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Supplementary Material 

1 Supplementary Methods 

1.1 Clinical data of each patient in the study 

Supplementary Table 1. Clinical data of each patient in the study.  
aCC = Cleveland Clinic, KUMC = University of Kansas Medical Center, JHU = Johns Hopkins Hospital,  

Miami = University of Miami Hospital, NIH = National Institutes of Health, UPMC = University of Pittsburgh 

Medical Center 

bS = Success, F = Failure 

cR = Right, L = Left 

dF = Female, M = Male 

eMTLE = Mesial-Temporal Lobe Epilepsy, NMTLE = Non-Mesial-Temporal Lobe Epilepsy 
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Patient ID Center
a Engel ILAE Outcome

b Race Age Hand
c

Gender
d Surgery Type # Channels EZ Channels Treated Channels MTLE/NMTLE

e Epilepsy Type MRI Findings

la02 CC 1 1 S 0 19 R F ablation 60 L'2-4 L'1-5 NMTLE Focal Normal

la03 CC 2 2 F 0 37 R M ablation 102 L7, W12-14, X6-10, O14-16, F10-12 L5-9 NMTLE Focal Normal

la04 CC 2 4 F 0 32 R M ablation 76 L'4, G'1-15 L'2-6, G'1-3 NMTLE Focal Normal

la05 CC 2 2 F 0 29 R M ablation 138
D'1-2, U'3-5, D1-2, S'7-11, 

S7-11, T'1-3, T1-3
T'1-4, D'1-4 NMTLE Focal Normal

la06 CC 2 3 F 0 37 R F ablation 75 Q'3-4, R'3-4 Q'1-6, R'1-6 NMTLE Focal Normal

la08 CC 3 4 F 0 24 R F ablation 84 Q1-3 Q1-4 NMTLE Focal Normal

la09 CC 2 4 F 0 34 R F ablation 155 X'1-4, U'1-2, P'1-2 P'1-4 NMTLE Focal Normal

la10 CC 2 5 F 0 20 R M ablation 118 S1-2, R2-3 S1-4, R1-5 NMTLE Focal Normal

la11 CC 2 4 F 0 22 R M ablation 134 D6, Z10 D4-8, Z8-12 NMTLE Focal Normal

la13 CC 1 2 S 0 43 R M ablation 50 Y13-14 Y11-16 NMTLE Focal Normal

la15 CC 4 5 F 0 22 R M ablation 136 R1-3 R1-5 NMTLE Multi-Focal Normal

la16 CC 4 5 F 0 37 R M ablation 125 Y1-2, M'1-2, X'1-2, Q7-8 Q7-8 NMTLE Multi-Focal Normal

la21 CC 1 1 S 0 40 R M ablation 115 J6-9, X5-8, Y11-Y16 J6-9, X5-8 NMTLE Focal Abnormal

la22 CC 2 4 F 2 44 R F ablation 126 P3-4 P3-4 NMTLE Focal Normal

la23 CC 1 1 S 0 28 L F ablation 119
L1-2, O1-2, V1-2, V4-5, C1-4, 

U1-6,  F6-7, I1-10
L1-2, O1-2, V1-2 NMTLE Focal Abnormal

la24 CC 2 3 F 0 19 R F ablation 133 C'6-7, L'6-7, O'6-7 C'6-7, L'6-7, O'6-7 NMTLE Focal Abnormal

nl01 CC 3 2 F 0 24 R F resection 153 M'8-12 M'8-10 NMTLE Focal Normal

nl04 CC 1 2 S N/A 16 L M resection 97 R'1-5, Q'2-3, R6-7, Q1-2 R'1-6, H'5-10, S'6-10 NMTLE Focal Normal

nl05 CC 1 2 S 0 23 L M resection 94
M'7-9, W'2-3, W'9-12, Y'1-7, 

Y'10-13, Z'1-3, Z'9
W'1-12, Y'1-14, Z'1-9 NMTLE Focal Normal

nl07 CC 1 1 S 0 37 R M resection 56 R5-7, Q7-9, R'5-7, M2-5 R5-10 NMTLE Focal Normal

nl08 CC 1 1 S 0 16 R F resection 91 I'1-4, A'1-4, B'1-4, C'1-4, E'1-4 A'1-14, E'1-14, I'1-10 MTLE Focal Normal

nl12 CC 4 5 F 0 16 R M resection 135 A2-14, I1-8, T3-9 A2-14, I1-8, T3-9 NMTLE Focal Normal

nl13 CC 1 1 S 0 65 R F resection 68 B'1-4, C'1-3, T'1-9 B'1-4, C'1-3, T'1-10 NMTLE Focal Normal

nl14 CC 2 4 F 0 43 R M resection 123 X1-3, X5-6, X9-14, E4-5 B1-14, E1-12, F1-11, X1-16 NMTLE Focal Normal

nl15 CC 1 2 S 0 31 R F resection 54 B1-3, A1-3 A1-10, B1-10, I1-6, E1-7 MTLE Focal Normal

nl16 CC 1 1 S 0 25 R F resection 71 B’8-9, C’9-10, E’7-8, I'1-16 A'1-14, B'1-3, E'1-10, I'1-9 NMTLE Focal Normal

nl18 CC 1 1 S 0 18 R F resection 99 A1-2, B1-2, C1-4
A1-14, I1-8, T1-8, B1-14,

C1-14
NMTLE Focal Normal

nl19 CC 3 3 F 1 25 L M resection 99 A1-2 A1-12, I1-9, T1-8 NMTLE Focal Normal

nl20 CC 1 1 S 0 58 R F resection 58 A'1-10, I'1-7, T'4-6, B'1-10 A'1-10, I'1-7, T'4-6, B'1-10 MTLE Focal Normal

pt1 KUMC 1 2 S N/A 24 N/A F resection 62 RST5-8 RST5-8 NMTLE Focal Abnormal

pt3 KUMC 1 2 S N/A 35 N/A F resection 83 RHH1-2 RTP1-6, RHH1-8 MTLE Multi-Focal Abnormal

pt4 KUMC 2 4 F N/A 31 N/A F resection 125 LAC1-2, LMC1 LMC1-2 NMTLE Focal Normal

pt6 KUMC 3 4 F N/A 57 N/A M ablation 45 LHB1-3, LHH1-3 LHH1-3, LHB1-3 MTLE Focal Normal

pt8 KUMC 2 3 F N/A 27 N/A M resection 128 RHH1-7 RHH1-14 MTLE Focal Normal

pt10 KUMC 1 1 S N/A 35 N/A F resection 94 RHB1-4 RAM1-6, RHB1-5 MTLE Focal Normal

pt11 KUMC 2 1 F N/A 68 N/A M resection 49
LSTG2, LSTGC1-2, LAM1-4, 

LHH1-3
LAM1-14, LHH1-14, LENC1-10 MTLE Multi-Focal Normal

pt12 KUMC 2 3 F N/A 22 N/A M resection 59 OF8-9 OF7-9, LA3-6, MA1-6, MB1-6 NMTLE Focal Abnormal

pt13 KUMC 1 1 S N/A 58 N/A F resection 76 RHH5-6 RHH1-8, RHB1-8, RAM1-8 MTLE Focal Normal

PY18N002 JHU 2 2 F N/A 62 N/A M resection 95
RHD1-2, RAD1-2, LMFD1-2, 

ßLOFD1-2
RHD1-2, RAD1-2 MTLE Multi-Focal Abnormal

PY18N013 JHU 1 1 S N/A 24 N/A F resection 126 LTP1-4, LSTA1-2, LMTA2
LTP1-4, LSTA1-2, LMTA2, 

L Amygdala
MTLE Focal Abnormal

PY18N015 JHU 1 1 S N/A N/A N/A F resection 76 LOF1, LA1-3, LH1-3 LOF1-14 NMTLE Focal Abnormal

PY19N015 JHU 3 4 F N/A 23 N/A F RNS 87
LBT1-3, LHP1-2, LA1-2, 

LHA1-3
N/A MTLE Focal Abnormal

PY19N023 JHU 1 1 S N/A 32 N/A M resection 87
RA1-2, RAH1-2, RPH1-2, 

RMI3-5, RMM5-6
N/A MTLE Focal Abnormal

002 Miami 3 N/A F N/A 36 R F RNS 123 DYS5-8 N/A MTLE Multi-Focal Abnormal

003 Miami 3 N/A F N/A 21 L M RNS 97 LIS1-6 N/A NMTLE Multi-Focal Abnormal

004 Miami 4 N/A F N/A 52 L M RNS 40 H1-2 N/A MTLE Focal Normal

006 Miami 1 N/A S N/A 49 R M RNS 39 LAI1-3, LSF3-4, LAC5-7, LMF5-7 N/A NMTLE Focal Abnormal

009 Miami 3 N/A F N/A 48 R M RNS 28 RTL1-3, RAT1-3 N/A MTLE Multi-Focal Normal

011 Miami 4 N/A F N/A 24 R F RNS 80 ROF6-12 N/A NMTLE Focal Normal

013 Miami 2 N/A F N/A 25 R M RNS 36 RAI9-12 N/A MTLE Focal Normal

015 Miami 2 N/A F N/A 27 R/L M RNS 57 LFP1-6 N/A NMTLE Multi-Focal Normal

nih2 NIH 1 1 S 1 31 R M resection 89 RAID1-4, RIPI1-2, RPHD1-3
RATO1-10, RPTO1-10, RPHD1-4, 

RIPI1-2, RAID1-2
NMTLE Multi-Focal Normal

nih3 NIH 1 1 S 0 36 R F resection 89
LAD2-6, LAHD4-5, LAHD13-14, 

LAD10-12, LOF9-10, LPFC1-2
LAD1-12 NMTLE Multi-Focal Normal

nih4 NIH 1 1 S 0 39 R M resection 94 RSLP8-9, RILP7, RSMP3 RSLP5-10, RILP5-10 NMTLE Multi-Focal Abnormal

nih5 NIH 1 1 S 0 41 R M resection 97
SAF6-7, IEPF3, SPF8-12, IPF9-11, 

SMF7-8, IEAF9-10

IEAF9-10, IAF8-11, SMF6-9, 

SPF7-8, SAF6-9
NMTLE Focal Normal

nih7 NIH 3 4 F 0 46 R M resection 106 LPH1-3, LAH1-5 LAH1-6, LPH1-4, LALT6 MTLE Multi-Focal Abnormal

nih8 NIH 2 4 F 0 37 R M resection 153 LPT1-6 LPT1-16 MTLE Focal Normal

nih9 NIH 3 4 F 0 16 L F resection 119 AID4-8 PLF1-3, ALP1-4, PLP1-6 NMTLE Focal Abnormal

nih10 NIH 2 3 F 0 25 R M resection 83 LAID6-8 LAID2-10 NMTLE Focal Normal

nih11 NIH 2 3 F 0 27 R M resection 112 LSA5-8, MPF6-12, LIA1-6
MAF4-10, LSA4-8, LMA4-8, 

LIA7-8
NMTLE Focal Abnormal

upmc1 UPMC 1 1 S N/A 44 R M resection 131 B1-4, C3-5, A1-3
A1-16, B1-16, C1-5, T1-16, I1-16, 

E1-16 
MTLE Focal Normal

upmc2 UPMC 1 1 S N/A 46 R F resection 110 A'1-4, B'1-6, C'1-6, E'1-6
A'1-16, B'1-16, C'1-5, T'1-16, 

I'-16, E'1-16 
MTLE Focal Abnormal

upmc3 UPMC 2 3 F N/A 24 R M resection 122 A1-5, B1-5, E1-5 A1-5, B1-5, E1-5, I1-5 MTLE Focal Normal

upmc5 UPMC 4 5 F N/A 46 R F resection 122 T'3-6, E'1-5, F'2-4
J'10-15, I’1-16, A’1-16, E’1-16, 

B’1-16, T'3-8, C'1-4, F'1-10
NMTLE Focal Normal

upmc6 UPMC 1 1 S N/A 23 R M resection 92 B1-4, A1-4, C1-4
J10-15, I1-16, A1-16, E1-16, 

B1-16, T3-8, C1-4 
MTLE Focal Normal
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1.2 Example of reconstructed versus actual iEEG signals 

 

1.3 Details of source-sink analysis to localize the EZ  

For each patient, the interictal SEEG recording was split into 500-msec non-overlapping 

windows and the dynamical network models (DNMs) were estimated in every window 𝑤 of 

the data to obtain a sequence of 𝑨 matrices over time, 𝑨𝑤 , 𝑤𝜖[1,2, … , 𝑇], where 𝑇 is the number 

of windows. In 𝑨𝑤 (Fig. 2C), row 𝑖 represents the amount of influence SEEG channel 𝑖 receives 

from the rest of the network in window 𝑤, and column 𝑗 represents how the activity of channel 

𝑗 influences the activity of all other channels in the network. 

1.3.1 Identifying top sources and sinks in the interictal SEEG network 

To identify the top sources and sinks in each patient’s DNM, we quantified each channel’s 

source-sink characteristics by computing the amount of influence to and from the channel as 

follows. The total influence channel 𝑖 received from the rest of the network in window 𝑤 was 

defined as the sum of the absolute values across its row in 𝑨𝑤 or in other words, the 1-norm of 

its row. Similarly, we defined the total influence from channel 𝑖 to the rest of the network as 

the 1-norm of its column in 𝑨𝑤. Then, we placed each channel in the 2D source-sink space 

(SS-space, Fig. 2D) by ranking the row and the column norms of all channels against each 

other (where rank 
1

𝑁
 indicates the smallest 1-norm and rank 1 is the largest 1-norm) to obtain 

each channel’s row rank (𝑟𝑟) and column rank (𝑐𝑟). When drawn in the 2D SS-space (Fig. 

 

Supplementary Figure 1. A. ECoG implantation of patient. B) 10 second snapshot of actual (orange) versus 

simulated (blue) signals of four iEEG channels from one depth electrode. All four channels belong to the clinically 

annotated EZ. Interictal spikes, present in two signals (AD1-2), are accurately captured by the network model. 
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2D), sources are channels located at the top left (blue circles), whereas sinks (pink circles) are 

located at the bottom right. 

1.3.2 Computing source-sink metrics: A 4-node example 

Consider the 4-node network example in Supplementary Fig. 2. Node 3 is a source node 

because it is highly influential on all nodes, specifically nodes 2 and 4, in the network. In 

contrast, nodes 2 and 4 are sink nodes because they are highly influenced by other nodes, 

specifically node 3, and they do not have a high influence on other nodes in the network. This 

is reflected in the rows and columns of the 𝑨 matrix of the DNM. A sink node will have nearly 

all zeros in its column vector in 𝑨 (blue in Supplementary Fig. 2B) because it does not impact 

the future activity of its neighbors; but its row vector will all be close to one (red in 

Supplementary Fig. 2B) because it is highly influenced by all the other nodes. Source nodes 

have the opposite properties in the 𝑨 matrix. Their columns are red and rows are blue (see 

column and row 3 in Supplementary Fig. 2B). As described above, all nodes can be quantified 

as more of a sink or more of a source by computing the amount of influence to and from the 

node based on the sum of the absolute values (the 1-norm) across its row and column in 𝑨, 

respectively, and ranking them against each other (where rank 1/N indicates smallest 1-norm 

(i.e., low influence), and rank 1 is the largest 1-norm (high influence) for a network with N 

nodes). We then place the nodes in the 2D-Space shown in Supplementary Fig. 2C, where 

sources are located at the top left (high column rank, low row rank), and sinks are located at 

the bottom right (low column rank, high row rank).  

Consider node 2, which is a sink in the network and thus is located near the bottom right corner 

in the source-sink 2D-Space (Supplementary Fig. 2C). More specifically, the node’s row rank 

is 𝑟𝑟2 = 1 and its column rank is 𝑐𝑟2 =
1

4
. We start by computing the node’s sink index to 

quantify how close it is to the ideal sink (pink star in Supplementary Fig. 2C, with 𝑟𝑟 = 1 and 

𝑐𝑟 =
1

4
). Using (2) in the main manuscript we get: 

𝑠𝑖𝑛𝑘2 = √2 − ‖(1,
1

4
) − (1,

1

4
)‖ = √2 

Similarly, we compute node 2’s source index using (3): 

𝑠𝑜𝑢𝑟𝑐𝑒2 = √2 − ‖(1,
1

4
) − (

1

4
, 1)‖ =

√2

4
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Now, we can compute the node’s source influence using (4) to quantify how much it is 

influenced by the top sources in the network. We do this by computing the sum across the 

second row of the A matrix, weighted by each node’s source index: 

𝑖𝑛𝑓𝑙2 = 0.7 ∗ 0.75 + 1 ∗ 0.25 + 0.9 ∗ 1 + 0.8 ∗ 0.5 = 2.075 

Lastly, we compute node 2’s sink connectivity index to quantify how much it is influenced by 

the sinks in the network. Similar to the source influence index, we are interested in the strength 

of connections from other sinks to node 2, and thus we use the second row of the A matrix, but 

now we weigh the sum by each node’s sink index. We compute the sink connectivity using (5) 

as: 

𝑐𝑜𝑛𝑛2 = 0.7 ∗ 0.5 + 1 ∗ 1 + 0.9 ∗ 0.25 + 0.8 ∗ 0.75 = 2.175 

Finally, each metric is normalized by its maximum value across the network (which in this 

example happens to be node 2’s values for all metrics) to obtain: 

𝑠𝑖𝑛𝑘2 =  
√2

√2
= 𝟏 

𝑖𝑛𝑓𝑙2 =  
2.075

2.075
= 𝟏 

𝑐𝑜𝑛𝑛2 =  
2.175

2.175
= 𝟏 

 

 

Supplementary Figure 2. A. A 4 node network example. B. Corresponding mean A matrix. Example values are 

given in each cell of the matrix. C. 2D source-sink representation of the network with sink index (sink2), source 

influence (source2) and sink connectivity (conn2) of node 2 labeled. Sources (blue) are located at the top left whereas 

sinks (pink) are located at the bottom right. Blue star = ideal source, pink star = ideal sink. 
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1.3.3 Computing average source-sink metrics 

Unlike seizure activity, interictal activity is relatively stable, with little deviation from a 

baseline value over time. As a result, there is little variation in the sequence of 𝑨𝑤 matrices 

and consequently the source-sink behavior of individual channels across windows during 

interictal periods. Thus, we also defined a single, constant 𝑨 matrix to represent each patient’s 

interictal DNM as: 

𝑨 =
1

𝑇
∑ 𝑎𝑏𝑠(𝑨𝑤)

𝑇

𝑤=1

  (1) 

Finally, in addition to computing the source-sink metrics (SSMs) across windows using 𝑨𝑤 we 

also computed a set of constant SSMs for each patient using 𝑨 in (1). 

1.4 Quantifying temporal stability of source-sink metrics 

Because of the relative stability of the interictal activity over time, we expect SSMs to be 

consistent and independent of the timing or duration of the interictal snapshot used for each 

patient. To verify that the channels reported to clinicians with largest SSMs were consistent 

over time, we quantified the temporal stability of the source-sink metrics for each patient as 

follows. Let 𝐴𝑚 be the set of iEEG channels with the highest 10% of values for each constant, 

average, metric 𝑚 = {𝑠𝑖𝑛𝑘, 𝑖𝑛𝑓𝑙, 𝑐𝑜𝑛𝑛, 𝑠𝑠}, computed from 𝑨 averaged across the entire 

interictal recording (eq. 1), and let 𝐵𝑚
𝑤 be the set of the top 10% of channels with highest values 

for each metric 𝑚 computed from the average 𝑨 of a smaller window 𝑤𝜖{1, … , 𝑊} of size 

𝑤𝑠 ,where 𝑊 is the number of non-overlapping windows of size 𝑤𝑠 across the patient’s 

interictal recording. Finally, let 𝐶𝑚 be a set of randomly selected channels of the same size as 

𝐴𝑚 and 𝐵𝑚
𝑤𝑠.  Then, in each window 𝑤, we computed the percentage of channels in 𝐵𝑚

𝑤𝑠 that 

were also 𝐴𝑚, i.e.  

𝐴𝐵𝑚
𝑤𝑠 =

|𝐴𝑚 ∩ 𝐵𝑚
𝑤𝑠|

|𝐴𝑚|
∗ 100 (2) 

Similarly, we computed 𝐶𝐵𝑚
𝑤𝑠 as the percentage of channels in 𝐵𝑚

𝑤𝑠 that were also in 𝐶𝑚. 

Finally, we computed the average percentage of channels captured across all windows for each 

metric to obtain a distribution of 𝐴𝐵𝑚
𝑤𝑠 and 𝐶𝐵𝑚

𝑤𝑠 across patients, and compared to the average 

percentage expected for randomly selected channels as described below. We chose this analysis 

to quantify whether the results presented back to clinicians, i.e., the channels with the largest 

SSMs, remained consistent across time. 
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1.4.1 Statistical Analysis 

We repeated the analysis for five different window sizes, 𝑤𝑠 = {1, 2, 3, 5, 10} minutes. 

Specifically, for each 𝑤𝑠, we split each patient’s recording into non-overlapping windows of 

length 𝑤𝑠 and computed the percentage iEEG channels with 10% highest SSM values captured 

on average across all windows as well as the average percentage of top channels that were 

captured by chance (Fig. 4). 𝐶𝐵𝑚 was computed for 10 different sequences of randomly 

sampled channels in each window. Then, we compared 𝐴𝐵𝑚
𝑤𝑠 and 𝐶𝐵𝑚

𝑤𝑠 for each 𝑚 and each 

𝑤𝑠 using a paired two-sample t-test with the null hypothesis that the two distributions have 

equal means and the alternate hypothesis that the means are different. A p-value ≤ 0.05 was 

considered to be statistically significant.  

1.5 Details on predicting surgical outcomes using source-sink metrics 

To evaluate the SSMs as interictal iEEG markers of the EZ, we tested their efficacy in 

predicting surgical outcomes following the same procedure as Li et al.1 (Supplementary Fig. 

3) and compared performance against that of clinicians as well as HFOs, the most common 

interictal iEEG marker of the EZ.  

Specifically, we modeled the probability of a successful surgical outcome, 𝑝𝑠, as a function of 

the three SSMs (sink index, source influence and sink connectivity) using a sparse oblique 

 

Supplementary Figure 3. Schematic of the experimental design for predicting surgical outcomes. Top: From just 

minutes of iEEG data from each patient, we compute a set of constant, average, source-sink metrics for each iEEG 

channel. We summarize the metrics by computing the mean and s.d. of each metric across i) EZ channels and ii) 

non-EZ channels and use as features in the RF classifier to compute a probability of success 𝑝𝑠  for the patient.  

Finally, we apply a threshold to 𝑝𝑠  to predict surgical outcome and compare to the actual outcome of the patient. 

Bottom: A simplified diagram of the clinical workflow from pre-surgical evaluation to surgical treatment of MRE 

patients. The clinical team visually inspects hours of interictal and ictal iEEG data, in addition to various non-

invasive data to come to a consensus on which electrodes are recording from the EZ. Lastly, surgery is planned to 

remove the EZ. 
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random forest (RF) classifier, known as SPORF.2,3 We computed the distribution of constant 

feature values in two sets of channels: i) the CA-EZ and ii) all other channels not labeled as 

CA-EZ (CA-NEZ). In general, the prediction of surgical outcomes using any feature (e.g., SSM 

or HFO rate) conditioned on the clinically annotated EZ enables us to evaluate the overall value 

of the feature as a potential EZ marker. Feature distributions of each set were summarized with 

the mean and standard deviation, resulting in 12 possible features presented to the RF classifier. 

Next, we performed a tenfold nested leave-patient-out cross-validation (CV), considering a set 

of hyperparameters where 70% of the data was used for training the models, and the remaining 

30% of the data was held out for test evaluation for each cross-validation iteration. We 

performed a total of 10 iterations (i.e., tenfold CV). The cross-validation split the data by 

patients in a “leave patients out” manner (i.e., 70% of the data for 65 patients means that 46 

randomly chosen patient recordings were used to train the models in each CV iteration). 

Finally, we performed statistical analysis (described in the main manuscript) on the final 

classification performance to determine the most robust feature representation. 

1.6 HFO detection 

HFOs were detected using two different detectors: a) The Hilbert detector developed by Crépon 

et al.4 and b) the root-mean-square (RMS) detector by Staba et al.5 For each patient, the entire 

available interictal snapshot was used for HFO detection. HFO events were computed for each 

channel independently, and rates were recorded as the number of events per minute. We note 

that we did not perform parameter optimization for this dataset when implementing the 

detectors though optimization has been shown to impact performance.6–8 Further, although we 

chose to test two different detectors for comparison, studies have shown that once detector 

parameters are properly optimized, the choice of detection scheme is not critical as 

performance is generally comparable.7 

1.6.1 The Hilbert detector 

The Hilbert detector was ran using the RIPPLELAB toolbox9, a MATLAB open-source 

application developed by Navarrete et al. to facilitate the analysis of HFOs. First, iEEG signals 

were referenced using a monopolar montage and then bandpass filtered between 80-500 Hz 

(for data sampled at 1000 Hz or above, 80-250 Hz for data sampled at 500 or 512 Hz) before 

computing the signal envelope using a Hilbert transform. Next, its local maxima exceeding 5 

standard deviations of the envelope over the whole signal and with a minimal time length of 

10 mseconds were automatically detected and labeled as HFOs. 
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1.6.2 The RMS detector 

First, the iEEG signals were re-referenced to a bipolar montage and artifactual segments were 

removed using an automated extreme value detector.10,11 Neural data in each channel were then 

bandpass filtered between 100-450 Hz (for data sampled at 1000 Hz or above, 100-200 Hz for 

data sampled between 500 and 1000 Hz) with a finite impulse response filter (passband 

frequency range of 100-450 Hz, or 100-200 Hz with a stopband of 10Hz). Signals were filtered 

both forwards and backwards in time to avoid phase distortion. The root-mean-square of each 

point was computed, and segments of data in which the RMS value exceeded 5 standard 

deviations above the mean for at least 6 mseconds were recorded. After this initial detection, 

segments were defined as HFO events if the amplitude of at least 6 rectified peaks (three full 

oscillations) exceeded a threshold of 3 standard deviations above the mean of the rectified 

signal.  

1.7 Quantifying CA-EZ and SSM correspondence 

To quantify the overlap between the CA-EZ and regions with high SSMs, we used them to 

predict the likelihood of a sEEG channel (region) being in the EZ or not. Specifically, we 

modeled the probability of being in the EZ (𝑝𝐸𝑍) as a function of the three SSMs using a logistic 

regression (LR) model as follows: 

log (
𝑝𝐸𝑍

1 − 𝑝𝐸𝑍
) = 𝛽0 + 𝛽1𝑆𝑆𝐼 

where SSI is the source-sink index, defined as the product of the three SSMs.  

Since no ground truth of the true EZ exists, the LR model was trained, validated and tested on 

seizure-free patients only, as we can assume that the EZ was accurately localized in these 

patients. Out of the 28 seizure-free patients in our dataset, 26 had an accurately localized EZ 

as determined by clinicians. For those patients, the LR model was validated using a 10-fold 

cross-validation (CV) by creating ten random splits of the dataset into training and test sets. In 

each such split, 70% of the sEEG channels were assigned to the training set and the remaining 

30% were used for testing, while at the same time ensuring a balanced number of EZ and non-

EZ channels by randomly sampling the EZ channels with replacement. The model was fit to 

the training data and validated on the test set by applying a varying threshold to the model’s 

output and computing a receiver operating characteristic (ROC) curve which plots true positive 

rates against false positive rates for various threshold values. In addition to the AUC, we used 

four metrics to measure model performance:  
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a) prediction accuracy, b) precision, c) sensitivity, and d) specificity. We report results of the 

ten CV iterations (mean ± standard deviation) below. 

2 Supplemental Results 

2.1 Statistical analysis of source-sink metric distributions 

Supplementary Table 2. Comparison of source-sink metric distributions in EZ versus non-EZ channels. 

 P-value 

 Success patients Failure patients 

Sink index 1.1997 × 10−6 0.0076 

Source influence 1.6217 × 10−7 0.3331 

Sink connectivity 1.3070 × 10−7 0.0771 
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2.2 Predicting surgical outcomes 

2.2.1 Test set ROC curves 

2.2.2 Outcome prediction using HFOs detected by the RMS detector 

Supplementary Fig. 5 shows 𝑝𝑠 distributions across all CV-folds, using the HFO model. The 

dots are color-coded based on each patient’s surgical outcome. A decision threshold of 𝛼 =

0.5 was applied to the estimated probabilities (𝑝𝑠) to predict each patient’s outcome. Using the 

 

Supplementary Figure 4. Test set ROC curves. A. ROC curves for the source-sink model. Blue line shows the 

mean ROC across the ten CV folds and the shaded gray area represents one standard deviation. The resulting ROC 

of each CV fold is shown with a dashed green line. B. ROC for the HFO-RMS model. The mean AUC of the RMS 

model is significantly lower than the mean AUC of the source-sink model. C. ROC for the HFO-Hilbert model. 

The mean AUC of the Hilbert model is significantly lower than the mean AUC of the source-sink model. However, 

the mean AUC is not significantly different from the AUC of the RMS model. 
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HFO rate did not yield a clear separation between success and failure patients. In fact, the 

separation between the 𝑝𝑠 distributions of success versus failure patients is greater for the 

source-sink model (Supplementary Fig. 6A) compared to the HFO model, and consequently so 

is the model’s ability to discriminate between the two outcome possibilities. In fact, we 

compared the performance of the two models with a contingency table (confusion matrix) and 

observed that the SSM model was statistically better with a p-value of 𝑝 = 0.007. When further 

broken down by Engel class (Supplementary Fig. 6B) or ILAE score (Supplementary Fig. 6C), 

we observed a decreasing trend of 𝑝𝑠 as the outcome score (and thus also the severity of post-

 

Supplementary Figure 5. Predicted probability of success (𝑝𝑠) by the HFO-RMS model across all ten CV folds. 

Each dot represents one patient in one fold and dots are color-coded by surgical outcome. S = success, F = failure. 

The dashed blue line represents the decision threshold applied to 𝑝𝑠  to predict outcomes. There is not a clear 

separation between the success and failure patients, with both groups having 𝑝𝑠  above and below the decision 

threshold, resulting in lower prediction accuracy compared to the source-sink model.  

 

 

 

Supplementary Figure 6. Performance comparison of the SSMs (red) to HFO rate (black). Boxes show 

distributions of each metric across the 10 CV folds. The asterisks indicate a statistically significant difference.  
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operative seizure outcome) increased using the SSMs. In contrast we did not see this clear 

separation of 𝑝𝑠 values using the HFO model, which had a much greater overlap between 

classes.  

Finally, Supplementary Fig. 7 compares the performance of the SSMs and RMS-HFOs in 

predicting surgical outcomes. The SSMs outperformed HFO rate with significantly higher 

AUC, accuracy, average precision and sensitivity (𝑝𝐴𝑈𝐶 = 0.0096, 𝑝𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.0442, 

𝑝𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 0.0023 and 𝑝𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 2.03 × 10−4). Although the SSMs had a higher 

specificity on average, both models performed similarly (𝑝𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 0.7846). The SSMs 

had an AUC of 0.86 ± 0.07 compared to an AUC of 0.71 ± 0.10 using HFO rate. The source-

sink model also outperformed HFOs in terms of average precision, which weighs the predictive 

power in terms of the total number of patients, with an average precision of 0.88 ± 0.06 

compared to 0.71 ± 0.09 for the HFO rate. Using the SSMs, a threshold of 𝛼 = 0.5 applied to 

𝑝𝑠 for each subject rendered a test-set accuracy of 79.0 ± 9.1%, compared to a considerably 

lower accuracy of 65.5 ± 11.4% using HFOs and an even lower clinical success rate of 43% 

in this dataset. The biggest performance difference between the two models was in terms of 

sensitivity (true positive rate) where the SSMs outperformed HFO rate by more than 50%, with 

a sensitivity of 0.78 ± 0.09. However, both models performed similarly in predicting failed 

outcomes correctly, where the source-sink model had a slightly higher specificity of 0.80 ±

0.16 compared to 0.77 ± 0.20 for the HFOs.  

 

  

 

Supplementary Figure 7. Performance comparison of the SSMs (red) to HFO rate (black). Boxes show 

distributions of each metric across the 10 CV folds. The asterisks indicate a statistically significant difference.  
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2.3 Generalizability of the source-sink metrics 

Although lesional patients frequently have better localizable EZ and thus tend to have higher 

chances of successful outcomes, we saw no correlation to the predicted probability of success 

nor clinical correspondence in our models (see Supplementary Figs. 8A and 12A). Similarly, 

our tool was also agnostic to whether patients had temporal or extra-temporal epilepsy 

(Supplementary Figs. 8B and 12B). Patients with multi-focal epilepsy are often more difficult 

to treat because the seizures can originate from more than one brain area. This was reflected in 

our data where only one multi-focal patient had a successful surgical outcome and in turn, the 

predicted success probability of the source-sink model (Supplementary Figs. 8C) was 

commonly lower for these patients. Nevertheless, we saw no difference in clinical 

correspondence scores (Supplementary Fig. 12C). 

We further analyzed the success probability and clinical correspondence with respect to 

treatment method (Supplementary Figs. 8D and 12D). Generally, patients who are surgical 

candidates (i.e., the seizure focus can be localized) undergo either resective surgery or laser 

ablation. In patients with poorly localizable or multiple seizure foci, or when the EZ is located 

in eloquent cortex, surgical resection may not be an option. In these cases, many patients opt 

for RNS treatment instead. Because of the higher clinical case complexity, patients who receive 

RNS treatment are not expected to achieve complete seizure freedom, but rather a reduction in 

seizure frequency.12–14 This was reflected in the predicted probability of success by the source-

sink model, which was overall lower for RNS patients compared to patients that received 

surgical treatment. In contrast, there was no observable correlation between 𝑝𝑠 and surgical 

resection or laser ablation. 

Finally, Supplementary Figs. 9 and 11 show the distributions of 𝑝𝑠 and clinical correspondence 

scores, respectively, grouped by clinical centers. As both figures show, the distributions are 

similar across all centers, indicating that i) the tool generalized well across different datasets 

and ii) the overall probabilities and scores were not biased by any particular center 
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Supplementary Figure 8. Distributions of 𝑝𝑠  across all CV folds as predicted by the source-sink model. The dots 

represent patients and are color-coded by different clinical covariates. A. Although lesional patients generally have 

a higher chance of a successful outcome, there is no correlation between 𝑝𝑠  and whether patients have a lesion or 

not. B. Similarly, mesial-temporal epilepsy (MTLE) patients have higher success rates compared to extra-temporal 

epilepsy (ETLE) patients, but we see no correlation with 𝑝𝑠values. C. The tool is also agnostic to whether seizures 

start in one (focal) or a few (multi-focal) regions. D. Predicted success probability values corresponding to each 

treatment method are evenly distributed within each outcome category, suggesting that the tool is agnostic to 

treatment method. We note that for some cases, the source-sink algorithm may be in agreement with the CA-EZ, 

even though the patient did not become seizure free (e.g., if the EZ is in eloquent cortex and cannot be surgically 

removed). In those cases, the algorithm would accurately predict a higher success probability if the area was 

removed. However, since eloquent EZ is not removed, patients like these commonly receive RNS palliatively and 

are generally not expected to achieve complete seizure freedom. As such, RNS patients may have had a failed 

outcome even when an accurate SSM localization results in a higher predicted probability of success. 
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Supplementary Figure 9. Distributions of 𝑝𝑠  across all CV folds as predicted by the source-sink model. The dots 

represent patients and are color-coded by different clinical centers. The tool generalizes well across data from 

different clinical centers indicated by the even distribution of 𝑝𝑠values across all centers. 

 

Supplementary Figure 10. Predicted probability of success (𝑝𝑠) across all CV folds versus the number of 

implanted SEEG channels (A) and the number of clinically annotated EZ channels (B). The dots represent patients 

and are color-coded by surgical outcome. S = Success, F = Failure. There is no correlation between the number of 

channels and model predictions.  
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Supplementary Figure 11. Clinical correspondence stratified by clinical centers. The distribution of agreement 

scores is similar across centers. 
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Supplementary Figure 12. Clinical correspondence stratified by clinical covariates. A. Lesional versus non-

lesional patients. The proportion of each group is similar across all scores, indicating that the tool is not sensitive 

to whether patients have a visible lesion on MRI (which often leads to a higher chance of surgical success). B. 

Mesial-temporal lobe epilepsy (MTLE) versus extra-temporal lobe epilepsy (ETLE). The proportion of each group 

is similar across all correspondence scores. C. Epilepsy type defined as either focal or multi-focal. The tool is not 

sensitive to epilepsy type. D. The tool is agnostic to treatment methods. Note however, that in this dataset all but 

one RNS patients are classified as failed outcomes. RNS treatment is often used if the EZ is in eloquent cortex 

and as such, patients are not expected to achieve complete seizure freedom. 
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2.4 Quantifying CA-EZ and SSM correspondence 

2.4.1 Results of EZ prediction using the source-sink metrics 

Supplementary Fig. 13A shows the ROC curve obtained from training the SSI model and 

Supplementary Fig. 13B shows the test-set ROC curve for comparison. The AUC of the test 

set was 0.77 ± 0.01 which was highly comparable to the AUC of the training set, suggesting 

that the model generalizes well across different datasets. 

Supplementary Fig. 14 shows resulting 𝑝𝐸𝑍 distributions across all CV-folds. We note that 

since the EZ is a theoretical concept that cannot be directly measured, no ground truth of the 

true EZ exists and consequently, the boundaries of the exact EZ may be blur. Thus, channels 

labeled as EZ by the clinicians, may not always be as epileptic as their neighboring channels, 

and similarly, channels labeled as non-EZ may be in close proximity to the EZ and thus 

 

Supplementary Figure 13.  ROC curves of the source-sink model across all CV-folds. A. Training set ROC 

curves. Black line shows the mean ROC across the ten CV folds and the shaded gray area represents one standard 

deviation. B. Test set ROC curves. The mean AUC of the test set is not significantly different from the AUC of 

the training set. 
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demonstrate some level of epileptogenic behavior even if they were not removed. In fact, we 

found that a large proportion of the non-EZ outliers with the highest 𝑝𝐸𝑍 values in our analyses 

belonged to early spread regions or were located very close to the clinically annotated EZ. 

A decision threshold of 𝛼 = 0.43 was applied to the estimated probabilities (𝑝𝐸𝑍) to predict 

each channel’s epileptogenicity, rendering a test set accuracy of 72.5 ± 1.2% and an accuracy 

of 73.3 ± 0.5% on the training set (Supplementary Fig. 15). Further, the model yielded a test 

set precision of 0.73 ± 0.02%, a sensitivity of 0.72 ± 0.02 and a specificity of 0.73 ±  0.01. 

As Supplementary Fig. 15 shows, the performance on the test set was highly comparable to 

that of the training set.  

 

 

 

 

 

 

 

 

Supplementary Figure 14. Predicted EZ probability by the SSI model across all ten CV folds. Due to the high 

number of channels across the entire dataset, individual data points are not shown for better visualization purposes. 

There is a good separation of the distributions for EZ channels versus non-EZ channels. A large proportion of non-

EZ outlier channels (red circles) belong to early spread regions or are located very close to the clinically annotated 

EZ regions.   
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2.5 CA-EZ regions are sinks at rest but become sources during seizures in 

success patients 

In addition to computing the source-sink metrics across interictal recordings, we also 

investigated source-sink properties of the iEEG network during ictal periods. We did not 

receive ictal snapshots from all centers, so only a subset of the patient population (𝑛 = 29) 

was included in this part of the analysis. Supplementary Fig. 16 demonstrates the source-sink 

characteristics of the iEEG network as the brain moves from interictal towards a seizure in one 

success (left) and one failure (right) patient. For each patient, we computed each iEEG 

channel’s SSI in 500-msec windows of one interictal and one ictal recording. Note that the two 

snapshots are not consecutive in time as the interictal snapshot is typically recorded hours 

before the seizure event. As Supplementary Fig. 16A shows, the CA-EZ channels have a high 

source-sink index (defined for each channel 𝑖 as 𝑆𝑆𝐼𝑖 = 𝑠𝑖𝑛𝑘𝑖 ∗ 𝑖𝑛𝑓𝑙𝑖 ∗ 𝑐𝑜𝑛𝑛𝑖) in the success 

patient during interictal periods, suggesting they are top sinks strongly influenced by top 

sources. However, during and right after seizure, the same channels have a low SSI, that is, 

they are exhibiting a strong source-like behavior, which is in line with the source-sink 

 

Supplementary Figure 15. Model performance of the training set (gray) and test set (red). Boxes show 

distributions of each metric across the ten CV folds and data points are represented with solid dots. Although there 

is more variability across the CV folds for the test set, the test set performance is comparable to that of the training 

set which suggests robustness of performance on different datasets.  
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hypothesis. In contrast, only a small subset of CA-EZ channels (2 out of 13) are amongst the 

top sinks in the patient with a failed surgical outcome (Supplementary Fig. 16D) and there is 

little modulation of the SSI of these channels. 

The temporal SSI modulation is summarized in Supplementary Fig. 16B and E. We computed 

the average source-sink index for two groups of interest: i) CA-EZ channels, and ii) all other 

channels not labeled as CA-EZ (CA-NEZ). Each curve was obtained by computing the average 

source-sink index of each channel group, in each window. The curves were smoothed by 

computing the index across 10-second windows instead of 500 msec. As Supplementary Fig. 

16B shows, the CA-EZ channels have a much higher SSI compared to the rest of the network 

during the interictal period. However, this does not hold true for the failure patient 

(Supplementary Fig. 16E), where the mean index of the CA-EZ is not separable, or even 

slightly lower than the mean index of the CA-NEZ channels. 

 

Supplementary Figure 16. Source-sink characteristics as the brain moves from resting state towards a seizure. 

Two patient examples. A. Source-sink index (SSI) of every channel during interictal (left) and ictal (right) periods, 

separated by the solid yellow line. Channels are arranged from highest to lowest average interictal SSI. CA-EZ 

channels are colored red. Only the top 30% of channels are shown for better visualization purposes, and all 

channels not shown have low SSI values. B. Average SSI of four CA-EZ versus CA-NEZ channels. In this success 

patient the CA-EZ channels have a much higher SSI compared to CA-NEZ channels during the interictal period. 

The SSI of CA-EZ channels drops significantly during seizure, as these channels become sources to initiate and 

spread seizure activity. D. Source-sink index of every channel over time. Only 2 out of 13 CA-EZ channels have 

a high source-sink index in this failure patient. E. Average source-sink index of the two groups. In this failure 

patient CA-EZ cannot be distinguished from CA-NEZ. E. Movement of CA-EZ channels in the 2D source-sink 

space over time. CA-EZ channels are top sinks during the interictal period (left), but move towards sources as the 

brain progresses towards a seizure. F. In this failure patient, there is little movement of CA-EZ channels as the 

brain moves from interictal to ictal state. 
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Supplementary Fig. 16C and F show an example of the 2D SS-space for the success and failure 

patients, respectively, computed in 10-second windows at different points in time relative to 

seizure onset. Despite the temporal stability of the SSMs across interictal recordings, the 

source-sink properties of the iEEG network modulate around seizure events. In success patients 

(Supplementary Fig. 16C) we frequently observed a movement of CA-EZ towards top sources 

as the brain progresses towards a seizure. Right before and at the onset of seizure however, the 

CA-EZ channels become sinks for a short period, perhaps as the rest of the network makes one 

last attempt to prevent the seizure from starting. During and right after seizure, the CA-EZ 

channels are again exhibiting a strong source-like behavior. The same cannot be said about the 

CA-EZ channels in failure patients (Supplementary Fig. 16F), where there was little movement 

of these channels in the SS-map over time.  

Finally, Supplementary Fig. 17 compares the temporal SSI modulation in success versus failure 

patients. In the success patients, (Supplementary Fig. 17, top) the CA-EZ have a significantly 

higher SSI compared to the rest of the channels in the network in all windows except after the 

end of seizure (𝑝𝑎 = 0.0132, 𝑝𝑏 = 0.0029, 𝑝𝑐 = 0.0015, 𝑝𝑑 = 0.4240). In contrast, the CA-

EZ channels are not separable from the CA-NEZ channels at any time point (𝑝𝑎,𝑏,𝑐,𝑑 ≫ 0.05) 

in failure patients. 
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Supplementary Figure 17. Temporal SSI modulation in CA-EZ versus CA-NEZ channels. For each patient, SSI 

was computed in four predefined windows: a = 30 second window of the interictal recording, b = 60-30 seconds 

before the seizure event, c = during the seizure event, and d = 60-90 seconds after the end of seizure. Values were 

averaged over all CA-EZ and all CA-NEZ for each patient. For each set of channels, indices were normalized to 

the average SSI of the entire network at rest (window a). Each curve shows the mean ± standard error across 14 

success patients (top) and 15 failure patients (bottom). CA-EZ channels have a higher SSI compared to CA-NEZ 

channels in success patients, but not in failure patients. The asterisks indicate a statistically significant difference 

between CA-EZ and CA-NEZ channels.  
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