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1.1 Neuropsychiatric Assessment Instruments 

 

1.1.1 Barratt Impulsiveness Scale 

The BIS is one of the most widely used instruments for assessing trait impulsivity and is often 

considered the gold standard instrument against which other measures are compared. It is a 30-item 

self-report questionnaire assessing the prevalence of impulsive behaviours. Respondents must rate each 

item (e.g. ‘I act on the spur of the moment’) from 1 to 4 according to the frequency of occurrence (i.e. 

rarely / never; occasionally; often; always / almost always). Higher scores indicate greater impulsivity. 

The mean BIS score is significantly greater in persons with PD with ICDs compared to non-impulsive 

persons with PD (Isaias et al., 2008; Voon et al., 2007), suggesting that this instrument also has 

construct validity in the assessment of impulsivity in PD. 

 

1.1.2 Questionnaire for Impulsive-Compulsive disorders in PD 

The QUIP-RS is a 28-item self-report questionnaire assessing the prevalence of ICDs including 

compulsive spending, hypersexuality, pathological gambling, binge eating, hobbyism, punding and 

dopamine dysregulation (Weintraub et al., 2012). Respondents much rate each item (e.g. ‘Do you have 

urges or desires for the following behaviours that you feel are excessive or cause you distress?’) from 

0 (never) to 4 (very often). The total sum obtained for each compulsive behaviour indicates the current 

severity of that behaviour. The instrument was designed for use in the PD population and was previously 

validated against a semi-structured clinical interview.  

 

1.1.3 Hayling Test 

The Hayling Test is a sentence completion task, during which participants must insert a nonsense word 

at the end of a sentence, inhibiting the pre-potent stimulus to complete the sentence with a word that 

makes sense. The test assesses the construct of inhibition and is sensitive to frontal lobe dysfunction 

(Burgess et al., 1997). For example, in the sentence: ‘the whole town came to hear the Mayor…’ a 

correct response could be ‘banana’. Participants would be penalised for completing the sentence with 

the clearly related words ‘speak’, or ‘talk’ (referred to as category A errors), as well as with words that 

are only partially connected such as ‘explode’ (referred to as category B errors). Persons with PD make 

more category A and B errors than controls on this task (O'Callaghan et al., 2013a; Obeso et al., 2011).  

 

1.1.4 Excluded Letter Fluency Task 

The ELF is an additional measure of inhibitory control (Shores et al., 2006). Participants are given 3 

trials of 90 seconds to produce as many words as possible that do not contain a specified vowel. Words 
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must be longer than 3 letters and cannot be proper nouns or derivations of the same word stem. Scoring 

includes an overall correct total, the number of rule violations and the number of word repetitions. In a 

sample of 50 persons with PD, the number of rule violations was previously shown to be significantly 

greater compared to age-matched controls and was highly correlated with anatomical changes in brain 

regions implicated in inhibition (O'Callaghan et al., 2013b).  

 

1.1.5 Delay Discounting Task 

An assessment of delay aversion, the tendency to prefer sooner, smaller rewards over those that are 

larger but temporally more distant (Kirby et al., 1999). The task was designed to assess impulsivity in 

individuals with substance use disorders; behaviours that share face validity with the impulse-control 

disorders (ICDs) observed in a subset of persons with PD. Participants are presented with a series of 27 

choices between an amount of money distributed immediately and a larger sum after a specified delay. 

After the task is complete, participants have the opportunity to win the amount of money they have 

chosen in a choice selected at random, either immediately or after a delay, depending on the choice they 

have made. Subsequently, the pattern of choices is analysed to calculate a discount parameter, or the 

point of indifference between delayed and immediate rewards for a given sum. Individuals with greater 

delay aversion have a higher discount parameter. The extent of delay aversion was previously shown 

to be greater amongst persons with PD than healthy controls (Milenkova et al., 2011), as well as being 

greater amongst persons with PD with ICDs than non-impulsive persons with PD (Housden et al., 2010; 

Voon et al., 2011).  

 

  



 4 

 

 

Supplementary Figure 1 | Slot Machine Gambling Paradigm  

The task consists of 100 trials. On every trial, players are able to place a bet of unlimited magnitude, switch slot 

machines or ‘cash out’, exiting the casino and returning again on another virtual ‘day’. The overall win probability 

is 25 %, with wins split into big wins and small wins. The two possible types of losses are near-misses, in which 

the first two wheels are the same and the third is different (i.e. AAB) or a true loss, in which all the wheels are 

different (i.e. ABC). Game play proceeds as follows. Each trial begins with the slot machine main screen loading, 

displaying the player’s account value. The player then places a continuous-valued bet amount, incremented in 

units of 5 or 10 AUD. After the player has placed a bet, he or she presses the ‘Pull’ button and watches as the 

wheels begin to spin. At any point, the player has the ability to press the ‘Stop’ button, ending the trial and 

subsequently revealing the outcome of the three wheels. Unbeknownst to the participant, pressing the stop button 

has no effect on the trial outcome. If the stop button is not pressed, the trial times out after 5 seconds, and the 

player sees the outcome of the first, second and third wheel sequentially. On trials in which the outcome is a win, 

there are ten possible reward grades (or multiples of the bet amount). After every win trial, players are offered a 

possible ‘double-up’ option, during which players are given 3 seconds to decide whether or not to engage in a 

‘double-or-nothing’ option, thereby risking his or her entire win amount. If the player elects to engage in this 

gamble, a card flips over revealing the result, and subjects are taken to the next trial. If the player does nothing, 

or decides not to gamble, he or she is taken to the next trial. For each loss trial, players are taken directly to the 

beginning of the next trial. Again, the trajectory of win-loss outcomes is fixed, ensuring comparable inference 

upon perceptual and response parameters across participants. 
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1.2 The Virtual Casino 

 

We employed a modified version of an established slot machine gambling paradigm validated 

in healthy controls (Paliwal et al., 2014). The task was designed to have standard features 

normally attributed to slot machines (colours, sounds, banners), and its features were designed 

to mirror the specifications of Swiss and German slot machines (Figure 2). Due to its game-

like feel, the task successfully elicits impulsive, risk-taking and exploratory behaviour in 

participants. Task behaviour has been previously shown to correlate with standard measures of 

impulsivity (i.e. the BIS). Players began the slot machine with 2000 AUD in their account, and 

played through 100 trials. The trajectory of win-loss outcomes was predetermined, ensuring 

that participants’ experience of rewards and losses were comparable in order and quantity. The 

trajectory results in a positive outcome (net winnings) for most participants. At the end of the 

task, participants were awarded up to 30 AUD in real money based on the size of these virtual 

winnings.  

 

The task began with five training trials, after which the participant played through the main 

task, consisting of 100 trials. Only data from the main task were used for further analysis. For 

the main task, the win probability was 25 %, with wins split into big wins (12 % of trials) and 

small wins (88 % of trials). Players won when all three wheels showed the same symbols (e.g. 

all three wheels display an apple image). There were two possible types of losses. The first was 

a near-miss, in which the first two wheels of the slot machine displayed the same symbol, and 

the third was different (e.g. cherry, cherry, apple). The second was a true loss, in which all the 

wheels displayed different images (e.g. cherry, apple, orange). 

 

Game play proceeded as follows: at the onset of each trial, the main screen loaded, displaying 

the player’s account value. Players were then able to execute one of the following actions: 

place a bet (of unlimited magnitude – by loading the machine in increments of 5-10 AUD), 

switch slot machines, or ‘cash out’, which involved ‘exiting’ the casino and returning again on 

another virtual ‘day’. While these actions might at first glance appear to relate to different 

behaviours, they all share a common theme in that they enhance outcome variance and thus 

risk (compare the definition of risk in behavioural economics). For example, for a machine 

switch, regardless of whether the player is performing well or poorly on the current machine, 

the decision to switch machines incurs the risk that the new machine chosen may be punishing 

or rewarding, thereby making the player vulnerable to the variance of the task. Similarly, a bet 
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increase is a risk-inducing shift in the face of uncertainty, again making the player more 

susceptible to larger wins and losses. And in the same respect, casino switches and double-ups 

again expose players to the risk that their environment will change dramatically, and for the 

worst. Each of the above actions thus leads to greater outcome variance (risk), and risk-taking, 

in turn, is one critical component of impulsivity (Whiteside and Lynam, 2001). 

 

If the player chose to bet, after loading the machine, they pressed the ‘Pull’ button and watched 

as the wheels begin to spin. The player had the option of pressing the ‘Stop’ button at any time 

during wheel spin, ending the trial and subsequently revealing the outcome of the three wheels, 

Pressing the stop button had no effect on the trial outcome; though this was not told to the 

participant. In the absence of the stop button being pressed, the trial timed out after five 

seconds, and revealed the outcome to the player, with the first, second and third wheel stopping 

sequentially. For winning trials, there were ten possible reward amounts. Each possible reward 

was called a reward grade, and indicated a different multiple of the bet size placed (e.g. reward 

grade 1 indicated a reward amount that was double the bet amount placed).  After each win 

trial, the player is offered a ‘double-up’ option, during which they were given three seconds to 

decide whether or not to engage in a ‘double-or-nothing’ option. The double-or-nothing option 

had two possible outcomes: if the player won the double-or-nothing gamble, they doubled their 

win amount from that trial, if they lost the double-or-nothing option, they lost their entire win 

amount from the corresponding trial. If the player did nothing, or decided not to gamble, they 

are taken to the next trial. For losses, players were taken directly to the beginning of the next 

trial.  

 

In the context of the analyses presented, this version of the slot machine deviated from the 

version presented in Paliwal et al. (2014) in several important ways: here, players were given 

the ability to place unlimited bet sizes with the ability to increase their bets in increments of 5 

or 10 AUD; there were no ‘fake win’ results, simply wins and losses; the task was considerably 

(fifty percent) shorter; and finally, the task was aesthetically remodelled in order to be more 

naturalistic.  

 

Each trial in the game followed a pre-programmed result sequence consisting of the following 

trial types: 

 

i. big wins: top three out of 10 reward grades 
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ii. small wins: lower 7 out of 10 reward grades 

iii. near misses: when the same symbol appeared in wheel 1 and two, and a different symbol 

appeared in wheel 3 

iv. true losses (all three wheels showed different symbols). 

 

After all win trials, a participant was allowed to engage in a secondary double-or-nothing 

gamble, and had three seconds to decide whether or not to do so. A more detailed trial 

breakdown across the various types of wins and losses is listed below: 

 

i. 25 out of 100 trials were wins 

ii. 3 out of 100 trials were big wins 

iii. 22 out of 100 trials were small wins 

iv. 22 out of 100 trials were near misses 

v. 52 out of 100 trials were full losses. 

vi. All win trials contained a double-up option  
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Supplementary Figure 2 | Diffusion Processing Pipeline 

High angular-resolution diffusion-weighted imaging was acquired along 90 directions using a 3T scanner and a 

64-channel array head coil, with a b-value of 3000s/mm2 and voxel size of 1.7 mm3 isotropic. After denoising, 

and correction for motion, susceptibility, bias and eddy-current induced distortions, fractional anisotropy (FA) 

maps were calculated for each participant. B: FA maps were non-linearly registered to a population-average FA 

template, in order to derive an average white matter mask, which was then warped back into individual space to 

permit intensity normalisation on the diffusion data. This ensured that the median b0 white matter value was 

uniform across the study population. C: From the intensity-normalised diffusion data, signal responses across 

different tissue types (grey-matter, white-matter, CSF) were estimated and averaged across all participants to 

obtain a group-wise response function. Constrained spherical deconvolution of the average white-matter signal 

furnished fibre orientation distribution functions (fODF) for each participant. These functions provide local 

estimates of the density of fibres according to their angular orientation and can resolve complex organisations of 

crossing fibres more effectively than single tensor models. Our acquisition protocol incorporating 90 directions 

was designed to optimise this process. D: Fibre bundles were reconstructed using a probabilistic streamline 

algorithm, through sampling a probability density of the fODF at each path point, tracking the most plausible fibre 

propagations between seed and target regions. E: Quantitative estimates of structural connectivity between seed 

and target regions were derived from the apparent fibre density (AFD), calculated by summing the fODF lobe 

integrals along the pathway of interest and dividing by mean streamline length, to estimate the mean cross-

sectional area of the fibre bundle.  



 9 

 

1.3 Diffusion Image Acquisition 

 
Diffusion MRI data were acquired using a 3T Siemens PRISMA scanner, with a 64-channel 

array head coil. For each scan, the diffusion-weighting was distributed in an isotropic manner 

(1.7 mm3 voxel resolution) along 90 directions with a b-value of 3000s/mm2 (phase-encoding 

in anterior-posterior direction), using a twice-refocused spin-echo planar imaging (EPI) 

sequence. Twelve non-diffusion-weighted images (b0) were acquired and interleaved 

throughout this sequence. An additional sequence of 8 non-diffusion weighted images were 

acquired in the opposite phase-encoding direction (posterior-anterior).  

 

1.4 Diffusion Image Pre-Processing 

 
dMRI data were pre-processed using functions provided within MRtrix3 (www.mrtrix3.org) 

(https://github.com/MRtrix3/mrtrix3), called from a pre-processing pipeline developed in-

house (https://github.com/breakspear/diffusion-pipeline).  The dMRI data were first denoised 

(Veraart et al., 2016) and then corrected for motion, susceptibility, and eddy-current induced 

distortions within FSL eddy (version 5.0.11) (Andersson and Sotiropoulos, 2016), leveraging 

the reverse phase-encoding acquisition to estimate the inhomogeneity fields. FSL eddy (using 

--repol) was also used to detect slice signal outliers due to bulk motion, corrected using a non-

parametric replacement method (Andersson et al., 2016). Finally, bias-intensity correction was 

performed (Zhang et al., 2001). 

 

1.5  Intensity Normalization and Fibre Reconstruction 

 
To permit the comparison of fibre reconstruction and structural connectivity estimates across 

participants, group-average intensity normalization was performed. Briefly, fractional 

anisotropy (FA) maps were first calculated from the bias-corrected diffusion images of each 

participant (Fig 1A), and non-linearly registered to a generated population-average FA 

template (Fig 1B). The population template was subsequently used to derive an average white-

matter mask (FA > 0.4), which was warped back into individual space, and then intensity 

normalization was performed on the dMRI data. This ensured that the median b0 white-matter 

value was uniform across study participants (Raffelt et al., 2012).  

 

https://github.com/MRtrix3/mrtrix3
https://github.com/breakspear/diffusion-pipeline)
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From the intensity-normalized diffusion data, the signal responses across different tissue-types 

(grey-matter, white-matter, CSF) were estimated (Dhollander et al., 2016; Dhollander et al., 

2018) and then averaged across all participants to obtain a group-wise response function. 

Through constrained spherical deconvolution (CSD) (lmax = 8, msmt_csd) (Jeurissen et al., 

2014) of the average white-matter signal contribution, fibre orientation distribution functions 

(fODF) were estimated for each participant (Fig 1C). The fODF provides local estimates of the 

apparent density of fibres as a function of angular orientation (Tournier et al., 2004; Tournier 

et al., 2007). CSD is able to resolve complex local fibre orientations and amplitudes at high-

precision (Raffelt et al., 2015) and the acquisition protocol in this investigation was designed 

to maximise this capability.  

 

1.6 Tractography 

 

The probabilistic streamline algorithm iFOD2 (Tournier et al., 2010) was used to reconstruct 

fibre-bundles. Through sampling a probability density function of the fODF at each path point, 

the iFOD2 algorithm tracked the most plausible fibre propagations between seed and target 

regions, until 100 streamlines in total were reconstructed (Fig 1D). The default (for the acquired 

voxel resolution) tracking parameters were as follows: step size = 0.86 mm, minimum length 

= 8.56 mm, max length = 250 mm, seed/termination fODF threshold = 0.05, curvature 

constraint = 1 mm radius.  

 

All cortical and basal ganglia regions used in seed-based tractography were in MNI ICBM 

nonlinear asymmetric space. Parcellations were first transformed into individual anatomical 

space through non-linear co-registration of the skull-stripped T1 image and the ICBM template 

(Avants et al., 2008). Resultant parcellations (now in anatomical space) were then co-registered 

into diffusion space, applying a transformation matrix derived from boundary-based 

registration (Greve and Fischl, 2009) of the anatomical and mean b0 diffusion images.  

 

1.7 Apparent Fibre Density 

 
Estimates of structural connectivity between each seed and target region was derived from the 

apparent fibre density (AFD) (Raffelt et al., 2012), calculated by summing the fODF lobe 

integrals along each pathway of interest, approximating the total fibre volume. To correct for 

differences in fibre length, the total fibre volume was divided by the mean streamline length to 
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estimate the cross-sectional area of the fibre bundle, providing a measure of fibre ‘density’ 

independent of fibre length.  

 

AFD affords a more biologically-interpretable quantification of structural connectivity along a 

given bundle in comparison to traditional tensor-derived metrics such as fractional anisotropy 

(FA) and mean diffusivity (MD) (Calamante et al., 2015; Raffelt et al., 2012). Tensor-based 

metrics provide an average value across all voxels traversed by the pathway of interest and 

their biological interpretation in neurological disorders is contested, especially in tissue that 

contain crossing fibres (Raffelt et al., 2015; Riffert et al., 2014; Scheck et al., 2015). 

 

1.8 Networks 

 

Cortical targets for the reward evaluation and response inhibition networks were selected from 

a gold-standard subdivision of the cortex based on multimodal MRI data (Glasser et al., 2016), 

which were initially projected onto volumetric MNI ICBM nonlinear asymmetric 2009a space 

(Horn, 2016). These included areas 10r and 10v (vmPFC), OFC and pOFC (OFC), a24 and p24 

(ACC), 45 and 47l (IFG), 6ma and 6mp (SMA).  The basal ganglia parcellations (within 2009b 

space) that served as seeds within these tractography networks included the VS (Choi et al., 

2012), the VTA (Pauli et al., 2018), and the STN (Ewert et al., 2018). All cortical and basal 

ganglia parcels were non-linearly transformed into native diffusion space via the skull-stripped 

anatomical image.  
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1.9 PLS Path Modelling 

 

Partial least squares path modelling (PLS-PM) was employed to represent the multivariate 

relationships between connectivity and behavioural measures (McIntosh and Lobaugh, 2004; 

Shaw et al., 2016), controlling for relevant demographic and disease-related factors. PLS-PM 

is a form of structural equation modelling in which complex associations between multivariate 

data sets can be estimated. Each model specifies the linear weighting of one set of variables 

that best co-varies with a linear weighting of another. For example, in this investigation, 

connectivity variables were created from the reward evaluation and response inhibition 

networks as a weighted mixture of the connectivity of each tract within the network. 

Behavioural variables were formed from each neuropsychiatric instrument and each gambling 

output (although as these were assessed individually, the relationship between each behavioural 

variable and observed behaviour was monotonic). Each model then represents the path 

coefficients and yields the corresponding significance values for the relationship between these 

connectivity and behavioural variables, in addition to describing the weighted contribution that 

each tract makes to the connectivity variable. In each model, continuous measures including 

age, years since diagnosis of Parkinson’s disease and LEDD were also entered as co-variates, 

with disease subtype and gender examined with a permutation test. Interaction (or moderating) 

effects of these co-variates on the effect of connectivity on behaviour were also modelled. 

Confidence intervals for estimates of the path coefficients were determined by bootstrapping, 

in which the data set was repeatedly sampled with replacement to create 10,000 independent 

bootstrapped data sets, with the sample size equal to the number of participants. Each PLS path 

model was developed using a bi-hemispheric structural network, but results for each 

hemisphere in isolation are also reported.  

 

For each outcome of interest, a number of alternative PLS path models of varying complexity 

could be proposed. However, there is no consensus method for determining the optimal trade-

off between model fit and model complexity (Henseler and Sarstedt, 2013). Therefore, model 

complexity was constrained a priori to be equivalent across all models; each PLS path model 

included only one structural network and all included age, years since diagnosis and LEDD as 

covariates. One interaction term with the structural network was included (e.g. the interaction 

of LEDD or age with the reward evaluation network). The winning model from all 

permutations was selected based on the maximum R2 value prior to bootstrapping: in the setting 
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of equivalent complexity of all estimated models, we thus use model fit (R2) as the single 

summary metric for comparing models. 

 

Formal mathematical treatment of the PLS-PM model is given by Tenenhaus et al. (2005). In 

brief, each PLS path model is formed by two submodels: the structural (or inner model) and 

the measurement (or outer model). The structural model assesses the relationships between 

latent variables (in this case connectivity and behaviour), which are unobserved (latent) 

representations that cannot be directly measured but may underlie associations between 

measurable variables. The measurement model describes how each latent variable relates to a 

block of manifest (observed) variables (such as how the connectivity variable is comprised of 

a mixture of tracts from each frontostriatal network that can be quantified).  

 

Linear relationships within the structural (inner) model are expressed as:  

 

𝐿𝑉𝑗 =  𝛽0 + ∑ 𝛽𝑗𝑖𝐿𝑉𝑖

𝑖→𝑗

+ 𝑒𝑟𝑟𝑜𝑟𝑗   

 

where the j-th latent variable 𝐿𝑉𝑗, formed by the block 𝑋𝑗 of variables, is predicted by a 

weighted sum of the remaining latent variables 𝐿𝑉𝑖, with weight coefficients 𝛽𝑗𝑖 (path 

coefficients) representing the strength and direction of the relations between 𝐿𝑉𝑗 and predictors 

𝐿𝑉𝑖. 

 

In the ‘formative’ measurement model employed here to define the connectivity latent 

variables, manifest (observed) variables (individual tracts within each network) are considered 

to be ‘forming’ the latent variable, which is calculated as a weighted sum of its manifest 

variables: 

 

𝐿𝑉𝑗 =  ∑ 𝜔𝑗𝑘𝑋𝑗𝑘

𝑘

 

 

with each variable 𝑘 within each block 𝑋𝑗 of variables denoted by 𝑋𝑗𝑘 and weights denoted by 

𝜔𝑗𝑘. For alternative types of measurement models in PLS-PM, please see Tenenhaus et al. 

(2005). 
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The PLS algorithm is an iterative procedure in which abitary weights are first assigned to the 

outer model, in order to approximate the inner latent variables as linear combinations of their 

manifest variables. Then, relationships between latent variables in the inner model are 

considered to obtain approximations of the inner model. Subsequently, new outer weights are 

calculated and the inner model respecified until the model converges on the outer weights. At 

this point path coefficients are estimated using ordinary least squares regression between latent 

variables.  

 

In summary, the goal of PLS-PM is to analyse a system of linear relationships between multiple 

blocks of variables. Latent (unobserved) variables are calculated as linear combinations of their 

associated formative (manifest) variables. Linear combinations are optimised so that the final 

obtained latent variables express the relationships of the structural and measurement models in 

a way that maximises the explained variance.   
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Supplementary Figure 3 | PLS Path Modelling.   

A PLS path model represents the relationship between structural network connectivity and impulsivity. 

A connectivity variable is constructed from the apparent fibre density of each white matter tract in the 

structural network under investigation. The individual contribution of each tract to the connectivity 

variable is quantified by a ‘weight’ and the connectivity variable is formed as a linear mixture of the 

corresponding apparent fibre density values that best co-varies with the behavioural variable under 

investigation. The relationship between the connectivity and behavioural latent variables is quantified 

in the path model by a path coefficient (that can be tested for statistical significance). Relevant 

demographic and disease-related co-variates are also represented in the inner model and path 

coefficients can be determined for these relationships. An interaction (moderating) effect can be 

modelled; in this case, the interaction of LEDD with the connectivity variable. Bootstrapping of the 

model yields 95 % confidence intervals for the path coefficients of interest. 
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1.10 Latent Change Score Modelling 

 

A latent change score model was applied to test for longitudinal cross-domain (connectivity-

behaviour) coupling. In these models, the score of an individual 𝑖 on a construct of interest 

𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 at time 𝑡 can be used to calculate a change score between 𝑡1 and 𝑡2: 

 

∆𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑖 = 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑖,𝑡2 − 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑖,𝑡1 

 

The latent change score factor ∆𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑖 is modelled as a latent variable. It captures the 

change between timepoints and is proportional to the scores at 𝑡1 through an autoregressive 

parameter 𝛽: 

 

∆𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑖 = 𝛽 ∙ 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑖,𝑡1 

 

In this manuscript, both 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 and 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 variables are including in a bivariate 

extension of the latent change score model. Through cross-domain coupling, the extent of 

change in one domain ∆𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑖 can be seen as a function of the baseline level in the other 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖,𝑡1. This can be quantified as follows: 

 

∆𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑖 = 𝛽 ∙ 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑖,𝑡1 +  𝛾 ∙ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖,𝑡1 

 

In the context of this investigation, this relationship captures the extent to which changes in 

impulsivity are a function of the initial condition of brain measures (i.e. structural network 

connectivity at baseline). For further mathematical treatment of these relationships, please see 

Kievit et al. (2018). 
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1.11 Linear Mixed-Effects Modelling 

 

Linear mixed-effects models complemented the latent change score models by providing an 

explicit change term in interpretable units, such as dollars wagered or percentage of ‘double or 

nothing’ gambles accepted. These took the form: 

 

Gambling variableij ~ Connectivityij + LEDDi + Agei + Genderi + Years Since Diagnosisi + Timepointij + 

(1|ID) + (1|Timepointij) 

 

with i denoting participant and j denoting timepoint.  

 

Models were adjusted for levodopa equivalent dose, age, gender, years since diagnosis of 

Parkinsons’ disease and timepoint (pre- or post-DBS), with random intercepts specified for 

each participant and each timepoint.  

  

The term in bold (the effect of connectivity on gambling variable) is the coefficient of interest. 

Hypothesis testing on a null model (omitting connectivity) was performed with the anova 

function in the lavaan package.  
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