Inflammatory processes are important in the pathogenesis of Alzheimer’s disease and in response to amyloid-β immunotherapy. We investigated the expression of multiple inflammatory markers in the brains of 28 non-immunized patients with Alzheimer’s disease and 11 patients with Alzheimer’s disease immunized against amyloid-β42 (AN1792): microglial ionized calcium-binding adaptor Iba-1, lysosome marker CD68, macrophage scavenger receptor A, Fcγ receptors I (CD64) and II (CD32); and also immunoglobulin IgG, complement C1q and the T lymphocyte marker CD3 using immunohistochemistry. The data were analysed with regard to amyloid-β and phospho-tau pathology, severity of cerebral amyloid angiopathy and cortical microhaemorrhages. In non-immunized Alzheimer’s disease cases, amyloid-β42 correlated inversely with CD32 and Iba-1, whereas phospho-tau correlated directly with all microglial markers, IgG, C1q and the number of T cells. In immunized Alzheimer’s disease cases, amyloid-β42 load correlated directly with macrophage scavenger receptor A-positive clusters and inversely with C1q. The severity of cerebral amyloid angiopathy and microhaemorrhages did not relate to any of the analysed markers. Overall, the levels of CD68, macrophage scavenger receptor A, CD64, CD32 and the number of macrophage scavenger receptor A-positive plaque-related clusters were significantly lower in immunized than non-immunized cases, although there was no significant difference in Iba-1 load, number of Iba-1-positive cells, IgG load, C1q load or number of T cells. Our findings indicate that different microglial populations co-exist in the Alzheimer’s disease brain, and that the local inflammatory status within the grey matter is importantly linked with tau pathology. After amyloid-β immunization, the microglial functional state is altered in association with reduced amyloid-β and tau pathology. The results suggest that, in the long term, amyloid-β immunotherapy results in downregulation of microglial activation and potentially reduces the inflammation-mediated component of the neurodegeneration of Alzheimer’s disease.

Keywords: Alzheimer’s disease; microglia; immunotherapy; innate immunity; clinical trial

Abbreviation: MSR-A = macrophage scavenger receptor

© The Author (2013). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
Introduction

Alzheimer’s disease accounts for >60% of all dementia cases (Albanese et al., 2007). The disease is characterized by the presence of cortical extracellular plaques of amyloid-β protein and intraneuronal phospho-tau protein aggregates (Lowe et al., 2008). Both amyloid-β and tau have been hypothesized as initiators of the tissue damage in Alzheimer’s disease (Gray et al., 1987; Hardy and Higgins, 1992). Neuroinflammation, manifested by activation of microglia, is an important component of Alzheimer’s disease pathology with evidence to suggest that it is both a reaction to the disease process and a contributor to the neuronal damage (Akiyama et al., 2000; Perry et al., 2010; Zotova et al., 2010). Recent genetic studies provide further evidence that inflammatory processes are important in the pathogenesis of Alzheimer’s disease (Harold et al., 2009; Lambert et al., 2009; Guerreiro et al., 2013; Jonsson et al., 2013).

Microglial cells play a key role in the innate immune system response within the CNS. In Alzheimer’s disease, microglia have been implicated in the generation of chronic low-grade neurotoxic inflammation around amyloid-β plaques, while being unable to clear them effectively (McGeer et al., 1987; Rogers et al., 1988; Griffin et al., 1989; Rozemuller et al., 1989; Mattiace et al., 1990; Paresce et al., 1997; Overmyer et al., 1999). In vivo imaging of microglia (by use of PK11195-PET) and fibrillar amyloid (Pittsburgh compound B-PET) show higher levels of both markers in the cortex in patients with Alzheimer’s disease compared with non-demented control subjects (Cagnin et al., 2001; Edison et al., 2007, 2008). Increasing microglial activation correlates with progression of cognitive decline without further changes in the amyloid load (Edison et al., 2008). Although the exact functional state of the microglia is not clear from these studies, they support a role for persistent neuroinflammation in disease progression.

Based on the amyloid cascade hypothesis, suggesting that amyloid-β accumulation is the trigger for Alzheimer’s disease pathogenesis (Hardy and Higgins, 1992), active immunization against amyloid-β42 peptide was proposed as a treatment. This approach was shown to result in the removal of amyloid plaques from the brains of human amyloid-β precursor protein (APP) transgenic mice (Schenk et al., 1999; Bard et al., 2000; Janus et al., 2000; Morgan et al., 2000), and the plaque clearance was associated with behavioural improvements (Janus et al., 2000; Morgan et al., 2000; Dodart et al., 2002). Microglial activity was implicated in this effect (Bard et al., 2000; Wilcock et al., 2001, 2003, 2004a, b). In the active amyloid-β42 immunization clinical trial that followed (Elan Pharmaceuticals, AN1792), most aspects of cognitive change did not differ significantly between immunized patients and control subjects (Hock et al., 2003; Bayer et al., 2005; Gilman et al., 2005), with longer term clinical follow-up revealing continuing cognitive decline despite removal of plaques (Holmes et al., 2008). In addition, the development of side-effects including ‘meningoencephalitis’ with infiltration by T lymphocytes, and ‘amyloid-related imaging abnormalities’, associated with cerebral amyloid angiopathy and cortical microhaemorrhages in a proportion of patients with Alzheimer’s disease immunized against amyloid-β has been problematic (Nicol et al., 2003; Orgogozo et al., 2003; Boche et al., 2008; Sperling et al., 2011). In this study, we explored in detail the inflammatory processes in the brain in Alzheimer’s disease and compared the results with those in patients with Alzheimer’s disease following active amyloid-β42 immunization (Elan Pharmaceuticals, AN1792). We assessed the microglial load by quantifying immunostaining for ionized calcium-binding adaptor molecule 1 (Iba-1), which has been reported to be an effective marker of both resting and activated microglia (Imai et al., 1996; Ahmed et al., 2007; Streit et al., 2009). In an attempt to define not only their activation level but also their functional status, we have investigated the expression of macrophage scavenger receptor-A (MSR-A) involved in microglial endocytosis of extracellular material, including fibrillar amyloid-β (El Khoury et al., 1996; Chung et al., 2001), the microglial lysosomal protein CD68 as an indicator of phagocytic activity (Rabinowitz and Gordon, 1989, 1991; Zotova et al., 2011), and the microglial cell surface receptors that bind IgG and immune complexes (Fcγ receptors I and II) (Ravetch and Bolland, 2001; Nimmerjahn and Ravetch, 2006). The level of C1q was assessed to investigate the role of the complement system in relation to Alzheimer’s disease pathology, microglial activation, and immunization status (Eikelenboom and Veerhuis, 1996). As we previously found that anti-amyloid-β IgG persisted in the blood of immunized patients with Alzheimer’s disease for many years (Holmes et al., 2008), we also investigated whether there were changes in the overall amount of IgG antibody in the brain. T lymphocytes were previously identified in some immunized patients with Alzheimer’s disease (Nicol et al., 2003; Orgogozo et al., 2003; Ferrer et al., 2004) and were also analysed. We explored the relationships of these inflammatory markers to amyloid-β and phospho-tau load, the severity of cerebral amyloid angiopathy and cortical microhaemorrhages.

Materials and methods

Immunized Alzheimer’s disease cases

We performed a follow-up study of patients who were enrolled in the Phase I Elan Pharmaceuticals Inc. active amyloid-β42 immunization (AN1792) clinical trial for Alzheimer’s disease (Bayer et al., 2005; Holmes et al., 2008). As part of the study, participants were invited to consent to post-mortem neuropathology. The study received ethical approval from Southampton and South West Hampshire Local Research Ethics Committees (Reference No: LRC 075/03/w). In the study reported here, we investigated brain tissue from 11 patients who took part in the clinical trial and had confirmation of the diagnosis of Alzheimer’s disease by post-mortem neuropathology (Table 1). Neurodegenerative pathology was assessed by standard methods including analysis of paraffin sections stained with haematoxylin and eosin, Luxol fast blue/Cresyl violet, and modified Bielschowsky silver impregnation, and immunostained for amyloid-β, tau, α-synuclein and TAR-DNA binding protein 43 (TDP43). All immunized Alzheimer’s disease cases were Braak stage V/VI, indicating an advanced stage of Alzheimer’s tau pathology (Table 1). Two of the 11 cases had concomitant Lewy body pathology (one neocortical and nigral, one nigral only). No TDP43 inclusions and no argyrophilic grains were identified. In terms of cerebrovascular disease, none had macroscopic infarcts; one had an old frontal cortical haemorrhage (2-cm diameter);
all had varying degrees of arteriolosclerosis, most marked in the cerebral white matter where it was moderate or severe.

Non-immunized Alzheimer’s disease controls

Post-mortem material from sufficient numbers of placebo patients in the immunotherapy trial was not available, therefore paraffin sections from 28 cases with Alzheimer’s disease from the South-West Dementia Brain Bank (Frenchay Hospital, Bristol, UK) were used as non-immunized controls (Table 1) (Research ethics committee reference: 08/H0106/28). All control Alzheimer’s disease cases had a clinical diagnosis of dementia made during life by an experienced clinician, a Mini-Mental State Examination score of <17 before death and satisfied post-mortem neuropathological Consensus Criteria for Alzheimer’s disease (Hyman and Trojanowski, 1997). The immunized and control Alzheimer’s disease cases were matched as closely as possible for age, gender, duration of dementia and APOE genotype.

The most common causes of death cited from all listed causes, in addition to dementia, were bronchopneumonia (immunized Alzheimer’s disease, 27%; non-immunized controls, 46%), myocardial infarction (immunized Alzheimer’s disease, 9%; non-immunized controls 7%) and cerebrovascular accident (non-immunized controls, 7%). Other causes of death included: immunized Alzheimer’s disease—a ruptured aortic aneurysm, pulmonary embolism; non-immunized controls—pyelonephritis, sigmoid volvulus. One immunized Alzheimer’s disease case and six non-immunized control cases have unknown cause of death.

Immunohistochemistry

For the purposes of this study, the following regions of cerebral cortex usually markedly affected by the Alzheimer’s disease process were used: superior and middle temporal gyrus, medial frontal gyrus and inferior parietal lobule. Four micrometre-thick sections of formalin-fixed paraffin-embedded tissue from these areas were used for immunohistochemistry.

Primary antibodies

Sections were immunostained with the following antibodies: mouse anti-human specific for amyloid-β42 (clone 21F12) provided by Elan Pharmaceuticals Inc. (Johnson-Wood et al., 1997); mouse anti-human phospho-tau (clone AT8, Autogen Bioclear); mouse anti-human CD68 (Dako); goat anti-human CD64 (Fcγ receptor I), goat anti-human CD32 (Fcγ receptor II), goat anti-human MSR-A (all from R&D Systems); rabbit anti-human Iba-1 (Wako Laboratories); rabbit anti-human IgG (Dako); rabbit anti-human C1q (Dako); mouse anti-human CD3 (Abcam). Table 2 specifies the functions associated with each of the microglial markers.

Immunohistochemistry

Sections from immunized Alzheimer’s disease and non-immunized control cases were immunostained together in batches for each antibody to ensure comparability of labelling. Immunohistochemistry was performed using the appropriate antigen retrieval methods for each primary antibody. Biotinylated secondary antibodies (rabbit anti-mouse, swine anti-rabbit, and rabbit anti-goat) were from Dako, normal serum and avidin–biotin complex were from Vector Laboratories. Bound antibody was visualized using the avidin–biotin-peroxidase complex method (Vectastain Elite ABC) with 3,3’ diaminobenzidine as chromogen and 0.05% hydrogen peroxide as substrate to produce a brown reaction product. All sections were dehydrated before mounting in DePeX (BDH Laboratory Supplies). Sections incubated in the absence of the primary antibody were included as negative controls.

Quantification

All quantification was performed blind to the experimental group and identity of the cases. Images of the slides were taken from the same anatomical regions in every case. For a given antibody, a minimum of 20 fields of cortical grey matter at magnification ×10 (for amyloid-β42, CD64, CD32, Iba-1, MSR-A, and IgG) or 30 fields of cortical grey matter at magnification ×20 (for AT8 and CD68) that covered a similar area, were analysed to ensure representative detection of immunostaining for image analysis. Images were acquired in a
lesions in the three brain areas was used for the subsequent analyses.

were previously described (Boche et al., 2010). The data set for this study was augmented by one extra immunized case and re-analysed using the same image analysis method as for the microglial markers.

Table 2 Details of microglial markers used

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Associated function or marker of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iba-1 (ionized calcium-binding adaptor molecule 1)</td>
<td>Resting and activated microglia/macrophages, upregulated during activation (Imai et al., 1996; Ahmed et al., 2007; Streit et al., 2009)</td>
</tr>
<tr>
<td>CD64 (Fcy RI)</td>
<td>High affinity receptor for human IgG, main role in mounting an immune response (Ravetch and Bolland, 2001; Nimmerjahn and Ravetch, 2006)</td>
</tr>
<tr>
<td>CD32 (Fcy RI)</td>
<td>Low affinity receptor for human IgG, phagocytosis of immune complexes (Ravetch and Bolland, 2001; Nimmerjahn and Ravetch, 2006)</td>
</tr>
<tr>
<td>MSR-A</td>
<td>Lipoprotein receptor involved in direct ligand recognition, including that of amyloid-β (El Khoury et al., 1996)</td>
</tr>
<tr>
<td>CD68</td>
<td>Activated/phagocytic macrophages/microglia (Rabinowitz and Gordon, 1989, 1991; Zotova et al., 2011)</td>
</tr>
</tbody>
</table>

Results

Microglial markers

Iba-1

Immunostaining with Iba-1, which has been reported to label all microglia, active and resting (Streit et al., 2009), revealed microglial cells with both ramified and amoeboid morphology (Fig. 1A and B), although most cells displayed ramified morphology regardless of the Alzheimer’s disease group (non-immunized controls or immunized Alzheimer’s disease patients). Quantification showed no significant difference in the Iba-1 load between the immunized Alzheimer’s disease and non-immunized control cases, although there was a trend towards less Iba-1 in the immunized group (Fig. 1C). Similarly, the total number of Iba-1-positive microglial cells in 90 fields was not significantly different between immunized Alzheimer’s disease and non-immunized control groups (Fig. 1D).

Macrophage scavenger receptor A

Immunostaining for MSR-A demonstrated microglia, including their processes, in a pattern consistent with cell surface membrane expression of this receptor (Fig. 2A and B). A striking feature, not observed so markedly with the other microglial antibodies, was clustering of labelled cells, often associated with amyloid plaques, which prompted us to undertake manual counting of clusters in addition to the quantification of the total antigen load. The total...
MSR-A load was significantly lower in the immunized Alzheimer’s disease (0.01%) than the non-immunized control group (0.10%, \(P < 0.001 \), Fig. 2C). Similarly, the sum number of MSR-A-positive clusters was also significantly lower (immunized Alzheimer’s disease = 22 compared with non-immunized controls = 70, \(P < 0.001 \), Fig. 2D).

Fcγ receptor I (CD64)

Antibody to CD64 strongly labelled microglial cells, including their processes, consistent with the expected pattern for a cell surface membrane receptor (Fig. 3A and B). The CD64 load was significantly lower in the immunized Alzheimer’s disease (0.36%) than the non-immunized control group (0.82%, \(P = 0.001 \), Fig. 3C). The CD64 load was several-fold higher than any of the other microglial antigens. In both immunized and non-immunized Alzheimer’s disease cases the CD64 load was \(\sim 10 \) times that obtained for Iba-1, which has been reported to be expressed by all microglia.

Fcγ receptor II (CD32)

Immunostaining for CD32 demonstrated microglial cells, although the cell processes were less strongly defined than with CD64 antibody (Fig. 3D and E). The CD32 load was also significantly lower in the immunized Alzheimer’s disease (0.02%) than the non-immunized control group (0.04%, \(P = 0.002 \), Fig. 3F).

CD68

CD68 was distributed in an intracytoplasmic dot-like pattern consistent with the labelling of lysosomes within microglia, as previously shown (Zotova et al., 2011) (Fig. 3G and H). The CD68 load was lower in the immunized (0.02%) than the non-immunized group (0.05%, \(P = 0.018 \), Fig. 3I).

Amyloid-β\(_{42}\) and phospho-tau load

As previously described (Boche et al., 2010), the amyloid-β\(_{42}\) load was 82% lower in the immunized (0.72%) than the non-immunized Alzheimer’s disease cases (4.06%; \(P < 0.001 \), Fig. 4), reflecting the removal of amyloid-β as a consequence of amyloid-β immunization. The phospho-tau load was 40% lower in the immunized (0.46%) than the non-immunized group (0.77%, \(P = 0.034 \), Fig. 4), reflecting a reduction of phospho-tau mainly in neuronal processes (Boche et al., 2010).

Correlations between microglial markers and amyloid-β\(_{42}\) and phospho-tau pathology

Correlations between the microglial antigen load and amyloid-β\(_{42}\) and phospho-tau load were examined in the non-immunized control and immunized Alzheimer’s disease groups (Tables 3 and 4).
Correlations with amyloid-β42
Inverse correlations were observed between the amyloid-β42 load and two microglial markers in the non-immunized control group: Iba-1, both the load (Spearman’s \(r = -0.6, P = 0.001 \), Fig. 5A) and the number of cells (Spearman’s \(r = -0.4, P = 0.026 \), Fig. 5B), and the CD32 load (Fcγ receptor II, Spearman’s \(r = -0.6, P < 0.001 \), Fig. 5C). Within the immunized Alzheimer’s disease group, a positive correlation was noted between the amyloid-β42 load and the number of MSR-A-positive clusters (Spearman’s \(r = 0.7, P = 0.024 \), Fig. 5D). No other correlations between microglial markers and amyloid-β42 load were observed within the immunized Alzheimer’s disease and non-immunized control groups (Tables 3 and 4).

Correlations with tau
Correlations were observed between the phospho-tau load and all of the microglial markers in the non-immunized control group (Fig. 6 and Table 3): Iba-1 load (Spearman’s \(r = 0.4, P = 0.046 \), Fig. 6A), Fcγ receptor II load (Spearman’s \(r = 0.4, P = 0.032 \), Fig. 6B), MSR-A load (Spearman’s \(r = 0.4, P = 0.045 \), Fig. 6C), Fcγ receptor I load (Spearman’s \(r = 0.5, P = 0.010 \), Fig. 6D), and CD68 load (Spearman’s \(r = 0.4, P = 0.036 \), Fig. 6E). No correlations between microglial markers and phospho-tau load were observed within the immunized group (Table 4). The number of Iba-1-positive cells and MSR-A-positive clusters did not correlate with the phospho-tau load in either of the Alzheimer’s disease groups (Tables 3 and 4).

Immunoglobulin G
Human IgG was detected in amyloid-β plaques, on microglia surrounding plaques, and within neurons (often adjacent to plaques), in both immunized Alzheimer’s disease and non-immunized control cases (Fig. 7A–F). It should be noted, however, that extensive areas of cortex did not contain immunodetectable IgG, even where abundant plaques were present. Some cortical and meningeal blood vessels immunopositive for IgG were also noted, particularly those with amyloid-β in their walls (i.e. with cerebral amyloid angiopathy; Fig. 7D and E). Quantification of the IgG load showed no significant difference between the immunized Alzheimer’s disease and non-immunized control groups (Fig. 7G). A correlation between the IgG load and the phospho-tau load was noted within the non-immunized controls (Spearman’s \(r = 0.4, P = 0.030 \), Fig. 7H, Table 3), but not the immunized Alzheimer’s disease group (Table 4). In addition, within the non-immunized control group the IgG load correlated with the load of all microglial antigens examined (Table 3): Iba-1 (Spearman’s \(r = 0.4, P = 0.036 \), Fig. 8A), Fcγ receptor II (CD32) load (Spearman’s...
$\rho = 0.5$, $P = 0.003$, Fig. 8B), MSR-A load (Spearman’s $\rho = 0.6$, $P = 0.001$, Fig. 8C), FCy receptor I (CD64) load (Spearman’s $\rho = 0.7$, $P < 0.001$, Fig. 8D), and CD68 load (Spearman’s $\rho = 0.7$, $P = 0.001$, Fig. 8E). Within the immunized Alzheimer’s disease group, similar trends between the IgG load and microglial markers MSR-A, CD32, and CD64 were observed, but not with Iba-1 or CD68 (Table 4). No correlation was observed between the IgG load and the amyloid-β_42 load in either of the Alzheimer’s disease groups (Tables 3 and 4).

Complement C1q

Antibody to the complement element C1q labelled neurons, amyloid plaques, glia, and occasional blood vessels (Fig. 9A–D), similarly to anti-IgG antibody. Quantification of C1q also showed no difference between the immunized Alzheimer’s disease and non-immunized control groups (Fig. 9E). Within the non-immunized control group, the C1q load correlated only with the phospho-tau load (Spearman’s $\rho = 0.6$, $P = 0.003$, Fig. 9F and Table 3), whereas in the immunized group, only an inverse correlation between the C1q load and the amyloid-β_2 load was noted (Spearman’s $\rho = -0.6$, $P = 0.047$, Fig. 9G and Table 4). As for IgG, the C1q load correlated with the load of all microglial antigens examined within the non-immunized control group (Table 3): Iba-1 (Spearman’s $\rho = 0.5$, $P = 0.017$, Fig. 10A), CD68 (Spearman’s $\rho = 0.5$, $P = 0.012$, Fig. 10B), CD64 (FCyRI, Spearman’s $\rho = 0.6$, $P = 0.001$, Fig. 10C), CD32 (FCyRII, Spearman’s $\rho = 0.7$, $P < 0.001$, Fig. 10D), and MSR-A (Spearman’s $\rho = 0.4$, $P = 0.036$, Fig. 10E). No such correlations were observed in the immunized Alzheimer’s disease group (Table 4). Correlations between the C1q load and the IgG load were found in both the non-immunized control group (Spearman’s $\rho = 0.7$, $P < 0.001$, Table 3) and the immunized Alzheimer’s disease group (Spearman’s $\rho = 0.6$, $P = 0.035$, Table 4).

CD3-positive T lymphocytes

The number of CD3-positive T lymphocytes did not differ significantly between the immunized and non-immunized groups (Fig. 11A). Parenchymal (Fig. 11E) and perivascular (Fig. 11F) T lymphocytes were included in the quantification. A correlation between the number of CD3-positive cells and the IgG load was
observed in both the non-immunized controls (Spearman’s \(\rho = 0.4, \ P = 0.030 \), Fig. 11C and Table 3) and immunized Alzheimer’s disease groups (Spearman’s \(\rho = 0.8, \ P = 0.007 \), Fig. 11D and Table 4). The number of CD3-positive T cells correlated with the phospho-tau load within the non-immunized controls (Spearman’s \(\rho = 0.4, \ P = 0.026 \), Fig. 11B and Table 3) but not the immunized Alzheimer’s disease group (Table 4). No relationships between the CD3 data and any of the microglial markers, amyloid-\(\beta_{42} \), or complement C1q were noted in either of the Alzheimer’s disease groups (Tables 3 and 4).

Cerebral amyloid angiopathy

The assessment of cerebral amyloid angiopathy in the cerebral cortex and leptomeninges demonstrated more severe cerebral amyloid angiopathy in the immunized Alzheimer’s disease (median score = 2.0) than the non-immunized control group (median score = 1.0, \(P = 0.044 \)), in accordance with previously reported findings (Boche et al., 2008). However, no relationships were observed between the cerebral amyloid angiopathy severity and the microglial markers, amyloid-\(\beta_{42} \) load, phospho-tau load or any other parameters investigated in this study.

Microhaemorrhages and microvascular lesions

The assessment of the haematoxylin and eosin-stained sections for the number of microhaemorrhages and microvascular lesions did not reveal any significant differences between the immunized, and the non-immunized group. No relationships were noted between the number of microhaemorrhages and microvascular lesions and the level of microglial markers, amyloid-\(\beta_{42} \) load, phospho-tau load or any other parameters assessed in the two groups.

Discussion

Microglial activity is closely linked to the development of Alzheimer’s disease, but the precise role of microglia in disease pathogenesis and the response to amyloid-\(\beta \) immunization is

Table 3 Results of correlation analyses within non-immunized Alzheimer’s disease control group – Spearman’s \(\rho \) and \(P \)-values

<table>
<thead>
<tr>
<th>cAD</th>
<th>Phospho-tau load</th>
<th>CD68 load</th>
<th>CD64 load</th>
<th>CD32 load</th>
<th>MSR load</th>
<th>MSR clusters</th>
<th>Iba-1 load</th>
<th>Iba-1+ cells</th>
<th>IgG load</th>
<th>C1q load</th>
<th>CD3+ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amyloid-(\beta_{42}) load</td>
<td>(\rho = -0.2)</td>
<td>(P = 0.428)</td>
<td>(\rho = -0.3)</td>
<td>(P = 0.091)</td>
<td>(P = 0.477)</td>
<td>(P < 0.001)</td>
<td>(P = 0.438)</td>
<td>(P = 0.660)</td>
<td>(P = 0.001)</td>
<td>(P = 0.026)</td>
<td>(P = 0.370)</td>
</tr>
<tr>
<td>Phospho-tau load</td>
<td>(\rho = 0.2)</td>
<td>(P = 0.036)</td>
<td>(P = 0.010)</td>
<td>(P = 0.032)</td>
<td>(P = 0.045)</td>
<td>(P = 0.004)</td>
<td>(P = 0.030)</td>
<td>(P = 0.003)</td>
<td>(P = 0.003)</td>
<td>(P = 0.026)</td>
<td>(P = 0.003)</td>
</tr>
<tr>
<td>CD68 load</td>
<td>(\rho = -0.6)</td>
<td>(P = 0.01)</td>
<td>(\rho = -0.2)</td>
<td>(P = 0.01)</td>
</tr>
<tr>
<td>CD64 load</td>
<td>(\rho = 0.7)</td>
<td>(P = 0.7)</td>
<td>(\rho = 0.6)</td>
<td>(P = 0.7)</td>
<td>(P = 0.6)</td>
<td>(P = 0.7)</td>
<td>(P = 0.6)</td>
<td>(P = 0.7)</td>
<td>(P = 0.6)</td>
<td>(P = 0.7)</td>
<td>(P = 0.6)</td>
</tr>
<tr>
<td>CD32 load</td>
<td>(\rho = 0.5)</td>
<td>(P = 0.001)</td>
</tr>
<tr>
<td>MSR load</td>
<td>(\rho = 0.6)</td>
<td>(P = 0.005)</td>
<td>(\rho = 0.6)</td>
<td>(P = 0.005)</td>
</tr>
<tr>
<td>MSR clusters</td>
<td>(\rho = 0.5)</td>
<td>(P = 0.4)</td>
<td>(\rho = 0.4)</td>
<td>(P = 0.4)</td>
</tr>
<tr>
<td>Iba-1 load</td>
<td>(\rho = 0.7)</td>
<td>(P = 0.007)</td>
</tr>
<tr>
<td>Iba-1+ cells</td>
<td>(\rho = 0.7)</td>
<td>(P = 0.036)</td>
</tr>
<tr>
<td>IgG load</td>
<td>(\rho = 0.7)</td>
<td>(P = 0.04)</td>
</tr>
<tr>
<td>C1q load</td>
<td>(\rho = 0.7)</td>
<td>(P = 0.001)</td>
</tr>
</tbody>
</table>

\(cAD \) = non-immunized Alzheimer’s disease control. Significant correlations are highlighted in bold.
unclear. The poor cognitive outcome of patients in the AN1792 clinical trial suggested that clearance of amyloid-β plaques alone is not sufficient to halt the progression of dementia (Holmes et al., 2008), raising the possibility that persistent microglial activation results in continuing neurodegeneration. In the current study, we have investigated microglial receptors involved in direct and antibody-mediated ligand recognition and clearance in human post-mortem Alzheimer’s disease tissue, their relation to amyloid-β and phospho-tau pathology and other inflammatory processes, and how these relationships are altered after active amyloid-β42 immunization.

Microglial markers and pathological features of Alzheimer’s disease, amyloid-β_{42} and tau

Consistent with previously reported findings, we observed significantly lower amyloid-β_{42} and phospho-tau loads after amyloid-β immunization (Boche et al., 2010). In conjunction with these alterations in the pathology of the disease, we observed significant changes in microglial receptors and markers of the CNS innate immune response.

Correlations between amyloid-β_{42} and microglial markers

With respect to amyloid-β_{42}, inverse correlations were observed with Iba-1 and Fcγ receptor II in non-immunized Alzheimer’s disease only. Iba-1 is expressed constitutively by microglia in the brain, with increased expression upon activation (Imai et al., 1996; Imai and Kohsaka, 2002). It was proposed that Iba-1 is involved in cytoskeletal reorganization, membrane ruffling and actin cross-linking in microglia, necessary for phagocytosis (Ohsawa et al., 2000; Sasaki et al., 2001; Kanazawa et al., 2002). The Fcγ receptors expressed by microglia are important players in phagocytosis, transport and clearance of antibodies and immune complexes from the brain, and antibody-dependent cell-mediated cytotoxicity (Ulvestad et al., 1994a; Deane et al., 2009). The ability of anti-amyloid-β antibodies to cross the blood–brain barrier has been reported in animal models (Bard et al., 2000; Deane et al., 2005). Anti-amyloid-β autoantibodies were detected in the plasma of patients with Alzheimer’s disease (Hyman et al., 2001), consistent with the detection of Fcγ receptors in the non-immunized Alzheimer’s disease brains. One explanation for the inverse correlations between amyloid-β and the microglial Iba-1 and Fcγ receptor II may be that in Alzheimer’s disease, the expression of these receptors limits the accumulation of amyloid. Alternatively, the inverse relationship could reflect a mechanism whereby amyloid-β aggregation and, presumably, amyloid-β immune complexes, downregulate microglia as a means of minimizing neuronal damage in the context of a prolonged inflammatory reaction. It was suggested that activation of Fcγ receptors leads to increased levels of intracellular Ca^{2+} (Ravetch and Kinet, 1991), possibly indicating a link with the calcium adapter protein Iba-1.

Immunization alters the relationship between amyloid-β_{42} and these microglial receptors. This may contribute to a change in microglial function that facilitates amyloid-β clearance, as suggested by the correlation between the cell surface scavenger receptor MSR-A-positive clusters and amyloid-β_{42} in immunized Alzheimer’s disease cases. MSR-A was reported to be involved in the activation of microglia for uptake of extracellular matter, including amyloid (Christie et al., 1996). We observed no relationship between microglia and vascular amyloid-β (cerebral amyloid

<table>
<thead>
<tr>
<th>iAD</th>
<th>Phospho-tau load</th>
<th>CD68 load</th>
<th>CD64 load</th>
<th>CD32 load</th>
<th>MSR load</th>
<th>MSR clusters</th>
<th>Iba-1 load</th>
<th>Iba-1+ cells</th>
<th>IgG load</th>
<th>C1q load</th>
<th>CD3 + cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amyloid-β_{42} load</td>
<td>ρ = 0.4</td>
<td>P = 0.212</td>
<td>ρ = 0.2</td>
<td>P = 0.151</td>
<td>ρ = 0.3</td>
<td>P = 0.4</td>
<td>ρ = 0.7</td>
<td>P = 0.2</td>
<td>ρ = 0.1</td>
<td>P = 0.2</td>
<td>ρ = 0.2</td>
</tr>
<tr>
<td>Phospho-tau load</td>
<td>ρ = 0.2</td>
<td>P = 0.484</td>
<td>ρ = 0.5</td>
<td>P = 0.536</td>
<td>ρ = 0.2</td>
<td>P = 0.272</td>
<td>ρ = 0.04</td>
<td>P = 0.024</td>
<td>ρ = 0.6</td>
<td>P = 0.650</td>
<td>ρ = 0.537</td>
</tr>
<tr>
<td>CD68 load</td>
<td>ρ = 0.5</td>
<td>P = 0.048</td>
<td>ρ = 0.5</td>
<td>P = 0.110</td>
<td>ρ = 0.2</td>
<td>P = 0.201</td>
<td>ρ = 0.3</td>
<td>P = 0.326</td>
<td>ρ = 0.6</td>
<td>P = 0.915</td>
<td>ρ = 0.811</td>
</tr>
<tr>
<td>CD64 load</td>
<td>ρ = 0.5</td>
<td>P = 0.484</td>
<td>ρ = 0.5</td>
<td>P = 0.110</td>
<td>ρ = 0.2</td>
<td>P = 0.201</td>
<td>ρ = 0.3</td>
<td>P = 0.326</td>
<td>ρ = 0.6</td>
<td>P = 0.915</td>
<td>ρ = 0.811</td>
</tr>
<tr>
<td>CD32 load</td>
<td>ρ = 0.5</td>
<td>P = 0.102</td>
<td>ρ = 0.5</td>
<td>P = 0.110</td>
<td>ρ = 0.2</td>
<td>P = 0.201</td>
<td>ρ = 0.3</td>
<td>P = 0.326</td>
<td>ρ = 0.6</td>
<td>P = 0.915</td>
<td>ρ = 0.811</td>
</tr>
<tr>
<td>MSR load</td>
<td>ρ = 0.5</td>
<td>P = 0.102</td>
<td>ρ = 0.5</td>
<td>P = 0.110</td>
<td>ρ = 0.2</td>
<td>P = 0.201</td>
<td>ρ = 0.3</td>
<td>P = 0.326</td>
<td>ρ = 0.6</td>
<td>P = 0.915</td>
<td>ρ = 0.811</td>
</tr>
<tr>
<td>MSR clusters</td>
<td>ρ = 0.5</td>
<td>P = 0.102</td>
<td>ρ = 0.5</td>
<td>P = 0.110</td>
<td>ρ = 0.2</td>
<td>P = 0.201</td>
<td>ρ = 0.3</td>
<td>P = 0.326</td>
<td>ρ = 0.6</td>
<td>P = 0.915</td>
<td>ρ = 0.811</td>
</tr>
<tr>
<td>Iba-1 load</td>
<td>ρ = 0.5</td>
<td>P = 0.102</td>
<td>ρ = 0.5</td>
<td>P = 0.110</td>
<td>ρ = 0.2</td>
<td>P = 0.201</td>
<td>ρ = 0.3</td>
<td>P = 0.326</td>
<td>ρ = 0.6</td>
<td>P = 0.915</td>
<td>ρ = 0.811</td>
</tr>
<tr>
<td>Iba-1+ cells</td>
<td>ρ = 0.5</td>
<td>P = 0.102</td>
<td>ρ = 0.5</td>
<td>P = 0.110</td>
<td>ρ = 0.2</td>
<td>P = 0.201</td>
<td>ρ = 0.3</td>
<td>P = 0.326</td>
<td>ρ = 0.6</td>
<td>P = 0.915</td>
<td>ρ = 0.811</td>
</tr>
<tr>
<td>IgG load</td>
<td>ρ = 0.5</td>
<td>P = 0.102</td>
<td>ρ = 0.5</td>
<td>P = 0.110</td>
<td>ρ = 0.2</td>
<td>P = 0.201</td>
<td>ρ = 0.3</td>
<td>P = 0.326</td>
<td>ρ = 0.6</td>
<td>P = 0.915</td>
<td>ρ = 0.811</td>
</tr>
<tr>
<td>C1q load</td>
<td>ρ = 0.5</td>
<td>P = 0.102</td>
<td>ρ = 0.5</td>
<td>P = 0.110</td>
<td>ρ = 0.2</td>
<td>P = 0.201</td>
<td>ρ = 0.3</td>
<td>P = 0.326</td>
<td>ρ = 0.6</td>
<td>P = 0.915</td>
<td>ρ = 0.811</td>
</tr>
</tbody>
</table>

iAD = immunized Alzheimer’s disease.
Significant correlations are highlighted in bold.
angiopathy) in Alzheimer’s disease brains. Even after the immunization, which results in a transient increase in cerebral amyloid angiopathy (Boche et al., 2008), no association between microglial markers and the severity of cerebral amyloid angiopathy was noted. Similarly, microglial activity was not related to the number of microhaemorrhages and microvascular lesions, although the lack of apparent relationship may simply reflect the relatively infrequent occurrence of these lesions in the present cohort.

Correlation between tau and microglial markers
In the non-immunized Alzheimer’s disease cases, phospho-tau load, but not amyloid-β, correlated with the levels of all of the microglial markers assessed. There is evidence for a connection between microglial activation and tau pathology in Alzheimer’s disease and other tauopathies (DiPatre and Gelman, 1997; Ishizawa and Dickson, 2001; Streit et al., 2009; Serrano-Pozo et al., 2011). Chronic microglial activation resulting in the release of pro-inflammatory cytokines (e.g., IL-1α, IL-1β and TNFα) and other molecules (e.g. quinolinic acid) may cause tau hyperphosphorylation (Iqbal and Grundke-Iqbal, 2002; Li et al., 2003), suggesting that microglia may contribute to the ongoing neurodegeneration (Serrano-Pozo et al., 2011). Conversely, microglial activity may be a response to the synaptic loss associated with tau pathology (Iqbal and Grundke-Iqbal, 2002), supporting the concept that microglia are losing their protective capacities with ageing (Streit et al., 2009).

Our observations of correlations between microglia and tau, and between microglia and amyloid-β, but not between tau and amyloid-β in Alzheimer’s disease, suggest that microglia may play a pivotal role in Alzheimer’s disease. We did not observe any relation between the tau pathology and microglial markers in the immunized Alzheimer’s disease group, in keeping with a change in the microglial profile after immunization focusing on amyloid-β clearance (Zotova et al., 2011). The exact pathway and sequence of events that involve microglia, amyloid-β and phospho-tau, in the pathogenesis of Alzheimer’s disease are still not deciphered. Microglial activation may represent a response that is aimed at limiting amyloid-β deposition (inverse correlation between some microglial markers and amyloid-β), as observed by in vivo imaging of transgenic mice (Bolmont et al., 2008) but that causes secondary neuronal damage (direct correlation between all microglial markers and phospho-tau). Alternatively, microglial activation may be triggered by the neuronal damage in Alzheimer’s disease,

Figure 5 Correlation plots between microglial and amyloid-β42 (21F12) within non-immunized control (cAD) (A–C) and immunized Alzheimer’s disease (iAD) groups (D) with linear regression lines and Spearman’s ρ and P-values included. Within the non-immunized control group, the amyloid-β42 load inversely correlated with Iba-1 load (A), the number of Iba-1-positive cells (B), and CD32 (Fcγ RII) load (C). Within the immunized Alzheimer’s disease group, the amyloid-β42 load correlated with the number of MSR-A-positive microglial clusters (D).
with amyloid-β deposition serving as an attempt to control the inflammation (Soscia et al., 2010). The possibility that plaque-associated amyloid-β is not directly involved in neurodegeneration in sporadic Alzheimer’s disease is consistent with our observations of continued decline in cognitive function, despite the removal of amyloid-β plaques by immunotherapy (Holmes et al., 2008).

Immunoglobulin G

We quantified IgG to assess the extent of opsonization of amyloid-β plaques before and after immunization, but found no significant difference in total load of IgG within the cortex. This is despite evidence that anti-amyloid-β antibodies persist for many years in the blood of patients immunized with AN1972 (Holmes et al., 2008). It should be noted that the immunohistochemistry did not differentiate between host-generated antibodies of different specificities (e.g. anti-amyloid-β) that might be present in the brain. It is possible that an increase in amyloid-β-specific antibody level and immune complex formation within the brain takes place in Alzheimer’s disease brain immediately after the treatment, as observed in animal studies using passive immunization (Bard et al., 2000). If so, our observations of lower levels of Fcγ receptors I

Figure 6 Correlation plots between microglial and phospho-tau (AT8) within the non-immunized control group with linear regression lines and Spearman’s ρ and P-values included. Phospho-tau load correlated with Iba-1 load (A), CD32 (Fcγ RII) load (B), MSR-A load (C), CD64 (Fcγ RI) load (D), and CD68 load (E).
and II in immunized cases by the time of autopsy suggest that the deployment of these receptors for the clearance of amyloid-β is followed by their downregulation.

There was a correlation between IgG and phospho-tau within the non-immunized but not the immunized Alzheimer’s disease group. A link has been proposed between changes in brain–blood barrier permeability in Alzheimer’s disease and the influx and localization of IgG within neurons, leading to tau-mediated reorganization of neuronal microtubules (Bouras et al., 2005). Our findings would be consistent with the presence of IgG in the brain influencing the extent of the tau pathology. This is in keeping with the strong correlations between the amount of IgG and the levels of all microglial receptors, and between these receptors and phospho-tau, as discussed above. Similarly, T cell numbers correlated with the IgG load and phospho-tau pathology in the non-immunized Alzheimer’s disease group, supporting the involvement of humoral immunity, in addition to cellular immunity in the pathogenesis of Alzheimer’s disease (Bouras et al., 2005). Immunization against amyloid-β42 seems to alter these relationships, perhaps reflecting alteration in the type of IgG present in the brain following the treatment. However, the relationship between T cells and IgG was still present in the immunized cases and at a stronger level. Consistent with this observation, the ability of microglia-mediated antibody-dependent phagocytosis involving Fcy receptors to stimulate T cells has been demonstrated in vitro (Ulvestad et al., 1994b).

C1q

Although no changes were observed in the total C1q load between both groups, the differences in correlations between C1q and microglial markers, and C1q and amyloid-β42/tau support a role for C1q in Alzheimer’s disease pathogenesis and immunization-related changes. Consistent with the recent identification of complement gene variation as risk factor for Alzheimer’s disease (Lambert et al., 2009), and the suggested ability of C1q to activate microglial cells (Veerhuis et al., 2003), C1q correlated with all microglial markers in the non-immunized Alzheimer’s disease group. The findings are also in accordance with the in vitro demonstrations of microglial C1q-mediated Fc receptor-dependent phagocytosis of immune complexes (Webster et al., 2000, 2001). In the non-immunized group there was also a relationship between C1q and phospho-tau, supporting a view that C1q expression is related to the degeneration of neurons in Alzheimer’s disease (Fonseca et al., 2004; D’Andrea, 2005). The ability of tau to activate complement through C1q was previously demonstrated in vitro and in situ (Shen et al., 2001). In the immunized group, this relationship was no longer present. Instead, an inverse
relationship between amyloid-β42 and C1q was observed, suggesting a different role for C1q after immunization, perhaps related to the clearance of amyloid-β, as increased uptake of C1q-coated fibrillar amyloid-β particles and immune complexes by rodent microglia in vitro has been reported (Brazil et al., 2000; Webster et al., 2001). Overall, our observations indicate that C1q is likely to be a mediator in the microglia-amyloid-β-tau network in Alzheimer’s disease and that its role in this network is altered by immunization.

Figure 8 Correlation between microglial markers and IgG load in non-immunized controls with linear regression lines and Spearman’s ρ and P-values included. Correlations were observed between the IgG load and Iba-1 load (A), CD32 (Fcγ RII) load (B), MSR-A load (C), CD64 (Fcγ RI) load (D), and CD68 load (E).

Effect of immunization on microglial receptors, cell number and distribution

Human data on the detailed microglial profile in chronic neurodegeneration and in response to stimulation of the immune system are scarce. Animal studies suggest that induction of an immune response in the brain leads to acutely elevated levels of microglial receptors (Herber et al., 2006, 2007, Malm et al., 2008, Ryu et al., 2009), and alterations in an inflammatory gene profile
towards classical activation associated with reduced brain amyloid-β levels (Wilcock et al., 2011).

Our quantitative analysis of the microglial markers MSR-A, CD64, CD32 and CD68 revealed significantly lower levels of these receptors in immunized Alzheimer’s disease cases, perhaps surprisingly suggesting downregulation of microglial activity after immunization, at least by the time of post-mortem examination, which in almost all cases was several years after treatment. In the immunized group, we observed an 89% lower load of the scavenger receptor MSR-A and a 68% lower number of MSR-A-positive clusters, consistent with the degree of plaque removal seen in these cases. The Fcγ receptors I and II, expected to be involved in the CNS innate immune response to immunotherapy, were 56% and 66% lower after immunization. The marker of intracellular microglial lysosomes, CD68, was also 60% lower in the immunized group. Although in our previous study we reported a higher load of CD68 in immunized cases (Zotova et al., 2011), the current non-immunized Alzheimer’s disease cohort is larger and better matched for age, gender, duration of dementia and APOE genotype to the immunized group, which includes some additional cases with longer post-immunization times. Our current finding of an overall lower CD68 load in the immunized cases is in accordance with our findings for all other microglial markers, and highlights the necessity of using large and well-matched control cohorts for studies of human tissue (Boche et al., 2013). It should be noted that the findings on analysis of post-mortem tissue several years following the immunization may not necessarily reflect those immediately after receiving the treatment, and instead represent the late effects after plaque removal has occurred. Although all of the markers of microglial activation were lower after immunization, we detected no difference in Iba-1 load or the number of Iba-1-positive cells between the groups. Iba-1 antibody is reported to label all microglia, whether resting or active (Streit et al., 2009). In accordance with this we expected, but did not observe, a higher Iba-1 load than that of the other microglial markers. Simard et al. (2006) showed that blood-derived monocytes can be recruited into the brain of transgenic mice and differentiate into microglia-like cells, which are more efficient at clearing amyloid-β plaques. The lack of increase in total microglia number after the immunization provides no evidence for immunization-induced recruitment of monocytes from the periphery or in situ proliferation of microglia.

Figure 9 Illustrations of C1q immunostaining demonstrating positively stained neurons (filled triangle, A), amyloid-β plaques (hash symbol, B and C), glial cell (asterisk, B and D), blood vessels (x, C), and other cells (possibly astrocytes, , D). Scale bar = 50 μm. (E) Quantification results of C1q load in non-immunized controls and immunized Alzheimer’s disease cases expressed as scatter plot with lines indicating median values, and Mann-Whitney P-values included. (F) Correlation plot between the C1q load and phospho-tau (AT8) load within the non-immunized control group with linear regression line and Spearman’s ρ and P-values included. (G) Correlation plot between the C1q load and amyloid-β42 load within the immunized Alzheimer’s disease group with linear regression line and Spearman’s ρ and P-values included.
Our observation of a strong clustering pattern of MSR-A-positive microglia is in accordance with other studies that looked at expression of macrophage scavenger receptors in Alzheimer’s disease and non-demented brains (Christie et al., 1996; Honda et al., 1998) suggesting that these clusters are related to amyloid-β plaques and consistent with the function of MSR-A (Chung et al., 2001). We previously reported clustering and co-localization of microglial markers HLA-DR and CD68 around amyloid-β plaques (Zotova et al., 2011). We did not observe any obvious amyloid-β-related clustering of cells expressing Fcγ receptors, in keeping with a previous report that these cells are distributed throughout the cortex of normal and Alzheimer’s disease brains (Peress et al., 1993). The variability in the distribution of microglial markers that we observed in human disease suggest that microglia may be present in different functional states in the same brain in Alzheimer’s disease, with further alterations in microglial activation and function following amyloid-β immunization. The distinct distribution of MSR-A immunostaining may be explained by the selective immobilization of the MSR-A-positive cells when they encounter plaques. Indeed, in vitro studies using murine microglial cells showed that the murine homologue of MSR-A was the first receptor to engage in phagocytosis of amyloid-β fibrils (El Khoury et al., 1996; Paresce et al., 1996), resulting in immobilization of microglia and release of neurotoxic cytokines and reactive oxygen species (El Khoury et al., 1996; Husemann et al., 2002). Similar observations were made on cultured human microglia from

Figure 10 Correlation between microglial markers and C1q load in non-immunized controls with linear regression lines and Spearman’s ρ and P-values included. Correlations were observed between the C1q load and Iba-1 load (A), CD68 load (B), CD64 (Fcγ RI) load (C), CD32 (Fcγ RII) load (D), and MSR-A load (E).
Alzheimer’s disease and non-demented cases (Lue and Walker, 2002).

Together, our data on the levels of microglial receptors involved in antigen recognition and uptake suggest that, in the long term, immunotherapy has a downregulating effect on the expression of these receptors, while keeping the overall number of microglia unaltered. These findings are counter to the observations in animal models, challenging the fidelity of animal models as mimics of the complexity of the human disease. Importantly, the time-course also differed: in the experimental models the response was typically studied after a matter of days or few months, whereas we are investigating the brains of patients with Alzheimer’s disease almost all of whom were studied several years following immunization. However, individual data on microglial markers from the immunized Alzheimer’s disease cases examined shortly after the immunization (e.g. Patient iAD2, 4 months following the treatment), was similar to the rest of the cases within the immunized Alzheimer’s disease group, despite signs of

Figure 11 Quantification results of CD3-positive T cells in non-immunized controls and immunized Alzheimer’s disease cases expressed as scatter plot with lines indicating median values, and Mann-Whitney P-values included (A). Correlation plots between the number of CD3-positive T cells and the phospho-tau (AT8) load within the non-immunized control group with linear regression line and Spearman’s ρ and P-values included (B). Correlation plots between the number of CD3-positive T cells and the IgG load within the non-immunized control group (C) and the immunized Alzheimer’s disease group (D) with linear regression line and Spearman’s ρ and P-values included. Examples of CD3 immunostaining in parenchyma (E) and perivascular (F). Scale bar = 30 μm.
conclusion

Conclusion

Overall, our data reveal antigenically and probably functionally different populations of microglia in the Alzheimer’s disease brain: some are predominantly located in and around plaques (e.g. MSR-Aapositive microglia) and therefore presumably responding in a specific way to plaque components, whereas others are diffusely distributed through the cortex, perhaps responding or contributing to neuronal damage. This reinforces the concept of specific phenotypes of microglia, with different functions as defined in animal studies (Perry et al., 2010), and confirms its relevance to human neurodegenerative disease. Interestingly, for the first time in Alzheimer’s disease, a link was observed between all the inflammatory processes (microglia, IgG and C1q) and tau, supporting an active role for immune functions in the pathogenesis of Alzheimer’s disease. The recent genetic data to emerge from the genome-wide association studies indicates that at least a component of the inflammation contributes towards disease pathogenesis and may be amenable to early intervention.

Our findings provide no evidence of a broad-spectrum long-term increase in microglial activation after immunotherapy despite the enhanced microglial phagocytosis of plaque-associated amyloid-β. Instead, we suggest that the microglial downregulation is likely to minimize bystander damage at least in the longer term. These observations highlight the complex nature of microglial reactions and the importance of attempting to assess not just the presence but also the functional state of microglia. The details revealed in this study highlight the importance of conducting neuropathological follow-up as part of clinical trials of new therapies in Alzheimer’s disease.

Acknowledgements

We thank the patients who were involved in this study and their carers. Vivienne Hopkins, David Wilkinson, Anthony Bayer, Roy Jones and Roger Bullock enrolled patients in the original trial and facilitated subsequent follow up of the patients. The Neuropathology Section, Department of Cellular Pathology, University Hospital Southampton NHS Trust, the Histochemistry Research Unit, and the Biomedical Imaging Unit of the Faculty of Medicine, University of Southampton facilitated tissue processing, staining and analysis. Laura Palmer at the South West Dementia Brain Bank provided control Alzheimer’s disease tissue. Staff at Elan Pharmaceuticals made available original clinical trial data.

Funding

This work was supported by the Alzheimer Research UK [(ART/PG2006/4, ART-EXT2010-1) and the Medical Research Council (G0501033)].

References

Chalmers K, Wilcock GK, Love S. APOE epsilon 4 influences the pathological phenotype of Alzheimer’s disease by favouring cerebrovascular

