Plasma oxysterols : diagnostic biomarkers for spastic paraplegia type 5 and application to therapeutic trial

## Supplementary Method : Validation of the oxysterols method using UPLC-MS/MS

Ionization responses in LC-MS/MS can vary due to matrix components co-eluting with the analyte. Hence, matrix effect was evaluated by slopes of calibration curves made in methanol or in human plasma. Calibration standard curves were prepared in methanol or by spiking human plasma and consisted of seven standards ranging from 31.3 to $1000 \mu \mathrm{~g} / \mathrm{ml}$ of $25-\mathrm{OHC}, 27-\mathrm{OHC}$ and $24 \mathrm{~S}-\mathrm{OHC}$. The calibration curves in methanol and in plasma were not significantly different and the slopes of the calibration curves appeared to be nearly identical in methanol and in plasma as shown below.

Characteristics of the calibration regression line data prepared in methanol and plasma

| Analyte | Matrix | Slope | Intercept | $\mathrm{R}^{\mathbf{2}}$ |
| :---: | :---: | :---: | :---: | :---: |
| $25-\mathrm{OHC}$ | Methanol | 0.00003 | 0.0016 | 0.993 |
|  | Plasma | 0.00005 | 0.0021 | 0.982 |
| 27-OHC | Methanol | 0,0019 | 0,0319 | 0,997 |
|  | Plasma | 0,0010 | 0,0100 | 0,999 |
| 24S-OHC | Methanol | 0.001 | 0.117 | 0.968 |
|  | Plasma | 0.0008 | 0.0247 | 0.997 |

Legend: $\quad 25-\mathrm{OHC}=25$-hydroxycholesterol; $\quad 27-\mathrm{OHC}=27$-hydroxycholesterol; $24 \mathrm{~S}-\mathrm{OHC}=24-$ hydroxycholesterol.

Thus, we chose methanol as surrogate matrix, which is also a simpler and well-controlled preparation method. The method is linear in the range 31.3 to $1000 \mu \mathrm{~g} / \mathrm{ml}$, which is completely adequate to the pathophysiological interval of values. Low limit of detection (LOD), defined as the minimum concentrations of $25-\mathrm{OHC}, 27-\mathrm{OHC}$ and $24 \mathrm{~S}-\mathrm{OHC}$ giving a peak area three-fold the noise, was $0.8,2.6$ and $4.9 \mu \mathrm{~g} / \mathrm{ml}$, respectively. Low limits of quantification (LOQ), defined as the lowest concentrations of 25-OHC, 27-OHC and 24-OHC, which can be measured in triplicate with precision higher than $20 \%$, were 2.7, 8.5 and 16.4 $\mu \mathrm{g} / \mathrm{ml}$, respectively. The accuracy of the method was evaluated by analysing human plasma spiked with 100 $\mu \mathrm{g}$ of $25-\mathrm{OHC}$ and $24 \mathrm{~S}-\mathrm{OHC}$ and with $200 \mu \mathrm{~g} / \mathrm{ml}$ of $27-\mathrm{OHC}$. The nominal concentrations of unspiked plasma and the concentration of the spiked plasma were determined by mean of five measures. The accuracy was calculated as the percentage of nominal concentrations and was $100.1 \%, 101 \%$ and $95.6 \%$, for $25-\mathrm{OHC}$, $27-\mathrm{OHC}$ and $24 \mathrm{~S}-\mathrm{OHC}$, respectively. The precision of the method was evaluated by analysing human plasma spiked with $100 \mu \mathrm{~g}$ of $25-\mathrm{OHC}$ and $24-\mathrm{OHC}$ and with $1500 \mu \mathrm{~g} / \mathrm{ml}$ of $27-\mathrm{OHC}$ corresponding to normal and pathological concentrations. Hydroxycholesterols measurement was repeated 10 times in a single run for intra-assay precision or in different runs and days for the inter-assay precision. Precision results are summarized below.

Intra- and inter-assay precision of measurement of 25-OHC, 27-OHC, and 24S-OHC


Legend: $25-\mathrm{OHC}=25$-hydroxycholesterol; $27-\mathrm{OHC}=27$-hydroxycholesterol; $24 \mathrm{~S}-\mathrm{OHC}=24-$ hydroxycholesterol; CV=Coefficient of variation

## Supplementary Figures



## Supplementary Fig. 1 : Design of the phase II therapeutic trial

The trial consisted into a three-period, three-treatment crossover study. The six different sequences of three treatments (atorvastatin, A; chenodeoxycholic acid, B; resveratrol C), represented in the lower part of the figure, were randomized: each patient received the three treatments during three periods of two months in random order, separated by a four-months washout (upper part of the figure). The follow-up visits at the Clinical Investigation Center (CIC) were planned at a six-month interval.


## Supplementary Fig. 2 : Cerebral and spinal MRI of SPG5 patients

Mild uniform posterior white matter hyper-intensity in axial FLAIR (A and B) and axial T2 weighted images (C and D), iso-intense in axial T1 (injected weighted images, E) (patient SAL-279-014); mild cerebellar atrophy, predominantly on upper vermis, in a sagittal T 1 weighted images ( F ) (patient SAL-B-563-010); cervical (G) and dorsal (H) spinal atrophy (sagittal T1 weighted images; patient SAL-B-563-010).


Supplementary Fig. 3 : Evolution of plasma 25-OHC and 24S-OHC in SPG5 patients. Plasma 25OHC (left) levels were not impacted by any of the treatments. Plasma 24S-OHC (right) significantly decreased under atorvastatin in SPG5 patients.

Supplementary Table 1: List of the hereditary spastic paraplegia -causing genes included from the targeted gene panel.

| Gene | SPG | References | $\mathrm{N}^{\circ} \mathrm{OMIM}$ | N ${ }^{\circ}$ LRG |
| :---: | :---: | :---: | :---: | :---: |
| ALS2 | - | Wakil SM et al., Gene 2014 | 606352 | +LRG_654 (NM_020919.3) |
| AMPD2 | SPG63 | Novarino G et al., Science 2014 | 102771 | nd |
| AP4B1 | SPG47 | Bauer P et al., Neurogenetics 2012 | 607245 | nd |
| AP4E1 | SPG51 | Abou Jamra R et al., Am. J. Hum. Genet. 2011 | 607244 | 士LRG_732 (NM_007347.4) |
| AP4M1 | SPG50 | Abou Jamra R et al., Am. J. Hum. Genet. 2011 | 602296 | nd |
| AP4S1 | SPG52 | Abou Jamra R et al., Am. J. Hum. Genet. 2011 | 607243 | nd |
| AP5B1* | Candidate gene by function | Hirst J et al., PLoS Biol, 2011 | 614367 | nd |
| AP5M1* | Candidate gene by function | Hirst J et al., PLoS Biol, 2011 | 614368 | nd |
| AP5S1* | Candidate gene by function | Hirst J et al., PLoS Biol, 2011 | 614824 | nd |
| AP5Z1 | SPG48 | Slabicki M et al., PLoS Biol. 2010 | 613653 | nd |
| ARL6IP1 | SPG61 | Novarino G et al., Science 2014 | 607669 | nd |
| ARSI | SPG66 | Novarino G et al., Science 2014 | 610009 | nd |
| ATL1 | SPG3A | Zhao X et al., Nature Genet. 2001 | 606439 | ${ }^{ \pm}$LRG_360 (*multiple) |
| B4GALNT1 | SPG26 | Boukhris A et al., Am. J. Hum. Genet. 2013 | 601873 | nd |
| BICD2 | - | Novarino G et al., Science 2014 | 609797 | nd |
| BSCL2 | SPG17 | Windpassinger C et al., Nature Genet. 2004 | 606158 | ${ }^{ \pm}$LRG_235 (NM_001122955.3) |
| C12orf65 | SPG55 | Shimazaki H et al., J. Med. Genet. 2012 | 613541 | nd |
| C19orf12 | SPG43 | Landoure G et al., Hum. Mutat. 2013 | 614297 | nd |
| CCT5 | - | Bouhouche A et al., J. Med. Genet. 2006 | 610150 | LRG_361 (NM_012073.3) |
| CPT1C | SPG73 | Rinaldi C et al., JAMA Neurol 2015 | 608846 | nd |
| CYP2U1 | SPG56 | Tesson C et al., Am. J. Hum. Genet. 2012 | 610670 | nd |
| CYP7B1 | SPG5A | Tsaousidou M et al., Am. J. Hum. Genet. 2008 | 603711 | nd |
| DDHD1 | SPG28 | Tesson C et al., Am. J. Hum. Genet. 2012 | 614603 | nd |
| DDHD2 | SPG54 | Schuurs-Hoeijmakers JHM et al., Am. J. Hum. Genet. 2012 | 615003 | nd |
| ENTPD1 | SPG64 | Novarino G et al., Science 2014 | 601752 | nd |
| ERLIN1 | SPG62 | Novarino G et al., Science 2014 | 611604 | nd |
| ERLIN2 | SPG18 | Alazami A et al., Neurogenetics 2011 | 611605 | nd |
| FA2H | SPG35 | Dick KJ et al., Hum. Mutat. 2010 | 611026 | nd |


| FBXO7 | Pallido-pyramidal syndrome | Di Fonzo A et al., Neurology 2009 | 605648 | nd |
| :---: | :---: | :---: | :---: | :---: |
| FLRT1 | SPG68 | Novarino G et al., Science 2014 | 604806 | nd |
| GAD1 | - | Lynex CN et al., BMC Neurol. 2004 | 605363 | nd |
| GBA2 | SPG46 | Martin E et al., Am. J. Hum. Genet. 2013. | 609471 | nd |
| GJA1 | Pleiotropic phenotype of oculodentodigital dysplasia | Paznekas WA et al., Am. J. Hum. Genet. 2003 | 121014 | nd |
| GJC2 | SPG44 | Orthmann-Murphy JL et al., Brain 2009 | 608803 | nd |
| HSPD1 | SPG13 | Hansen JJ et al., Am. J. Hum. Genet. 2002 | 118190 | nd |
| KIAA0196 | SPG8 | Valdmanis PN et al., Am. J. Hum. Genet. 2007 | 610657 | nd |
| KIF1A | SPG30 | Erlich Y et al., Genome Res. 2011 | 601255 | LRG_367 (*multiple) |
| KIF1C | SPG58 | Novarino G et al., Science 2014 | 603060 | nd |
| KIF5A | SPG10 | Reid E et al., Am. J. Hum. Genet. 2002 | 602821 | nd |
| L1CAM | SPG1 | Jouet M et al., Nature Genet. 1994 | 308840 | 士LRG_14 (NM_000425.3) |
| MAG | - | Novarino G et al., Science 2014 | 159460 | nd |
| MARS | SPG70 | Novarino G et al., Science 2014 | 156560 | nd |
| MT-ATP6 | - | Verny C et al., Mitochondrion 2011 | 516060 | nd |
| NIPA1 | SPG6 | Rainier S et al., Am. J. Hum. Genet. 2003 | 608145 | nd |
| NT5C2 | SPG65 | Novarino G et al., Science 2014 | 600417 | nd |
| PGAP1 | SPG67 | Novarino G et al., Science 2014 | 611655 | nd |
| PLP1 | SPG2 | Saugier-Veber P et al., Nature Genet. 1994 | 300401 | nd |
| PNPLA6 | SPG39 | Rainier S et al., Am. J. Hum. Genet. 2008 | 603197 | nd |
| RAB3GAP2 | SPG69 | Novarino G et al., Science 2014 | 609275 | nd |
| REEP1 | SPG31 | Zuchner S et al., Am. J. Hum. Genet. 2006 | 609139 | +LRG_713 (*multiple) |
| REEP2 | SPG72 | Esteves T et al., Am. J. Hum. Genet. 2014 | 609347 | nd |
| RTN2 | SPG12 | Montenegro G et al., J. Clin. Invest. 2012 | 603183 | nd |
| SACS | ARSACS | Engert JC et al., Nature Genet. 2000 | 604490 | nd |
| SAMHD1 | Aicardi-Goutières syndrome 5 (AGS5) | Rice G et al., Nature Genet. 2009 | 606754 | LRG_281 (NM_015474.3) |
| SETX | Juvenile Amyotrophic Lateral Sclerosis 4 | Chen YZ et al., Am. J. Hum. Genet. 2004 | 608465 | LRG_268 (NM_015046.5) |
| SLC16A2 | SPG22 | Schwartz CE et al., Am. J. Hum. Genet. 2005 | 300095 | nd |
| SLC33A1 | SPG42 | Lin P et al., Am. J. Hum. Genet. 2008 | 603690 | nd |
| SPAST | SPG4 | Hazan J et al., Nature Genet. 1999 | 604277 | ${ }^{ \pm}$LRG_714 (NM_014946.3) |


| SPG11 | SPG11 | Stevanin G et al., Nature Genet. 2007 | 610844 | nd |
| :---: | :---: | :---: | :---: | :---: |
| SPG20 | SPG20 | Patel H et al., Nature Genet. 2002 | 607111 | nd |
| SPG21 | SPG21 | Simpson MA et al., Am. J. Hum. Genet. 2003 | 248900 | nd |
| SPG7 | SPG7 | Casari G et al., Cell 1998 | 602783 | nd |
| TECPR2 | SPG49 | Oz-Levi D et al., Am. J. Hum. Genet. 2012 | 615000 | nd |
| TFG | SPG57 | Beetz C et al., Proc. Nat. Acad. Sci. 2013 | 602498 | nd |
| USP8 | SPG59 | Novarino G et al., Science 2014 | 603158 | nd |
| VCP | - | de Bot ST et al., Brain 2012 | 601023 | LRG_657 (NM_007126.3) |
| VPS37A | SPG53 | Zivony-Elboum Y et al., J. Med. Genet. 2012 | 609927 | nd |
| WDR48 | SPG60 | Novarino G et al., Science 2014 | 612167 | nd |
| ZFR | SPG71 | Novarino G et al., Science 2014 | 615635 | nd |
| ZFYVE26 | SPG15 | Hanein S et al., Am. J. Hum. Genet. 2008 | 612012 | nd |

[^0]Supplementary Table 2：Detailed clinical features SPG5 patients（from 1 to 10）

| Patient ID | $\begin{aligned} & \text { SAL-930- } \\ & 001 \end{aligned}$ | SAL－399－975 | GRE 506－010 | GRE 506－011 | SAL－1311－001 | $\begin{aligned} & \text { SAL- } \\ & 1134- \\ & 004 \end{aligned}$ | $\begin{aligned} & \text { SAL-1465- } \\ & 001 \end{aligned}$ | $\begin{aligned} & \text { NIM- } \\ & 001 \end{aligned}$ | MON－ <br> 001 | SAL－399－229 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age at onset／Sex | 12／M | 35／M | 11／M | 10／M | 20／F | 1／F | 11／M | 20／M | About 40／F | 24／F |
| Symptom at onset | Stiff legs | Stiff legs， unsteadiness， cramps | Stiff legs； unsteadiness | Stiff legs； unsteadiness | Stiff legs | $\begin{aligned} & \text { Stiff } \\ & \text { legs } \\ & \hline \end{aligned}$ | Stiff legs； dysarthria； cramps | Unstea diness | $\begin{aligned} & \text { Stiff } \\ & \text { legs } \\ & \hline \end{aligned}$ | Stiff legs |
| Disease duration（years） | 14 | 30 | 28 | 26 | 15 | 28 | 35 | 35 | ＞10 | 39 |
| Disability score X／7＊ | NA | 6 | 3 | 3 | 2 | 5 | NA | 3 | 5 | 6 |
| UL／LL reflexes＊＊ | N／＋＋ | －－／－－ | N／＋ | N／＋＋ | ＋＋／＋＋ | N／＋＋ | N／＋＋ | N／＋＋ | $\begin{gathered} \hline \mathrm{NA} / \mathrm{N} \\ \mathrm{~A} \\ \hline \end{gathered}$ | ＋／－ |
| LL spasticity：action／rest | Moderate／Mi <br> ld | Mild／Mild | Moderate／Abs ent | Present／Absent | Moderate／NA | Modera te／NA | Severe／Mode rate | Mild／ Moder ate | Severe ／Abse nt | Severe／NA |
| Babinski sign | Bilateral | Bilateral | Bilateral | Bilateral | Bilateral | $\begin{aligned} & \begin{array}{l} \text { Bilater } \\ \text { al } \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ⿱ 䒑 土 刂 \end{aligned}$ | Bilateral | $\begin{aligned} & \begin{array}{l} \text { Bilater } \\ \text { al } \\ \hline \end{array} \\ & \hline \end{aligned}$ | $\begin{aligned} & \begin{array}{l} \text { Bilater } \\ \text { al } \\ \hline \end{array} \end{aligned}$ | Bilateral |
| Romberg sign | Positive | Positive | Positive | Positive | Positive | NA | Positive | Positiv $\mathrm{e}$ | Positiv <br> e | NA |
| LL weakness | Mild | Severe | Mild | Mild | No | Modera <br> te | Moderate | No | Mild | Moderate |
| UL／LL Vibration sense | Decreased／ab olished | Decreased／dec reased | Decreased （slightly）／abol ished | Decreased （slightly）／abolishe d | Decreased （slightly）／decreas ed | NA／De creased | NA／Abolishe d | N／abol ished | NA／D ecreas ed | Decreased／abolish ed |
| Urinary problems | No | Mild urgency | Urgency | No | Urgency；mild incontinence | $\begin{aligned} & \begin{array}{l} \text { Dysuri } \\ \text { a } \end{array} \\ & \hline \end{aligned}$ | No | $\begin{aligned} & \text { Urgen } \\ & \text { cy } \end{aligned}$ | NA | Yes（not specified） |
| Ocular findings | Saccadic pursuit | N | Saccadic pursuit | Saccadic pursuit | N |  | NA | NA | NA | Saccadic pursuit； familial maculopathy |
| Other |  | Scoliosis | Equinus foot and claw toes | Scoliosis | NA | Pes cavus | NA | No | NA | NA |
| Cognitive involvement | No | No | No | No | No | NA | No | No | No | No |
| ENG／EMG | NA | N | NA | NA | N | NA | N | N | N | N |
| PESS | NA | Altered （central）LL | NA | NA | Altered（central） | NA | NA | Altere <br> d <br> （centra <br> 1）UL／ <br> LL | NA | NA |
| Cerebral MRI： cortical／cerebellar／ brainstem atrophy；WMH | $--/-;$ <br> Posterior diffuse | －／－－－；Posterior diffuse WMH | －／－－；Posterior diffuse WMH | －／－－－；Posterior diffuse WMH | NA／NA／NA； <br> Posterior diffuse WMH | NA | $\begin{aligned} & \text { No/No/No; } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \text { NA/+/ } \\ & \text { NA; } \\ & \text { No } \\ & \hline \end{aligned}$ | $\begin{aligned} & -/+/-; \\ & \text { Posteri } \end{aligned}$ or | NA／NA／NA； <br> Posterior multifocal WMH |


|  | WMH |  |  |  |  |  |  |  | diffuse <br> WMH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spinal MRI: atrophy/signal alteration | No/syringom yelia | No/No | NA | Yes/posterior cordonal hyperintensity | No/No | NA | NA | No/No | No/No | NA |

Legend: WMH= white matter hyper-intensity; -= absent; $\mathrm{N}=$ normal; NA= not assessed; UL=upper limbs; LL=lower limbs; BBK: Babinski sign; nv=normal values; TChol: total cholesterol.
** for UL and LL reflexes: N= normal; += increased; ++= diffused; -= decreased; --= abolished; MS: motor and sensitive (polyneuropathy).

* for the disability score: $0=$ no functional handicap; $1=$ no functional handicap but signs at examination; $2=$ mild, able to run, walking unlimited; $3=$ moderate, unable to run, limited walking without aid; $4=$ severe, walking with one stick; $5=$ walking with two sticks; $6=$ unable to walk, requiring wheelchair; $7=$ confined to bed


## Supplementary Table 3: Detailed clinical features SPG5 patients (from 11 to 21)

| Patient ID | $\begin{aligned} & \text { SAL-279- } \\ & 014 \\ & \hline \end{aligned}$ | SAL-B-563-010 | $\begin{aligned} & \text { SAL-D-563- } \\ & 010 \\ & \hline \end{aligned}$ | SAL-004-006 | $\begin{aligned} & \text { SAL- } \\ & 004-008 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { SAL- } \\ & 004-015 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { SAL-1450- } \\ & 001 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { SAL- } \\ & 1491- \\ & 001 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { SAL-899- } \\ & 027 \\ & \hline \end{aligned}$ | BEL-001 | $\begin{aligned} & \text { LYO- } \\ & 001 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age at onset/Sex | 16/M | 10/F | 44/F | 20/M | 27/M | 7/F | 40/F | 10/M | 37/F | 16/F | NA/F |
| Symptom at onset | Stiff legs; unsteadiness | Stiff legs | NA | Unsteadiness | $\begin{aligned} & \text { Stiff } \\ & \text { legs } \end{aligned}$ | $\begin{aligned} & \text { Stiff } \\ & \text { legs } \end{aligned}$ | Stiff legs | $\begin{aligned} & \text { Stiff } \\ & \text { legs } \end{aligned}$ | NA | Stiff legs | $\begin{aligned} & \text { Stiff } \\ & \text { legs } \end{aligned}$ |
| Disease duration (years) | 42 | 50 | 25 | 34 | NA | 27 | 17 | 37 | 34 | 18 | >20 |
| Disability score X/7* | 5 | 4 | 4 | 6 | 6 | 6 | 3 | 3 | 6 | 5 | NA |
| UL/LL reflexes** | ++/++ | +/+ | ++/++ | +/+ | ++/- | -/- | ++/++ | +/+ | +/++ | +/+ | NA |
| LL spasticity: action/rest | Severe / severe | Severe/mild | Severe/absent | Severe/NA | Severe/ NA | Severe/ mild | Moderate / absent | Present/ present | Severe/prese nt | Severe/s evere | $\begin{aligned} & \hline \text { Present/ } \\ & \text { NA } \end{aligned}$ |
| Babinski sign | Bilateral | Bilatera 1 | Bilateral | Bilateral | NA |
| Romberg sign | Positive | Positive | Positive | Positive | Positive | NA | NA | NA | NA | Positive | NA |
| LL weakness | Severe | Moderate | Mild | Moderate | Severe | Moderat e | Mild | No | No | No | NA |
| UL/LL Vibration sense | Decreased/a bolished | Slightly <br> decreased/decrea <br> sed | Decreased/ab olished | N/decreased | Slightly decrease d/abolis hed | Slightly <br> decrease <br> d/decrea <br> sed | N/Slightly decrease | N/decre ased | NA | Decrease d/Abolis hed | NA/decr eased |
| Urinary problems | No | Urgency | Urgency | Urgency | Yes (not specifie <br> d) | Yes | Urgencyincont inence | Urgenc y | No | Urgency | NA |
| Ocular findings | Saccadic pursuit; ny | Saccadic pursuit | Saccadic <br> pursuit; optic <br> atrophy | N | Ny; saccadic pursuit | N | Saccadic pursuit | N | N | N | NA |
| Other | NA | Pes cavus, claw toes, scoliosis | No | NA | Mild cerebell ar ataxia, myoclon us | Equinus foot | NA | NA | No | Pes cavus | Pes cavus, scoliosis |
| Cognitive involvement | No | No | NA | NA | NA | NA | No | No | No | No | NA |
| ENG/EMG | NA | N | N | N | NA | NA | N | M/S <br> demyeli <br> nating | N | N | NA |
| PESS | NA | Altered (central) UL/LL | NA |
| Cerebral MRI: cortical/cerebellar/ | $-/+/-$ <br> Posterior | +/+/-; Posterior diffuse and focal | -/NA/-; <br> Posterior | NA/NA/NA; <br> Posterior | $+/+/-$ <br> Posterio | No/yes/ No; | -/-/-; one focal not specific | $\begin{aligned} & \hline-/+/-; \\ & \text { No } \end{aligned}$ | $\mathrm{No} / \mathrm{No} / \mathrm{No}$; not specific | $\begin{aligned} & \mathrm{No} / \mathrm{No} / \mathrm{N} \\ & \mathrm{o}: \mathrm{NA} \end{aligned}$ | NA |


| brainstem atrophy; WMH | diffuse <br> WMH | WMH | diffuse <br> WMH | diffuse WMH | r diffuse WMH | Posterio $r$ diffuse WMH | WMH |  | WMH |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Medullar MRI: spinal cord atrophy/signal alteration | NA | Yes/No | NA | NA | NA | NA | No/No | Yes/No | No/No | Yes/No | No/No |

Legend: WMH= white matter hyper-intensity; -= absent; $\mathrm{N}=$ normal; NA= not assessed; UL=upper limbs; LL=lower limbs; BBK: Babinski sign; nv=normal values; TChol: total cholesterol.
** for UL and LL reflexes: $\mathrm{N}=$ normal; += increased; ++= diffused; -= decreased; --= abolished; M/S: motor and sensitive (polyneuropathy).

* for the disability score: $0=$ no functional handicap; $1=$ no functional handicap but signs at examination; $2=$ mild, able to run, walking unlimited; $3=$ moderate, unable to run, limited walking without aid; $4=$ severe, walking with one stick; $5=$ walking with two sticks; $6=$ unable to walk, requiring wheelchair; $7=$ confined to bed

Supplementary Table 4

| Adverse events | Treatment | Causality |
| :---: | :---: | :---: |
| Urinary infection | resveratrol | unrelated |
| Digestive pain | chenodeoxycholic acid acid | probable |
| Digestive pain | chenodeoxycholic acid | probable |
| Digestive pain | chenodeoxycholic acid | probable |
| Digestive pain | chenodeoxycholic acid | probable |
| Digestive pain | chenodeoxycholic acid | probable |
| Athlete's foot fungus | chenodeoxycholic acid | unrelated |
| Hemorrhoids | atorvastatin | unrelated |
| Knee pain | atorvastatin | unrelated |
| Lateral meniscal lesion (right knee) | resveratrol | unrelated |
| Synoviorthesis (right knee) | resveratrol | unrelated |
| Athlete's foot fungus | atorvastatin | unrelated |
| Constipation | atorvastatin | unlikely |
| Vesicular eruption (hands) | atorvastatin | unlikely |
| Fatigue | atorvastatin | unlikely |
| Muscular pain | atorvastatin | unlikely |
| Muscular pain | atorvastatin | unrelated |
| Muscular pain | atorvastatin | unrelated |
| Left knee pain with left calf irradiation | chenodeoxycholic acid | unrelated |
| Plantar arch pain | chenodeoxycholic acid | unrelated |
| Left hip pain | chenodeoxycholic acid | unrelated |
| Episodic digestive pain | chenodeoxycholic acid | probable |
| Digestive pain | chenodeoxycholic acid | probable |
| Paresthesiae of the left foot fingers | chenodeoxycholic acid | unrelated |
| Fracture of the 3rd left metatarsal | chenodeoxycholic acid | unrelated |
| Dark urine (E. Coli Infection) | chenodeoxycholic acid | unrelated |
| Digestive pain | chenodeoxycholic acid | probable |
| Digestive pain | chenodeoxycholic acid | probable |
| Headaches, epigastric pain, and vomiting | chenodeoxycholic acid | unrelated |
| Aphthae | chenodeoxycholic acid | unrelated |
| Pharyngitis | resveratrol | unrelated |
| Digestive pain | chenodeoxycholic acid | probable |
| Digestive pain | chenodeoxycholic acid | probable |
| Leg fracture | chenodeoxycholic acid | unrelated |
| Left leg pain | resveratrol | unrelated |
| Left leg pain (after a fall) | resveratrol | unrelated |
| Left hip pain (after a fall) | atorvastatin | unrelated |
| Inguinal herniation | atorvastatin | unrelated |
| Digestive pain | chenodeoxycholic acid | probable |
| Digestive pain | chenodeoxycholic acid | probable |
| Viral rhinopharyngitis | atorvastatin | unrelated |
| Back pain | atorvastatin | unrelated |
| Headaches | chenodeoxycholic acid | unrelated |
| Diarrhea | chenodeoxycholic acid | probable |
| Headaches | chenodeoxycholic acid | unrelated |
| Belly pain | chenodeoxycholic acid | probable |
| Flu | chenodeoxycholic acid | unrelated |


| Tonsillitis | chenodeoxycholic acid | unrelated |
| :---: | :---: | :---: |
| Bronchitis | resveratrol | unrelated |
| Gingivitis | resveratrol | unrelated |
| Tracheitis | resveratrol | unrelated |
| Digestive pain | resveratrol | unlikely |
| Digestive pain | chenodeoxycholic acid | probable |
| Digestive pain | chenodeoxycholic acid | probable |
| Digestive pain | chenodeoxycholic acid | probable |
| Digestive pain | chenodeoxycholic acid | probable |
| Muscular pain (normal CK) | atorvastatin | unlikely |
| Muscular pain (normal CK) | atorvastatin | unlikely |
| Muscular pain (normal CK) | resveratrol | unlikely |
| Vomiting | chenodeoxycholic acid | unlikely |
| Muscular pain (normal CK) | chenodeoxycholic acid | unlikely |
| Digestive pain | chenodeoxycholic acid | probable |
| Mild fatigue | chenodeoxycholic acid | unlikely |
| Nasal polyp | atorvastatin | unrelated |
| Tendinitis (right hand) | chenodeoxycholic acid | unrelated |
| Digestive pain | chenodeoxycholic acid | probable |
| Digestive pain | chenodeoxycholic acid | probable |
| Digestive pain | chenodeoxycholic acid | probable |
| Carpal tunnel syndrome | chenodeoxycholic acid | unrelated |
| Carpal tunnel syndrome surgery | chenodeoxycholic acid | unrelated |
| Headaches | chenodeoxycholic acid | unrelated |
| Hyperthyroidism | atorvastatin | unlikely |
| Fatigue | atorvastatin | unlikely |
| Hyperthyroidism | atorvastatin | unrelated |
| Seborrheic verruca (left eye) | atorvastatin | unrelated |
| Tonsillitis | atorvastatin | unrelated |
| Right knee pain (popliteal cyst and arthosis) | resveratrol | unrelated |
| Digestive pain | chenodeoxycholic acid | probable |
| Diarrhea | chenodeoxycholic acid | probable |
| Diarrhea | chenodeoxycholic acid | unlikely |
| Anxiety | chenodeoxycholic acid | unrelated |
| Left ear otitis | resveratrol | unrelated |
| Tongue aphthae | chenodeoxycholic acid | unrelated |


[^0]:    * candidate gene

