remaining cognitive capacity, it is better to use complex rather than simple sound stimuli that may result in severe underestimation of the capacity. For a meta-analysis, see Daltrozzo et al. (2007).

Persistent vegetative state

Coma outcome can also be a compromise between life and death; the persistent vegetative state that may last for several months. The process of the recovery of consciousness and cognitive skills is accompanied by a dramatic MMN emergence while the unconscious patient crosses the borderline to consciousness (Wijnen et al., 2007). Furthermore, the MMN specifically reflects, and predicts, their cognitive status, as the MMN for tone-frequency change recorded at hospitalization predicted the level of consciousness and the extent of cognitive recovery even 2 years ahead (Wijnen et al., 2007). Van der Stelt and Boxtel (2008) proposed that the MMN may also have some diagnostic utility in differentiating vegetative states from the minimally conscious state (Zarza-Lucianez et al., 2007).
Drug effects supporting the mismatch negativity-cognition relationship

Above we have reviewed a large bulk of clinical evidence supporting the MMN-cognition relationship across a number of different diseases and abnormalities. We will now review psychopharmacological data pertinent to this issue. Javitt et al. (1996) proposed that in patients with schizophrenia, deficient N-methyl-D-aspartate-receptor function could explain MMN abnormalities, impaired auditory discrimination and cognitive dysfunction. This hypothesis received support from the authors’ experiments in monkeys showing that the (intracortically recorded) MMN for tone-intensity decrement was abolished by MK-801 (a N-methyl-D-aspartate-receptor antagonist) injection that left the afferent responses in layer 4 intact. Moreover, Tikhonravov et al. (2008) found that MK-801 attenuated the MMN amplitude for tone-frequency change in rats. Refer to Ehrlichman et al. (2008) for corroborating ketamine (an anaesthetic with N-methyl-D-aspartate-receptor antagonizing properties) results with the tone-frequency MMN recorded in mice. Consistent with this, in normal healthy human subjects, ketamine attenuated the MMN amplitude for tone-frequency and -duration changes (Umbricht et al., 2000), prolonged the magnetoencephalographic MMN peak latency for frequency, duration and intensity changes and decreased the magnetoencephalographic MMN dipole moment, whereas it affected neither the N1m latency nor dipole moment (Kreitschmann-Andermahr et al., 2001). Umbricht et al. (2002) found that normal healthy subjects with a smaller baseline MMN for tone-frequency changes (before any drug intake) were more affected (i.e. had a larger number of ‘psychotic’ responses on the Brief Psychiatric Rating Scale) by a small dose of ketamine than subjects with a larger MMN. An analogous pattern of results was obtained with duration changes. In a recent study by Lavoie et al. (2007), a 6-week administration of N-acetyl-cysteine, a glutathione precursor that can potentiate the activity of the N-methyl-D-aspartate receptors, corrected MMN deficiency for tone-frequency change in patients with schizophrenia, and there was also evidence for the improvement of the clinical condition (Berk et al., 2006) (for further supportive evidence, see Coyle, 2006 and Schwieler et al. (2008)). Importantly, this MMN recovery preceded clinical improvement and can thus serve as its predictor (Javitt, 2008, 2009). Horton et al. (2010) found that clozapine increased the MMN amplitude for tone-frequency changes, with increasing doses being associated with increasing frequency-MMN amplitudes (but with decreasing duration-MMN amplitudes).

In contrast, cognitive performance is adversely affected by alcohol, which also attenuated the MMN amplitude for tone-frequency change (Jääskeläinen et al., 1996). Consistent with this, Pang and Fowler (1999) found that inhaling nitrous oxide (N2O) attenuated the MMN amplitude for tone-frequency change, which even in sub-anaesthetic doses produces amnesia and also has other adverse effects on cognition (Fowler et al., 1985). Nakagome et al. (1998) found MMN-amplitude reduction for tone-frequency change on the morning following nocturnal triazolam administration, a short-acting benzodiazepine hypnotic also affecting cognitive function (Clark et al., 1979). Serra et al. (1996) observed that the H1-receptor antagonist chlorpheniramine, known to impair cognitive performance (Nicholson et al., 1991), attenuated the MMN amplitude for frequency change of a tone.

In contrast, nicotine has well-known cognition-enhancing effects. Such effects have been found in aged rodents, both in healthy smokers and non-smokers (Martin et al., 2009), and in patients with schizophrenia (Inami et al., 2007). Transdermal administration of nicotine shortened the MMN peak latency (Inami et al., 2005) and oral administration of nicotine increased the MMN amplitude for interval duration (Martin et al., 2009) and tone duration deviation (Baldeweg et al., 2006) in normal healthy subjects. For consistent results with a consonant-vowel syllable change MMN, see Harkrider and Hendrick (2005). Also, the MMN for tone-frequency change was enhanced in amplitude and its peak latency shortened after the administration of the selective neuronal nicotinic receptor agonist AZD3480 in healthy volunteers (Dunbar et al., 2007). Furthermore, Fisher et al. (2010) found that nicotine enhanced the visual MMN amplitude for change of the length of a vertically oriented bar and increased the amplitude of the auditory MMN for frequency change of a tone in normal healthy subjects.

In addition, Inami et al. (2007) reported that nicotine shortened the MMN peak latency for tone-frequency change in healthy control subjects, but not in non-smoking patients with schizophrenia. The authors attributed the weak MMN response to nicotine administration in non-smoking patients to low nicotinic receptor function implicated in the dysregulation of the glutamatergic system in these patients. In contrast, in patients with Alzheimer’s disease, in whom nicotine has favourable effects on cognition, nicotine shortened the MMN peak latency and increased the MMN amplitude for tone-frequency change (Engeland et al., 2002).

Mismatch negativity–cognition relationship in normal healthy populations

Even in the normal healthy population, the MMN seems to index cognition. Dividing their subjects into high-ability and low-ability groups on the basis of a comprehensive psychometric assessment, Bazana and Stelmack (2002) found that the MMN peak latency for frequency change in a backward-masking paradigm was considerably longer in the low- than high-ability group. Moreover, the MMN peak latency exhibited a substantial factor loading on the general (g) factor of intelligence in the battery of ability tests used. Subsequently, these results were corroborated and extended by Beauchamp and Stelmack (2006). In a similar vein, larger amplitude MMNs for syllable change were recorded in children with higher than lower level of general intellectual functioning by Liu et al. (2007).

Corroborating results were also obtained by Light et al. (2007). Their MMN data pattern for tone-duration increment in healthy
control subjects paralleled that previously obtained in patients with schizophrenia (Light and Braff, 2005a, b) in both the strength of the MMN-cognition association and the frontopolar scalp distribution. This equivalence of associations across groups and studies is, according to the authors, striking, because these healthy, non-psychiatric subjects performed within the normal range on all of the functional and cognitive measures, yet exhibiting enough range to reveal robust associations among disparate measures (i.e. MMN, cognitive and functional). These data indicate that sensory-level CNS information processing (as reflected by the MMN to auditory change) in clinically healthy individuals is strongly associated with cognitive and real-world psychosocial functioning of these individuals (Light et al., 2007).

Concluding discussion

The present review has shown that MMN abnormality is closely associated with cognitive change and decline occurring in a number of different neurological and neuropsychiatric illnesses as well as in normal ageing. Consequently, deficient auditory discrimination, as indexed by MMN (magnetoencephalographic MMN) deficiency, provides a convenient metric of this cognitive decline. Furthermore, it might even have a role in the aetiology of these cognitive deficiencies; deficient auditory discrimination might form an obstacle in particular to the linguistic development of the individual, starting even from the earliest stages of speech development (Kraus et al., 1996; Benasich et al., 2006; van Leeuwen et al., 2006; for a review see Kujala, 2007). Importantly, this temporofrontal cortex functional deficiency might also index a more general functional deficiency, such as the deficient neurovascular status (e.g. N-methyl-D-aspartate-receptor function) of the brain that would not be confined to the neural mechanisms of auditory discrimination but rather involves the whole cortex (Breier et al., 1997; Kohlmetz et al., 2001), hence affecting cognitive performance more generally, in different kinds of cognitive tasks. A N-methyl-D-aspartate-receptor dysfunction can affect cognition in many different ways. It is, for instance, well-established that the adequate functioning of this receptor system plays a crucial role in the initiation of long-term memory and probably also in that of working memory (Javitt et al., 1996; Newcomer et al., 1998) and in plastic changes in the brain in general (Izquierdo, 1999; Santini et al., 2001; Gu et al., 2002; Siegel et al., 2003; Stephan et al., 2006; Heekeren et al., 2008; Izquierdo, 1999). We have reviewed evidence for the central role of the N-methyl-D-aspartate-receptor dysfunction in the brain pathology of schizophrenia and, in particular, in the cognitive deficit in these patients (Olney and Farber, 1995; Coyle, 2006). We have also reviewed converging evidence showing that the administration of a glutamatergic precursor that can potentiate the N-methyl-D-aspartate receptor activity alleviated the MMN deficiency in patients with schizophrenia and subsequently resulted in some clinical improvement in the state of patients (Lavoie et al., 2007). Moreover, the cognitive decline occurring in several other neurocognitive abnormalities might also be explained, at least in part, with the dysfunctional N-methyl-D-aspartate-receptor system. Alzheimer’s disease, stroke, traumatic brain injury, and even normal ageing are accompanied by widespread dysfunctions in the N-methyl-D-aspartate-receptor system of the brain (Izquierdo 1991; Dalkara et al., 1996; Biegon et al., 2004; Magnusson et al., 2010; McGeer and McGeer, 2010; see also Bickel et al., 2008). For example, middle cerebral artery occlusion in rat resulted in widespread decreases in N-methyl-D-aspartate-receptor density in brain regions extending far beyond the infarct area, even including regions contralateral to the lesion important to cognitive function (Dhawan et al., 2010). Dhawan et al. (2010) therefore concluded that a persistent and widespread loss of these receptors may contribute to cognitive and other neurological deficits in stroke patients, which cannot be localized to the side of infarction.

Furthermore, it is also possible that the favourable effects of music and speech stimulation on cognitive performance and the magnetoencephalographic MMN found by Särkämö et al. (2010) in stroke patients in the early post-stroke period were mediated by improved glutamatergic transmission, involving the N-methyl-D-aspartate-receptors. The authors suggested that glutamate may be a crucial neural factor linking auditory stimulation to changes in the magnetoencephalographic MMN, memory and stroke recovery.

Importantly, the association of the MMN with cognition is also supported by the fact that even the MMN generator itself is capable of performing complex cognitive processes (Nääätänne et al., 2001, 2010). A number of recent MMN studies indicate that in audition, surprisingly complex processes occur automatically and mainly in the sensory-specific cortical regions. These processes include, e.g. stimulus anticipation and extrapolation (Tervaniemi et al., 1994; Winkler et al., 2009a; Todd et al., 2010), sequential stimulus-rule extraction (Zachau et al., 2005; Bendixen et al., 2007, 2008, 2009; Grimm and Schröger, 2007; Paavilainen et al., 2007; Schröger et al., 2007; Bendixen and Schröger, 2008; Sculthorpe et al., 2009; Winkler et al., 2009), and pattern and pitch-interval encoding (Stefanics et al., 2009; Winkler, Haden et al., 2009). Furthermore, these complex perceptual-cognitive processes, first found in waking adults (Saarinen et al., 1992), occur similarly even in sleeping newborns (Carral et al., 2005; Winkler et al., 2009b), anaesthetized rats (Astikainen et al., 2006; Ruusuvirta et al., 2007), and deeply sedated adult humans (Heinke and Koelsch, 2005), suggesting that they form the common perceptual-cognitive core of cognitive processes shared by different species, ontological stages, and states of consciousness (Nääätänne et al., 2010). Consequently, these studies suggest that it might be possible to use the MMN in the objective assessment of cognitive abilities by recording it in paradigms targeting complex sensory-cognitive processes performed by sensory-specific-frontal cortical networks of the type reviewed above. This might complement the objective assessment of cognitive abilities already demonstrated by previously reviewed studies (Bazana and Stelmack, 2002; Beauchamp and Stelmack, 2006; Lin et al., 2007) recording the MMN for simple auditory changes.

Some other uses of the MMN and magnetoencephalographic MMN in clinical settings are the subjective determination of (i) auditory discrimination accuracy for any auditory attribute (including speech sounds); (ii) sensory-memory duration (a possible index of general brain plasticity (Nääätänne and Kreegipuu, 2010). This sensory-memory duration is gradually shortened in ageing
(Pekkonen et al., 1996; Cooper et al., 2006), chronic alcoholism (Polo et al., 1999; Grau et al., 2001), and in particular in Alzheimer’s disease (Pekkonen et al., 1994); (iii) auditory backward masking [abnormally strong in chronic alcoholism (Ahveninen et al., 1999) and dyslexia (Kujala et al., 2003)]; (iv) in addition, the MMN can be used in the monitoring of the patient’s state [e.g. in coma (Fischer et al., 1999), persistent vegetative state (Wijnen et al., 2007), schizophrenia (Umbricht and Krljes, 2005), post-stroke recovery (Ivonen et al., 2003; Säkämö et al., 2010)]; and (v) as a prognostic tool. For example, the MMN recorded in comatose patients strongly predicts the recovery of consciousness in the near future (Fischer et al., 2004, 2006a, b; Fischer and Luaute, 2005). The MMN recorded in patients in persistent vegetative state predicted the extent of cognitive recovery during the period of the next 2 years (Wijnen et al., 2007). In schizophrenia, the MMN predicts changes in the patient’s state (Umbricht et al., 2006; Kawakubo et al., 2007), and even drug-treatment efficacy (Schall et al., 1998; Lavoie et al., 2007; Javitt et al., 2008; Horton et al., 2011). Most remarkably, the duration MMN predicts psychosis onset within 2 years and even the remaining lag time to conversion (Bodatsch et al., 2011); and (vi) the MMN can also index genetic disposition to certain disorders such as schizophrenia (Jessen et al., 2011; Michie et al., 2002; Baker et al., 2005; Hall et al., 2007, 2009) and dyslexia (van der Leeuwen et al., 2006).

In summary, the present review has shown that (i) cognitive decline is a core element shared by a large number of different neurological and neuropsychiatric illnesses as well as normal ageing; (ii) this cognitive decline is indexed by auditory-frontal-cortex dysfunction manifested in the form of compromised auditory discrimination or abnormally short sensory–memory traces; (iii) this auditory dysfunction can be objectively measured by using the MMN and its magnetic equivalent magnetoencephalographic MMN; (iv) the abnormality of these responses does not, however, express only a deficient local function but rather serves as a convenient index of a more widespread disorder in the brain such as deficient N-methyl-D-aspartate-receptor function; (v) these responses can therefore also index cognition and its decrement in ageing and in different neurological and neuropsychiatric abnormalities (Table 1); (vi) this conclusion is further supported by studies showing that pharmacological manipulations enhancing cognition also enhance the MMN (magnetoencephalographic MMN) response and vice versa, and further, that (vii) the MMN-cognition relationship holds even in normal populations.

In more general terms, the present review, aimed at contributing to the ongoing discussion on the similarities and differences between the different neurological and neuropsychiatric illnesses and abnormalities (e.g. Reite et al., 2009; Hugdahl and Calhoun, 2010), indicates that cognitive decline in these disorders shows similarities in that it is associated with deficient low-level sensory processing. Irrespective of the very different aetiologies and symptomatologies, this deficiency is similarly reflected by a central auditory-system dysfunction, expressed by deficient neural

| Table 1 MMN deficit indexes cognitive decline in neuropsychiatric and neurological disorders |
|---------------------------------|---------------------------------|
| Neuropsychiatric disorders | Neurological and neurodegenerative diseases |
| Schizophrenia | Stroke |
| Chronic alcoholism | Aphasia |
| Neurological and neurodegenerative diseases |
Stroke	Velo-cardio-facial (DiGeorge) syndrome
Aphasia	Multiple sclerosis
Schizophrenia	Epilepsy
Chronic alcoholism	Dementia
Neurological and neurodegenerative diseases	
Stroke	Alzheimer’s disease
Aphasia	Intellectual disability
Schizophrenia	Down’s syndrome
Chronic alcoholism	Parkinson’s disease
Neurological and neurodegenerative diseases	
Stroke	Coma (MMN predicting cognitive recovery)
Aphasia	Persistent vegetative state (MMN predicting cognitive recovery)
Schizophrenia	Huntington’s disease (MMN and cognition are enhanced in parallel in the late, symptomatic stage of illness)
Chronic alcoholism	Other
Neurological and neurodegenerative diseases	
Stroke	Ageing
Aphasia	Sleep
Schizophrenia	Sleep deprivation
Chronic alcoholism	Rapid eye movement sleep deprivation
Neurological and neurodegenerative diseases	
Stroke	Acute alcohol intoxication
Aphasia	Other cognitive-reducing drugs (e.g. benzodiazepines, nitrous oxide, ketamine, chlorpheniramime)
Schizophrenia	Sedation and anaesthesia
Chronic alcoholism	Diabetes mellitus (advanced stage)
Neurological and neurodegenerative diseases	
Stroke	HIV

(Pekkonen et al., 1996; Cooper et al., 2006), chronic alcoholism (Polo et al., 1999; Grau et al., 2001), and in particular in Alzheimer’s disease (Pekkonen et al., 1994); (iii) auditory backward masking [abnormally strong in chronic alcoholism (Ahveninen et al., 1999) and dyslexia (Kujala et al., 2003)]; (iv) in addition, the MMN can be used in the monitoring of the patient’s state [e.g. in coma (Fischer et al., 1999), persistent vegetative state (Wijnen et al., 2007), schizophrenia (Umbricht and Krljes, 2005), post-stroke recovery (Ivonen et al., 2003; Säkämö et al., 2010)]; and (v) as a prognostic tool. For example, the MMN recorded in comatose patients strongly predicts the recovery of consciousness in the near future (Fischer et al., 2004, 2006a, b; Fischer and Luaute, 2005). The MMN recorded in patients in persistent vegetative state predicted the extent of cognitive recovery during the period of the next 2 years (Wijnen et al., 2007). In schizophrenia, the MMN predicts changes in the patient’s state (Umbricht et al., 2006; Kawakubo et al., 2007), and even drug-treatment efficacy (Schall et al., 1998; Lavoie et al., 2007; Javitt et al., 2008; Horton et al., 2011). Most remarkably, the duration MMN predicts psychosis onset within 2 years and even the remaining lag time to conversion (Bodatsch et al., 2011); and (vi) the MMN can also index genetic disposition to certain disorders such as schizophrenia (Jessen et al., 2011; Michie et al., 2002; Baker et al., 2005; Hall et al., 2007, 2009) and dyslexia (van der Leeuwen et al., 2006).
discrimination or shortened sensory-memory duration in audition indexed by MMN (magnetoencephalographic MMN) deficit. Future studies should therefore determine in detail the profiles of cognitive deterioration across the different types of cognitive performances separately for the different neuropsychiatric abnormalities. This would further clarify similarities of/differences between the different abnormalities and thus further confine the ‘common nucleus’ of cognitive decline shared by a large number of neuropsychiatric illnesses and abnormalities, as well as normal ageing.

Future studies should also determine whether the visual MMN is similarly useful as the auditory MMN in clinical research and settings (even though its reliable measurement in patients is much more demanding than that of the auditory MMN). It is possible that sensory-memory or context-related sensory processing (and its possible deficiencies) are quite similar across the different sensory modalities.

Reite et al. (2009) showed, as already mentioned, the presence of auditory-cortex structural and functional abnormalities in bipolar disorder and suggested that they might be due to altered neuronal migration patterns, genetic, epigenetic or both. According to the authors, recent findings in molecular cytogenetics concerning the role of altered DISC-1 proteins as they may impact neuronal migration might be considered in this regard. These proteins are involved in neuronal migration, synaptogenesis and glutamatergic, and GABAergic transmission (Bellon, 2007), and according to Reite et al. (2009), they appear to co-segregate with psychotic disorders as well as declined cognition, which supports a common pathophysiology contributing to a possible schizophrenia–schizoaffective disorder–bipolar continuum. Reite et al. (2009), however, concluded that magnetoencephalographic studies have not yet provided a neurophysiological measure of this common pathology. Fortunately, now it appears that this missing metric is provided by the MMN and its magnetoencephalographic equivalent, magnetoencephalographic MMN, an objective index of cognitive decline shared by a large number of different neurological and neuropsychiatric diseases and abnormalities, as well as by normal ageing.

Acknowledgements
We are grateful to Prof. Chris Frith for his constructive comments on a previous version of the present manuscript and to Prof. Lars-Göran Nilsson for his important advice at an early stage of this work. Finally, we wish to acknowledge Ms Piu Lehmus’ skillful and patient text-editing work.

Funding
R.N. and K.K. were supported by Grant no.8332 from the Estonian Science Foundation. T.K. was supported by Grant no. 128840, S.C. by National Centres of Excellence Program 2006–2011 and Grant no 214412, and R.N. by Grant no. 122745 from The Academy of Finland. T.B. was supported by Great Ormond Street Hospital Children’s Charity. C.E. was supported by Grants CSD2007-00012, EUJ2009-04806, PS12009-08063 of the Spanish Ministry of Science and Innovation, and SGR2009-11 from the Generalitat de Catalunya.

References
Atienza M, Cantero JL. Complex sound processing during human REM sleep by recovering information from long-term memory as revealed by the mismatch negativity (MMN). Brain Res 2001; 901: 151–60.

Light GA, Braff DL. Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Arch Gen Psychiat 2005a; 62: 127–36.

Light GA, Swerdlov NR, Braff DL. Preattentive sensory processing as indexed by the MMN and P3a brain responses is associated with...
Rinne T, Degerman A, Alho K. Superior temporal and inferior frontal
Rosburg T. Left hemispheric dipole locations of the neuromagnetic mis-
matter deficits, mismatch negativity, and outcomes in schizophrenia.
Raz A, Deouell LY, Bentin S. Is preattentive processing compromised by
prolonged wakefulness? Effects of total sleep deprivation on the mismatch
Reite M, Teale P, Rojas DC, Asherin R, Hernandez O. MEG auditory
evoked fields suggest altered structural/functional asymmetry in pri-
mary but not secondary auditory cortex in bipolar disorder. Bipolar
Restuccia D, Zanini S, Cazzagon M, Del Piero I, Martucci L, Della
Marca G. Somatosensory mismatch negativity in healthy children.
Rinne T, Alho K, Ilmoniemi RJ, Virtanen J, Näättänen R. Separate time
behaviors of the temporal and frontal mismatch negativity sources.
Rinne T, Degerman A, Alho K. Superior temporal and inferior frontal
Rinne T, Särkkä A, Degerman A, Schröger E, Alho K. Two separate mechanisms underlie auditory change detection and involuntary con-
Rosburg T. Left hemispheric dipole locations of the neuromagnetic mis-
match negativity to frequency, intensity and duration deviants. Cogn
Ruusuvirta T, Koirosso K, Wikgren J, Astikainen P. Processing of melodic
contours in urethane-anaesthetized rats. Eur J Neurosci 2007; 26:
701–3.
Salisbury DF, Kuroki N, Kasai K, Shenton M, McCarley RW. Progressive
and interrelated functional and structural evidence of post-onset brain
reduction in schizophrenia. Arch Gen Psychiat 2007; 64: 521–9.
Sallinen M, Kaartinen J, Lytinen H. Is the appearance of mismatch
negativity during stage 2 sleep related to the elicitation of K-complex?
Sallinen M, Kaartinen J, Lytinen H. Processing of auditory stimuli during
tonic and phasic periods of REM sleep as revealed by event-related
Santini E, Muller RU, Quirk CJ. Consolidation of extinction learning in-
Santos MAR, Munhoz MSL, Peixoto MAL, Haase VG, Rodrigues JL,
Särkämö T, Piha J, Laitinen S, Forsblom S, Soinila S, Mikkonen M,
et al. Music and speech listening enhance the recovery of early sensory
processing after stroke. J Cogn Neurosci 2010a; 22:
2716–29.
Särkämö T, Tervaniemi M, Soinila S, Autti T, Silvennoinen HM, Laine M,
Hietanen M. Cognitive deficits associated with acquired amusia after
47: 2642–51.
Särkämö T, Tervaniemi M, Soinila S, Autti T, Silvennoinen HM, Laine M,
et al. Auditory and cognitive deficits associated with acquired amusia
in stroke: a magnetoencephalography and neuropsychological
Schall U, Catts SV, Chaturvedi S, Liebert B, Redenbach J, Karayannis F,
Ward PB. The effect of clozapine therapy on frontal lobe dysfunction
in schizophrenia: neuropsychology and event-related potential meas-
Schall U, Johnston P, Todd J, Ward PB, Michie PT. Functional
neuroanatomy of auditory mismatch processing: an event-related
fMRI study of duration-deviant oddballs. Neuro Image 2003; 20:
729–36.
Schiff S, Valenti P, Andrea P, Lot M, Bisiacchi P, Gatta A, Amadio P. The
effect of aging on auditory components of event-related brain potentials.
Schreiber H, Stolz-Born G, Kornhuber H, Born J. Event-related potential
 correlates of impaired selective attention in children at high risk for
Schroeder MM, Handelsman L, Torres L, Dorfman D, Rinaldi P,
Jacobsen J, et al. Early and late cognitive event-related potentials
mark stages of HIV-infection in the drug-user risk group. Biol
Schroeder MM, Ritter W, Vaughan HG Jr. The mismatch negativity to
novel stimuli reflects cognitive decline. Ann NY Acad Sci 1995; 769:
399–401.
Schröger E, Bendixen A, Trujillo–Barreto NJ, Roebber U. Processing of
Clozapine interacts with the glycine site of the NMDA receptor;
Electrophysiological studies of dopamine neurons in the rat ventral
Sculthorpe LD, Ouellet DR, Campbell KB. MNN elicitation during natural
sleep to violations of an auditory pattern. Brain Res 2009; 1290:
52–62.
Serra JM, Escera C, Sanchez-Turet M, Sanchez-Sastre J, Grau C. The
H1-receptor antagonist chlorpheniramine decreases the ending phase
of the mismatch negativity of the human auditory event-related po-
Shelley AM, Ward PB, Catts SV, Michie PT, Andrews S, McConaghy N.
Mismatch negativity: an index of a preattentive processing deficit in
Shenton ME, Wible CG, McCarley RW. A review of magnetic resonance
imaging studies of brain abnormalities in schizophrenia. In: Krishnan KRR, Doraiswamy PM, editors. Brain Imag Clin Psychiat.
Pre-attentive auditory processing in ultra-high-risk for schizophrenia
Effects of strain, novelty, and NMDA blockade on auditory-evoked
Spackman LA, Towell A, Boyd SG. Somatosensory discrimination: an
intracranial event-related potential study of children with refractory
epilepsy. Brain Res 2010; 1310: 68–76.
Staden U, Isaacks E, Boyd SG, Brundell N, Neville BG. Language dysfunc-
tion in children with rolandic epilepsy. Neuropediatrics 1996; 29:
242–8.
infants process pitch intervals. Clin Neurophysiology 2009; 120:
304–8.
Stephan K E, Baldeweg T, Friston K J. Synaptic plasticity and disconnec-
Sutton S, Braren M, Zabin J, John ER. Evoked-potential correlates of
Takel Y, Kumanosaki S, Maki Y, Hattori S, Kawakubo Y, Kasai K, Fukuda M,
Mikuni M. Preattentive dysfunction in bipolar disorder: a MEG study
using mismatch negativity. Prog Neuro-Psychophiology 2010; 34:
903–12.
Tales A, Butler S. Visual mismatch negativity highlights abnormal preat-
tentive visual processing in Alzheimer’s disease. NeuroReport 2006;
17: 887–90.

