
Supplementary material for ”Circular inference in schizophrenia”

Renaud Jardri, Sophie Deneve

This supplementary material provides the mathematical derivations for the equations in the main
text.

1 The belief propagation (or sum-product) algorithm

The BP algorithm is considered here in its most general form. Less mathematically-minded readers
could skip this part and go directly to the next sections, where we present a simpler version of BP
only for pairwise graphs.

All hierarchical causal networks can be expressed as a ”factor graph”. Supplementary figure S1
illustrates how different types of causal models can be translated into factor graphs. A factor graph
contains two types of nodes: variable nodes represented by lower case indices, i, j and factor nodes
represented by upper case indices I, J , with edges between the variable nodes and the factor nodes
in which they appear. As its name indicates, such graphical model represents the factorization of a
joint probability distribution of several variables (represented here by a vector x) into a product of
smaller factors:

p(x) =
∏
I

fI(xNI
) (1)

where xNI
is the subset of variables belonging to the Ith factor. Whenever a variable i belongs

to NI , there is an undirected edge between variable node i and factor node I. Nodes and edges form
a bi-partite graph representing the relation of conditional independence between the variables (see
examples shown in fig S1).

The BP algorithm works by passing messages along the edges between the nodes. There are
two types of messages: Messages going from variables to nodes and messages going from nodes to
variables. Thus, µj→I(xj) is the message sent from variable node j to factor node I. µI→i(xi) is the
message sent from factor node I to variable node i.

The sum-product algorithm computes the new messages µ′s recurrently as follow:

µ′j→I(xj) =
∏

J∈Nj\{I}

µJ→j(xj) (2)

µ′I→i(xi) =
∑

xNI\{i}

fI(xNI
)
∏

j∈NI\{i}

µj→I . (3)

where Nj is the set of neighboring (factor) nodes to j. If NI \ {i} is empty, then µI→i(xi) is set
to the uniform distribution.

The belief associated with variable node i is the product of all messages converging to it, normal-
ized to sum to one:

1

bi(xi) =
1

Z

∏
I∈Ni

µI→i(xi) (4)

Where Z represent a normalization term (independent of xi) which we will largely ignore here.
By abuse of notation, we will call all normalizing terms ”Z”.

Evidence about any particular variable i in the graph (e.g. priors or likelihoods) can be entered in
the form of a constant message sent from a factor node only connected to i. In factor graphs without
loops, the algorithm converges to the posterior probabilities of the variables given the entered evidence,
as long as messages circulated at least once in each direction in each link.

In the paper, we draw an analogy with neural processing in recurrent, hierarchical networks.
To do so, it is useful to see these equations in a different form. Thus, we define log-messages as
MI→i(xi) = log(µI→i(xi)) and log-beliefs as Bi(xi) = log(bi(xi)) + log(Z). Beliefs can then be simply
obtained by exponentiating Bi(xi) and normalizing to sum to 1. The update equations can be written
as:

Bi(xi) =
∑
I∈Ni

MI→i (5)

M ′I→i(xi) = log

 ∑
xNI\{i}

fI(xNI
)
∏

j∈NI\{i}

exp (Bj(xj)−MI→j)

 . (6)

Which we can rewrite in terms of ”interaction functions” WIi() between factor I and variable i
as follow:

Bi(xi) =
∑
I∈Ni

MI→i (7)

M ′I→i(xi) = WIi ([Bj(xj)−MI→j]j∈NI
) . (8)

Thus, the message sent from I to i is computed from the beliefs of all nodes j connected to I
corrected by the messages previously sent from I to j. In practise, this equation can run into numerical
problems very quickly (i.e. log messages and beliefs become too negative for exponentiation). See
later sections for how we solved this issue.

Proposing a specific neural implementation for the generic belief propagation algorithm goes be-
yond the scope of this paper. However, we wanted to point out here that regardless of implementation
details, corrections by previous messages (and thus ”inhibitory loops”) are required to map BP equa-
tions on a recurrent neural network.

2 BP in pairwise graphs

For the sake of simplicity, we now limit ourselves to pairwise graphs, i.e. to probability distributions
that factorizes into functions of single and pairs of variables:

p(x) =
∏
I

fij(xi, xj)g(xi) (9)

2

In particular, any causal tree (as used in the paper) can be factorized this way.
In that case, we can dispense of the ”factor node” completely. Indeed, consider a factor I connect-

ing variable i and j (in a pairwise graph, a factor node can at most be connected to two variables).
Then, MI→i and Mi→I can we rewritten as Mji and Mji (see fig S1B,C). The BP equations simplify
to:

Bi(xi) =
∑
j∈Ni

Mji(xi) (10)

M ′ji(xi) = Wji (Bj(xj)−Mij(xj)) . (11)

with

Wji(Bj(xj)) = log

(∑
xi

fij(xi, xj) exp (Bj(xj))

)
(12)

As long as the order of updates is chosen properly, the BP algorithm does exact inference. In a
tree-like graph, for example, this can be done by starting from the leaves (the sensory observation),
climbing to the root (the higher level variables) and then descending back to the leaves. Only one pass
of these updates equations (analogous to one pass of feed-forward processing followed by one pass of
feedback processing) are sufficient. However, the algorithm also converges to the correct beliefs when
update is synchronous (as in our simulations) or asynchronous and occurring in random order.

Since the variables in our examples are binary, we used log belief ratio rather than log beliefs, i.e.
beliefs were represented by a single value Bi = log(bi(1)bi(0)

) rather than two values Bi(1) = log(bi(1)) and

Bi(0) = log(bi(0)). This we can do because bi(1)+ bi(0) = 1, and thus Bi = log(bi(1)
1−bi(1)). Similarly we

used a single message value Mij = log(
Mij(1)
Mij(0)

). This change in variable gets rid of the normalization

term, and thus of the numerical problem mentioned above. The resulting equations are provided in
the main text.

3 Learning the causal links

To learn the causal relationships p1ij and p0ij , we used the EM algorithm, which (if the BP algorithm
is exact) converges to the maximum-likelihood estimates (i.e. the parameters of the causal models
maximizing the likelihood of the training examples). As its name indicates, this algorithm alternates
two stages until convergence: An expectation stage, which finds the expected values of the hidden
variables (i.e. the beliefs) given the current parameter estimates and the training examples; and
a maximization stage, which updates the parameters to maximize the likelihood of the training
examples given these expected values of the hidden states. To model the progressive learning of
causal relationships based on training sequences, we used an on-line version of the EM algorithm,
where the parameters p1ij and p0ij were re-estimated after each block of 50 new trials.

Let us consider two variables, xi and xj , where i presumably cause j (i.e. i is above j). We note
Et

i all the top-down evidence (i.e. excluding information from xj) received by xi in training trial t,
and Et

j all the bottom-up evidence (i.e. excluding information from xi) received by xj in training trial
t. The expectation stage consists in computing the expected values for xti given Et

i in trial t, and the
expected values for xtj given Et

j in trial t, for the current sets of parameters pkij . These can be obtained
by running the BP (or LBP) algorithm and computing x̂ti = h(Bi−αdMij) and x̂tj = h(Bj −αcMji),

3

where Bi and Mij correspond to the final messages and beliefs after completion of the algorithm
(convergence for BP, 10 iterations for LBP). h is the logistic function h(x) = (1 + e−x)−1. The
expected value for all combinations of states are given by

at11 =
x̂tip

1
ij x̂

t
j

Zt
(13)

at10 =
x̂ti(1− p1ij)(1− x̂tj)

Zt
(14)

at01 =
(1− x̂ti)p0ij x̂tj

Zt
(15)

at00 =
(1− x̂ti)(1− p0ij)(1− x̂tj)

Zt
. (16)

where Zt is a normalization term such that
∑

kl a
t
kl = 1.

Once every 50 trials, the parameters p1ij and p0ij were replaced by their new updated value:

p1∗ij =

∑
t<T a

t
11∑

t<T a
t
11 + at10

(17)

p0∗ij =

∑
t<T a

t
01∑

t<T a
t
01 + at00

(18)

with
∑

t<T representing the sum over all past training examples. The EM algorithm is often the
”gold-standard” in machine learning (when inference is tractable). However, the multiple forms of
normalization required are not biologically plausible. We also tested a more plausible algorithm where
the parameters are updated by stochastic gradient descent. The modified learning rule becomes:

p1∗ij =

∑
t<T x̃

t
ix̃

t
j∑

t<T x̃
t
i

(19)

p0∗ij =

∑
t<T (1− x̃ti)x̃tj∑
t<T (1− x̃ti)

(20)

with x̃i = H(Bi − αdMij) and x̃j = H(Bj − αcMji). H is the heavyside function, i.e. H(x) = 0
in x < 0 and H(x) = 1 otherwise. This rule is analogous to a Hebbian learning rule. Results, shown
on supplementary figure S3, are qualitatively similar to those reported in the main paper.

The training examples used for learning p123 and p023 in figure 3 and supplementary figure 3
were generated as follow. First the state xt1 (the state of the ”forest” node) was sampled from a
binomial distribution with p = 0.5. Next, the state of the ”tree” node xt2 was sampled from a
binomial distribution with probability p1true12 xt1 + p0true12 (1 − xt1). Next, the state of the ”leaf” node
x3 was sampled from a binomial distribution with probability p1true23 xt2 + p0true23 (1 − xt2). Finally, the
state of the ”green” node xt5 was sampled with probability p1true35 xt3 + p0true35 (1 − xt3). To compute
beliefs, the BP and LBP algorithm were run while clamping message M t

1 = 100x1t − 100(1− x1t) and
M t

5 = 100x5t−100(1−x5t). This corresponds to assuming that ”green” and ”forest” are unambiguously
observed (i.e. their beliefs are (almost) [0,1] or [1,0], corresponding to a perfect certainty that the
corresponding variables are 1 or 0).

4

