Supplementary Material

Supplementary Figure 1. Summary of the B cell lineage differentiation and associated cell-surface phenotypes. Bone marrow emigrant naïve antigen-inexperienced B cells encounter antigen and T cells in a germinal centre. Germinal centres are most commonly located in lymph nodes and spleen. The T cells express CD40L and secrete IL-2, IL-21 and TNFα, amongst other factors which help naïve B cells differentiate into CD27+ unswitched (IgD+) and switched (IgG+) memory B cells. These then differentiate into antibody-secreting cells (below the dashed line: plasmablasts, short- and long-lived plasma cells) whose survival is supported by IL-6, BAFF and APRIL. Short-lived plasma cells may reside in tissues including bone marrow. Long-lived plasma cells typically niche in the bone marrow, but can reside in the CNS in states of inflammation. Antibodies in blue=IgG, red=IgD; yellow=IgM.

Supplementary Figure 2. Effects of immunotherapies and antibody-secreting cell phenotype. A. Resting B cell subsets from patients with and without mycophenolate mofetil (MMF) administration. B. No effects of freeze-thaw on IgG production from PBMC cultures under varying conditions for cells with membrane-bound CD40L co-cultures. Very similar results obtained in conditions with soluble CD40L and without CD40L (not shown). CD138 (C, blue) and CD20 (D, black) cells are shown within the CD19+CD27++CD38++ antibody-secreting cells generated in vitro. A mean of 60% of the CD19+CD27++CD38++ antibody secreting cells expressed CD20 (mean 60%, range 18–93) and a mean of 15% expressed CD138 (range 1-41). E. Total IgG production across all tested conditions in patients stratified by MMF, corticosteroids and their doses (F), and the percentage of B cell subsets in blood (G).

Supplementary Figure 3. Relationships between in vitro generation of total IgG (ng/ml) and AQP4-specific IgG (ΔMFI) across 21 culture conditions. Absolute values in cells are accompanied by corresponding heat maps. Black = no CD40L; blue = soluble CD40L (sCD40L); red = membrane-bound CD40L (mCD40L).

Supplementary Figure 4. In vitro culture observations. From wells with R848 and IL-2, supernatant IgG levels did not vary with addition of CD40L (A). From wells with IL-21, without IL-2, addition of CD40L (membrane or soluble) generated more IgG in vitro (p=0.0002, Mann Whitney U test; B). Total IgG per well correlated strongly with the
percentage of ASCs per well (black, Spearman’s r = 0.71, p<0.0001), and more modestly with tetanus-IgG (IU/ml; blue, Spearman’s r = 0.46, p=0.0084), but not with AQP4-IgG generated per well (C; red, ∆MFI). AQP4-IgG levels in culture supernatants did not vary with days from illness onset, days since last clinical relapse and duration of immunotherapy (time parameters, left y-axis) or with corticosteroid dose, dose of mycophenolate mofetil (MMF) or number of immunotherapies (D; immunotherapy parameters, right y-axis).
Supplementary methods

Peripheral Blood Mononuclear Cells were isolated from whole blood using a Ficoll gradient (Ficoll-Paque, GE Healthcare). Phases were separated by centrifugation at 400 g for 30 min at room temperature and slow deceleration. A 3mL sterile pastette was used to isolate the buffy coat layer in a 50mL conical tube. The cells were washed with PBS/1%BSA twice (200g, 10 minutes, RT, medium acceleration and deceleration). The cells were counted using 0.04% Trypan Blue exclusion and frozen at 10–20 × 10^6 per mL per cryovial in B cell medium (RPMI 1640 without phenol red, 5% FBS, 1% Penicillin/Streptomycin, 1% Glutamax, 0.1% beta-mercaptoethanol, 0.1% IgG-depleted transferrin (20 µg/ml)) with 40% Fetal Bovine Serum (FBS) and 10% DMSO chilled on ice. Cryovials containing cells were placed in a CoolCell® Cell Freezing Container (BioCision) and maintained at −80 °C for 24-72 hours before being transferred to liquid nitrogen tanks.

To thaw cells, the cryovials were removed from liquid nitrogen tanks into dry ice containers. Vials were thawed immediately with shaking in a lukewarm water bath. No more than two cryovials were thawed at the same time. The cell suspension was transferred dropwise to a 50mL conical tube containing 9 ml cold B cell medium per 1 ml of thawed cell suspension. The cells were washed twice with B cell medium (200g, 10 minutes) and counted. Viability was assessed using 0.04% Trypan Blue exclusion and ranged from 70–85% of the fresh cells. Cells were re-suspended in B cell medium at appropriate cell concentrations.
Supplementary Table 1. B cell subsets from 12 NMOSD patients and age- (± 5 years) and sex-matched healthy control (HC) subjects. HCs listed in order of matching to the patients 1-12. Percentages represent gating strategies from Figure 1.

<table>
<thead>
<tr>
<th>Patient number or Healthy control</th>
<th>Age</th>
<th>Sex</th>
<th>CD19+</th>
<th>Plasmablasts</th>
<th>Switched Memory</th>
<th>Unswitched Memory</th>
<th>Naïve</th>
<th>Double negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41</td>
<td>f</td>
<td>2.65</td>
<td>1.36</td>
<td>17.4</td>
<td>9.93</td>
<td>66.9</td>
<td>4.43</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>f</td>
<td>5.33</td>
<td>0.2</td>
<td>4.52</td>
<td>2.86</td>
<td>89.7</td>
<td>2.73</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>f</td>
<td>6.89</td>
<td>0.19</td>
<td>10.6</td>
<td>6.83</td>
<td>79.5</td>
<td>2.91</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>f</td>
<td>16.9</td>
<td>0.51</td>
<td>11.4</td>
<td>11.4</td>
<td>73</td>
<td>4.08</td>
</tr>
<tr>
<td>5</td>
<td>44</td>
<td>m</td>
<td>5.09</td>
<td>0.27</td>
<td>4.19</td>
<td>3.14</td>
<td>75.7</td>
<td>16.7</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>f</td>
<td>22.6</td>
<td>0</td>
<td>4.17</td>
<td>2.34</td>
<td>90.7</td>
<td>2.78</td>
</tr>
<tr>
<td>7</td>
<td>68</td>
<td>f</td>
<td>6.54</td>
<td>0.095</td>
<td>26</td>
<td>35.7</td>
<td>35.1</td>
<td>3.72</td>
</tr>
<tr>
<td>8</td>
<td>77</td>
<td>f</td>
<td>4.6</td>
<td>0.11</td>
<td>30.6</td>
<td>21.7</td>
<td>41.5</td>
<td>6.11</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
<td>f</td>
<td>6.19</td>
<td>0.31</td>
<td>22.2</td>
<td>20.9</td>
<td>54.2</td>
<td>2.4</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>f</td>
<td>10.8</td>
<td>0.13</td>
<td>19.1</td>
<td>8.27</td>
<td>68</td>
<td>4.6</td>
</tr>
<tr>
<td>11</td>
<td>59</td>
<td>f</td>
<td>0.002</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>38</td>
<td>f</td>
<td>0.079</td>
<td>0</td>
<td>31.8</td>
<td>0</td>
<td>16.7</td>
<td>51.5</td>
</tr>
<tr>
<td>HC</td>
<td>36</td>
<td>f</td>
<td>6.93</td>
<td>0.28</td>
<td>20</td>
<td>26.7</td>
<td>68.8</td>
<td>3.11</td>
</tr>
<tr>
<td>HC</td>
<td>66</td>
<td>f</td>
<td>10.8</td>
<td>0.026</td>
<td>16.3</td>
<td>18.6</td>
<td>43.3</td>
<td>3.72</td>
</tr>
<tr>
<td>HC</td>
<td>34</td>
<td>f</td>
<td>8.76</td>
<td>0.081</td>
<td>24.9</td>
<td>28.2</td>
<td>49.5</td>
<td>3.9</td>
</tr>
<tr>
<td>HC</td>
<td>50</td>
<td>f</td>
<td>3.16</td>
<td>0.058</td>
<td>17</td>
<td>21.1</td>
<td>77.1</td>
<td>1.7</td>
</tr>
<tr>
<td>HC</td>
<td>43</td>
<td>m</td>
<td>7.04</td>
<td>0.3</td>
<td>4.96</td>
<td>16</td>
<td>57.2</td>
<td>4.69</td>
</tr>
<tr>
<td>HC</td>
<td>56</td>
<td>f</td>
<td>8.2</td>
<td>0.089</td>
<td>12.3</td>
<td>13.8</td>
<td>77.4</td>
<td>3.23</td>
</tr>
<tr>
<td>HC</td>
<td>72</td>
<td>f</td>
<td>7.75</td>
<td>0.25</td>
<td>10.8</td>
<td>4.25</td>
<td>72.3</td>
<td>1.69</td>
</tr>
<tr>
<td>HC</td>
<td>76</td>
<td>f</td>
<td>3.06</td>
<td>1.11</td>
<td>5.28</td>
<td>13.3</td>
<td>75</td>
<td>2.18</td>
</tr>
<tr>
<td>HC</td>
<td>50</td>
<td>f</td>
<td>5.86</td>
<td>1.76</td>
<td>6.45</td>
<td>11.2</td>
<td>61.9</td>
<td>3.2</td>
</tr>
<tr>
<td>HC</td>
<td>21</td>
<td>f</td>
<td>14.3</td>
<td>0.18</td>
<td>6.85</td>
<td>2.27</td>
<td>88.5</td>
<td>2.23</td>
</tr>
<tr>
<td>HC</td>
<td>61</td>
<td>f</td>
<td>7.51</td>
<td>0.19</td>
<td>13.4</td>
<td>9.33</td>
<td>82</td>
<td>2.84</td>
</tr>
<tr>
<td>HC</td>
<td>28</td>
<td>f</td>
<td>8.89</td>
<td>0.63</td>
<td>12.9</td>
<td>14.9</td>
<td>78.6</td>
<td>1.89</td>
</tr>
</tbody>
</table>
Bone marrow

- **Immature B**
 - CD19^+/
 - CD20^-
 - CD27^-
 - IgM^+

Periphery

- **Naïve B**
 - CD19^+
 - CD20^+
 - CD27^-
 - IgM^+

- **Activated B cell**
 - CD40
 - CD40L, IL-2, IL-21, TNFα

Germinal centre

- **Unswitched memory B**
 - CD19^+
 - CD20^+
 - CD27^-
 - IgD^+

- **Switched memory B**
 - CD19^+
 - CD20^+
 - CD27^+
 - IgD-IgG^+ Ag encounter

- **Activated B cell**
 - CD40
 - CD40L, IL-2, IL-21, TNFα

Plasma cell niche

- **Long-lived plasma cell**
 - CD19^+-
 - CD20^-
 - CD27^{++}/CD38^{++}
 - CD138^+

- **Short-lived plasma cell**
 - CD19^+
 - CD20^-
 - CD27^{++}/CD38^{++}
 - CD138^{++/-}

- **Plasmablast**
 - CD19^+
 - CD20^{low/-}
 - CD27^{++}/CD38^{++}
 - CD138^-

Supplementary Figure 1
A

All R848 plus IL-2 wells

No CD40L + CD40L

p=0.64

B

All IL-21 without IL-2 wells

No CD40L + CD40L

p=0.0002

C

ASCs per well (CD19-CD27++CD38++/CD3-CD14-DAPI-) or Tetanus-IgG (IU/ml)

Total IgG per well (ng/ml)

AQP4-IgG (r=-0.23, p=0.22)

% ASCs (r=0.71, p<0.0001)

Tetanus-IgG (r=0.46, p=0.0084)

D

Days from illness onset (r = -0.09, p = 0.78)

Days since last clinical relapse (r = -0.03, p = 0.93)

Days of immunotherapy (r = -0.11, p = 0.72)

Corticosteroid dose (divided by 10; mg daily; r = -0.50, p = 0.17)

Number of immunotherapies (r = 0.07, p = 0.85)

Dose of MMF (g daily; r = 0.01, p = 0.99)

Supplementary Figure 4