Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells

Chi Chen, Guoxiang Shen, Vidya Hebbar, Rong Hu, Edward D. Owuor and A.-N. Tony Kong

Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

1To whom correspondence should be addressed
Email: kongt@cop.rutgers.edu

Epigallocatechin-3-gallate (EGCG), a major component in green tea polyphenols, has been proven to suppress colonic tumorigenesis in animal models and epidemiological studies. As EGCG is retained in the gastrointestinal tract after oral administration, this pharmacokinetics property gives it the potential to function as a chemopreventive agent against colon cancer. In this study, human colorectal carcinoma HT-29 cells were treated with EGCG to examine the anti-proliferative and pro-apoptotic effects of EGCG, as well as the molecular mechanism underlying these effects. Cell viability assay, nuclear staining, DNA fragmentation, caspase assay, cytochrome c release, DiOC6(3) staining, mitogen-activated protein kinases (MAPK) phosphorylation and trypan blue exclusion assays, were utilized to dissect the signaling pathways induced by EGCG. After 36 h treatment, EGCG inhibited HT-29 cell growth with an IC50 of ~100 μM. HT-29 cells treated with doses higher than 100 μM showed apparent nuclear condensation and fragmentation, which was confirmed by DNA laddering. Caspase-3 and -9 activation was detected after 12 h treatment, accompanied by mitochondrial transmembrane potential transition and cytochrome c release. Activation of MAPKs was detected as early signaling event elicited by EGCG. Inhibition of c-Jun N-terminal kinase (JNK) pathway showed the involvement of JNK in EGCG-induced cytochrome c release and cell death. EGCG-induced JNK activation was blocked by the antioxidants glutathione and N-acetyl-l-cysteine, suggesting that the cell death signaling was potentially triggered by oxidative stress. In summary, our results from this study suggest that in HT-29 human colon cancer cells (i) EGCG treatment causes damage to mitochondria, and (ii) JNK mediates EGCG-induced apoptotic cell death.

Introduction

Colon cancer is the second leading source of cancer-derived mortality in the US (1). Epidemiological studies have linked the cause of high incidence of colon cancer in Western society to the dietary custom (2). In Asian countries with relatively lower incidence of colon cancer, such as China, Japan and Korea, one of the prominent lifestyles is the daily consumption of green tea drinks by a large population. Chemically, the water-extractable fraction of green tea contains abundant polyphenolic compounds, in which epigallocatechin-3-gallate (EGCG) is the major constituent (>50% of polyphenolic fraction). After a common brewing procedure, 30–42% (w/w) of green tea can be dissolved in water. Therefore, a single cup of green tea can contain up to 200 mg of EGCG (3). The cancer prevention effect of green tea and EGCG against various tumors has been proven with numerous animal models (4,5). Human clinical trials, although inconclusive, also indicated some positive link between the drinking of green tea and the decrease of cancer incidence (6). In rodent models for determining the pharmacokinetics profile of green tea catechins, the highest tissue concentrations of EGCG have always been found in the intestine after either oral or i.v. administrations (7–9). Furthermore, substantial amounts of EGCG were present in human colon mucosa samples from the patients drinking tea 12 h before colorectal surgery (4). Because of this pharmacokinetic profile, as well as the high local concentration in intestinal microenvironment that come from direct contact of green tea drinks with colon mucosa, the study on potential effectiveness of EGCG on the inhibition of colorectal carcinogenesis has generated great interest. It has been reported that EGCG inhibited azoxymethane-induced colon tumorigenesis in the rat (10), and also drinking green tea blocked the formation of 1,2-dimethylhydrazine-induced colonic aberrant crypt foci, which is a typical precursor lesion of chemical-initiated colon cancer (11).

Previous studies have shown that the chemoprevention function of EGCG could be attributed to its properties as an antioxidant, phase II enzyme inducer, cell growth inhibitor or apoptosis inducer (3,12–16). Mechanistic studies of EGCGs inhibitory effect on cell proliferation have demonstrated the regulatory influence of EGCG on the levels and activities of transcription factor AP-1 (17,18), NF-κB (19–21), cell cycle-related protein p21 (22), PI3 kinase (23) and mitogen-activated protein kinases (MAPKs) (24,25). However, the influence of EGCG on signaling molecules directly involved in apoptotic pathway has not been fully examined. In this study, we compared the anti-proliferation effect of EGCG on normal colon epithelial cells and colon carcinoma cells, investigated the morphological changes after EGCG treatments, and determined the influence of EGCG on caspases, cytochrome c, mitochondria, as well as MAPKs. Additionally, through inhibition experiments, we showed that c-Jun N-terminal kinase (JNK) and oxidative stress play important roles in the EGCG-induced apoptosis in HT-29 human colon cancer cells.

Materials and methods

Cell culture

Human colorectal cancer cells, HT-29 and human normal colon epithelial cells, FHC, were purchased from American Type Culture Collection

Abbreviations: DAPI, diamidino-2-phenylindole; DMSO, dimethyl sulfoxide; EGCG, (−)-epigallocatechin-3-gallate; ERK, extracellular signal-regulated protein kinase; GSH, reduced glutathione; JNK, c-Jun N-terminal kinase; MAPKs, mitogen-activated protein kinases; NAC, N-acetyl-l-cysteine.

© Oxford University Press. All rights reserved
(ATCC). HT-29 cells were maintained in minimum essential medium (MEM) supplemented with 10% fetal bovine serum, 2.2 g/l sodium bicarbonate, 100 U/ml penicillin and 100 mg/ml streptomycin. FHC cells were maintained in Ham’s F12 medium (45%) and Dulbecco’s modified Eagle’s medium (45%) supplemented with 10% fetal bovine serum, 25 mM HEPES, 10 ng/ml cholera toxin, 5 μg/ml insulin, 5 μg/ml transferrin and 100 ng/ml hydrocortisone. Both HT-29 and FHC cells were maintained in low serum overnight in MEM containing 0.5% serum before chemical treatments.

Reagents
EGCG, dimethyl sulfoxide (DMSO), reduced glutathione (GSH), N-acetyl-L-cysteine (NAC), hydrogen peroxide (H2O2), catalase and diamidino-2-phenylindole (DAPI) were purchased from Sigma (St Louis, MO). Mouse anti-cytocrome c monoclonal antibody was purchased from Pharmingen (San Diego, CA). Rabbit anti-phospho-extracellular signal-regulated protein kinase (ERK) 1/2, -JNK and -p38 polyclonal antibodies were purchased from Cell Signaling Technology (Beverly, MA). Fluorogenic peptide substrates of caspase-3 (Ac-DEVD-MA), caspase-9 (Ac-LEHD-MCA) and caspase-8 (Ac-IETD-MCA), were purchased from Peptides International (Louisville, KY). SP600125 (JNK inhibitor) and PD98059 (ERK inhibitor) were purchased from Calbiochem (La Jolla, CA). 3,3’-Diethylxocarboxylic anhydride iodoide [DiOC6(3)] was purchased from Molecular Probes (Eugene, OR).

Cell viability assay (MTS assay)
Cells were cultured in 96-well plates at a density of 10^4 cells/well. Twenty-four hours later, cells were treated with a series of concentrations of EGCG. After 24 h, cell viability was assayed with CellTiter 96 non-radioactive cell proliferation assay kit (Promega, Madison, WI). Briefly, 20 μl of combined solution of a tetrazolium compound MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy methylthio)-2H-tetrazolium, inner salt], and an electron coupling reagent phenazine methosulfate (PMS), was added to each well. After incubation for 1 h at 37°C in a humidified 5% CO2 atmosphere, the absorbance at 490 nm was measured on an enzyme-linked immunosorbent assay plate reader.

Nuclear staining assay
After treatments, HT-29 cells were harvested and the cell pellets were resuspended in 500 μl of PBS containing 2% fetal bovine serum and 40 nM DiOC6(3). Fluorescence intensities of DiOC6(3) were analyzed on a flow cytometer (FACScan, Becton Dickinson, San Jose, CA) with excitation and emission settings of 485 and 500 nm, respectively. Propidium iodoide was added to the sample to gate out dead cells before data collection.

Western blotting to examine phosphorylation of JNK, ERK and p38
After treatments, HT-29 cells were washed with ice-cold PBS and lysed with 500 μl of lysis buffer (10 mM Tris–HCl, pH 7.4, 50 mM sodium chloride, 30 mM sodium pyrophosphate, 50 mM sodium fluoride, 100 mM sodium orthovanadate, 2 mM iodoacetatic acid, 5 mM ZnCl2, 1 mM phenylmethylsulfonyl fluoride and 0.5% Triton-X 100). The lysates were homogenized by passing through a 23-G needle three times, and kept in ice for 30 min. The homogenates were centrifuged at 12 000 g for 15 min at 4°C. The protein concentration of whole cell lysates was determined by Bio-Rad protein assay kit. An equal amount of protein was then resolved on a 10% SDS–polyacrylamide gel and transferred to PVDF membrane using semi-dry transfer system. The membrane was blocked in 5% bovine serum albumin solution for 1 h at room temperature, then incubated overnight at 4°C with anti-phospho-MAPK primary antibody (1:1000 dilution, Cell Signaling Technology), which specifically recognized phosphorylated ERK1/2 (Th202/Thr204), JNK (Thr183/Tyr185) and p38 (Thr180/Tyr182), respectively. After hybridization with primary antibody, the membrane was washed with TBS for three times, then incubated with horseradish peroxidase-conjugated secondary antibody (1:10 000 dilution, Santa Cruz Biotechnology, Santa Cruz, CA) for 30 min at room temperature and washed with TBS three times. Final detection was performed with ECL reagents.

Preparation of cytosolic extracts and western blotting analysis of cytochrome c release
HT-29 cells were washed twice with ice-cold PBS and scraped off the plates. Cells were collected by centrifugation at 500 g for 10 min. The cell pellet was resuspended in 500 μl of extraction buffer containing 210 mM mannitol, 70 mM sucrose, 20 mM HEPES-KOH, pH 7.4, 50 mM KCl, 5 mM EGTA, 2 mM MgCl2, 1 mM dithiothrietol, 0.1 mM phenylmethylsulfonyl fluoride, and protease inhibitors (Complete Cocktail; Roche Molecular Biochemicals, Indianapolis, IN). After incubation on ice for 30 min, cells were homogenized with a glass Dounce and a B pestle. Homogenates were centrifuged at 12 000 g for 5 min at 4°C. Supernatants were collected and further centrifuged at 100 000 g for 30 min at 4°C to yield cytosol. Twent-y-five micrograms of total protein, as determined by the Bradford method (Bio-Rad), was resuspended in 15% SDS–polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride (PVDF) membrane using semi-dry transfer system (Fisher, Suwanee, GA). Membrane was blocked with 5% non-fat dry milk in TBS containing 3% non-fat milk overnight at 4°C. Membrane was washed three times with TBS and blocked with secondary antibody conjugated with horseradish peroxidase (1:10 000 dilution, Jackson ImmunoResearch Laboratories, West Grove, PA) at room temperature for 30 min. The protein was visualized by using ECLTM (Enhanced Chemiluminescence, Amersham, Piscataway, NJ) after washing three times in TBS.

Measurement of mitochondrial membrane potential
After EGCG treatments, HT-29 cells were incubated with 40 nM DiOC6(3) for 15 min at 37°C. Then, cells were washed with ice-cold PBS and resuspended on the plates in PBS. Cells were collected by centrifugation at 500 g for 10 min and resuspended in 500 μl of PBS containing 2% fetal bovine serum and 40 nM DiOC6(3). Fluorescence intensities of DiOC6(3) were analyzed on a flow cytometer (FACScan, Becton Dickinson, San Jose, CA) with excitation and emission settings of 485 and 500 nm, respectively. Propidium iodoide was added to the sample to gate out dead cells before data collection.
In vitro immunocomplex kinase assay for JNK activity

Briefly, after treatments, HT-29 cells were washed twice with ice-cold PBS and harvested with lysis buffer. Kinase reactions were initiated by adding 30 µl of kinase assay buffer containing 10 µg of GST-c-Jun(1-79) fusion protein, 2 µCi of [γ-32P]ATP and 20 µM ATP. After incubation for 30 min at 30°C, the reactions were terminated by adding 10 µl of 4× Laemmli buffer and by heating at 94°C for 5 min. The phosphorylation products were resolved in 10% SDS-polyacrylamide gel and visualized by autoradiography.

Trypan blue staining

After chemical treatments, floating and attached cells were harvested and combined for 10 min centrifugation at 1000 g. Cell pellets were resuspended...
Treatments with higher concentrations mostly led to non-dependently (Figure 2A), which is consistent with an intensification of HT-29 cells in the concentration ranges from 50 to 250 treatments (Figure 2B). Therefore, EGCG-induced apoptosis was increased dose-specific DNA laddering pattern from cells undergoing the same apoptosis pathways, implicating apoptotic cell death. DAPI nuclear dye. Nuclear fragmentation and condensation were examined to determine the caspase-3 activity in HT-29 cells was consistent with the results shown in DAPI staining and DNA fragmentation experiments. 100 µM EGCG (from 10 to 500 µM) led to ~8-fold induction of caspase-3 activity after 24 h treatment. As the major upstream signal transducers of caspase-3 are death receptor-related caspase-8 and mitochondria damage-related caspase-9, the time-course response from these caspases against 100 µM EGCG treatment were determined to elucidate the caspase-3 activation pathway. As shown in Figure 3B, the activation of caspase-3 was initiated around 12 h after treatments, which was relatively delayed compared with other chemical stress-induced caspase-3 activation. During the 24 h period, the activity of caspase-8 in HT-29 cells was unchanged, but the activity of caspase-9 was consistently increased. This implied the possible involvement of mitochondrial damage in EGCG-induced apoptosis.

Fig. 3. Induction of caspase activity. (A) Dose-dependent activation of caspase-3. Following treatments with different concentrations of EGCG for 24 h, cells were harvested, and the caspase-3 activity was determined by incubation of 10 µg of total protein with fluorogenic substrate, Ac-DEVD-MCA, for 2 h at 37°C. The release of fluoroscence was monitored spectrfluorometrically (excitation = 360 nm; emission = 460 nm). (B) Kinetics of caspase-3, -8 and -9 activation. Cells were treated with 100 µM of EGCG for different time periods. Caspase-3, -9 and -8, were assayed with Ac-DEVD-MCA, Ac-LEHD-MCA and Ac-IETD-MCA fluorogenic substrates, respectively, for 2 h at 37°C. Enzyme activity is expressed as the fold of induction relative to untreated controls. Means and standard deviations are calculated based on the data from four independent experiments.

EGCG-induced cytochrome c release and mitochondrial membrane potential change
To examine the possible role of mitochondria in the apoptotic death of HT-29 cells induced by EGCG, the existence of cytochrome c in cytosolic fraction of cell lysis was measured after EGCG treatments. As shown in Figure 4A, the release of cytochrome c from mitochondria was time- and dose-dependent. Twelve hours of 100 µM EGCG treatment led to a dramatically increased amount of cytochrome c leaking from mitochondrial membrane into cytosol in HT-29 cells. The influence of EGCG on mitochondrial membrane integrity was also measured by DiOC6(3) dye staining (Figure 4B),
which showed the decreased membrane potential ($\Delta \Psi_m$) caused by the mitochondrial membrane permeability transition after EGCG treatments.

EGCG-induced MAPK activation

The activation of caspases and the release of cytochrome c from mitochondria in HT-29 cells were only observed after 6–12 h of 100 µM EGCG treatments. In order to identify some early signaling events induced by EGCG in HT-29 cells, the responses of MAPKs, which are a group of important signaling molecules sensitive and responsive to extracellular stimuli, were measured. As shown in Figure 5A, all of the three major MAPKs, JNK, ERK and p38, were phosphorylated and activated time-dependently in HT-29 cells after EGCG treatments. The activation of MAPKs was observed starting at ~5–15 min, and peaking at ~1 h. Additionally, the result obtained from the phosphorylation of JNK protein was corroborated by using in vitro kinase assay with GST-c-Jun as substrate. Moreover, the activation of these MAPKs was dose-dependent (Figure 5B). Comparing the EGCG concentrations for the activation of JNK and p38, the activation of ERK was initiated with relatively lower concentration (~10 µM).
Role of JNK and ERK in EGCG-induced cell death

The immediate and potent activation of JNK pathway led to the interest on the possible function of JNK in initiating apoptotic signals in HT-29 cells. A newly discovered JNK inhibitor, SP600125, was adopted to block this pathway (26). As shown in Figure 6A, pre-treatment of SP600125 can dramatically decrease JNK kinase activities and the phosphorylation of JNK1 and JNK2 induced by 1 h treatment of 100 μM EGCG.

Interestingly, the decrease of JNK activation was accompanied with the simultaneous increase in ERK activation, especially in the pre-treatment of the cells with 25 μM SP600125. To elucidate the influence of inhibiting early JNK activation on late-stage cell death events, the cytosolic level of cytochrome c protein after 12 h EGCG treatment was also examined. SP600125 pre-treatment led to the decreased release of cytochrome c from mitochondrial membrane after EGCG treatment, which was consistent with the lower percentage of cell death in HT-29 samples co-treated with EGCG and SP600125, as compared with the cells treated only with EGCG (Figure 6A). Next, the role of ERK in EGCG-induced apoptosis was examined by using PD98059, a potent ERK inhibitor.

As shown in Figure 6B, pre-treatment of PD98059 not only eliminated EGCG-induced ERK activation, but also abolished the basal level of activated ERK in HT-29 cells. At the same time, the phosphorylation of JNK was slightly increased in the co-treatment of 50 μM PD98059 and 100 μM EGCG. Cytochrome c release assay showed that PD98059 did not independently cause damage to mitochondria, but it robustly raised the release of cytochrome c induced by EGCG treatment (Figure 6B). Cell death assay indicated that, comparing the
EGCG - 100 | 100 | 100 | 100 (µM)
GSH - 5 | 5 | 5 | 5 (mM)
NAC - 5 | 5 | (mM)

Fig. 7. Effect of thiol antioxidants on EGCG-induced intracellular signals and cell death. Reduced GSH (5 mM) or NAC was added into the media 1 h before 100 µM EGCG treatment. Measurement of the phosphorylation of JNK and ERK, as well as cytochrome c release and cell death assays, was performed as described in Figure 6.

Discussion

Cancer chemoprevention is conducted through the administration of chemical or dietary components to interfere with the initiation, promotion and progression of tumors. According to the report of the Chemoprevention Working Group to the American Association of Cancer Research in 1999, one of the major strategies adopted in chemoprevention is to suppress the carcinogenic process after initiation (29). In this study, EGCG elicited the strong pro-apoptotic effect on carcinoma cells, and affected the proliferation of normal and tumor colon cells distinctively. The selectivity of cytotoxicity against cancerous cells is consistent with a previous report that showed EGCG had a pronounced growth inhibitory effect on SV40 virally transformed WI38 human fibroblasts but not on their normal counterparts (30). This observation infers that EGCG has the potential to function as a suppressing agent against the promotion and progression of adenoma and carcinoma cells. In comparison with other carcinoma cell lines, HT-29 is not the most sensitive cell line to EGCG treatments with respect to the growth inhibition and the induction of cell death (4). The reason for this observation may partially be attributed to the fact that EGCG is extensively metabolized to methylated and glucuronidated conjugates in HT-29 cells, and then actively pumped out of cells by multi-drug resistance-related proteins (MRPs) as shown in recent study about the uptake, biotransformation, and efflux of EGCG in HT-29 cells (31). Furthermore, 100 µM concentration of EGCG adopted in this study is within the range of EGCG concentration in the normal green tea beverage, which may reach up to 300 µM as calculated from the fact that a single cup of green tea drink may contain 150–200 mg EGCG (32,33).

Caspase-3, -8 and -9, which are members of the protease family, function as initiators and effectors in the apoptosis process. After proteolytic activation from procaspases, activated caspases can recognize the tetrapeptide motif in target proteins and specifically cleave the peptide chain after aspartic acid, which then leads to deregulation of protein activities and dismantling of the cytoskeletal and cellular structure (34). The activation of caspase-3 has been shown in human chondrosarcoma and cervical cancer cells treated with EGCG (25,35). It has been reported that EGCG can directly bind to Fas death receptor to initiate the caspase-8 activation and apoptosis (36). However, caspase-8 activity in HT-29 cells remained unchanged after EGCG treatments. Contrasting to caspase-8, the activity of caspase-9 in HT-29 cells had the similar induction pattern as caspase-3 activity after EGCG treatments. Therefore, it implied the involvement of mitochondrial damage in EGCG-induced apoptosis. This is the first report to show that EGCG can induce cytochrome c release and mitochondria membrane permeability transition. These observations are consistent with the previous report that EGCG can lead to the decrease of anti-apoptotic Bcl-2 and Bcl-X(L) proteins and the increase of pro-apoptotic Bax proteins (37).

The activation and initiation of direct apoptotic signaling is quite delayed in EGCG-treated HT-29 cells, as compared with the apoptotic events induced by Fas ligands or chemicals that specifically target mitochondria. In this study, we observed the early response from HT-29 cells through measuring the changes on MAPKs, among which JNK1/JNK2 and p38, are connected to stress-activated apoptosis, and ERK1/ERK2 are linked to cell proliferation and survival (38). After EGCG treatments, the phosphorylation of JNKs, ERKs and p38 are pronounced with minor differences in the extent and the kinetics of activation. This phenomenon is consistent with our previous observation on HeLa and HepG2 cells treated with green tea polyphenols (24,25), as well as the results in some recent reports about the effect of EGCG in breast cancer cells, macrophages and keratinocytes (39–41), but it is
opposite to the conclusions with other publications, which showed the inhibitory effect of EGCG on the activation of MAPKs (42,43). The reason for this discrepancy is unclear, but may be attributed to the experimental designs as well as cell lines.

Recent studies by using target gene disruption have established that JNK signaling pathway is required for stress-induced release of mitochondrial cytochrome c and apoptosis (44). The intermediate signaling moiety between JNK activation and cytochrome c release may be linked to Bax protein, as activated JNK fails to induce apoptosis in cells deficient of members of the proapoptotic Bax subfamily of Bcl2-related proteins; as well as in JNK-deficient cells, stress signals fail to activate Bax, induce cytochrome c release and cause cell death (45). In our present study, pre-treatments of SP600125, a specific blocker for JNK pathway through reversible ATP-competitive inhibition, led to substantial decrease of cytochrome c release and cell death in response to EGCG treatment. This suggests that JNK pathway may play a pivotal role in EGCG-induced cell death. With regard to ERK pathway, noticeably, relatively lower EGCG concentrations were needed for ERK activation, as compared with the

Fig. 8. Role of H2O2 in EGCG-induced oxidative stress. (A) Effect of catalase pre-treatment on EGCG- or H2O2-induced JNK and ERK activation. (B) Cell morphology after co-treatments of catalase with EGCG or H2O2. 3000 U/ml of catalase was added into the media 0.5 h before 100 μM EGCG or 500 μM H2O2 treatments. Phosphorylation of JNK and ERK was measured by western blot after 1 h of EGCG or H2O2 treatment. Cell morphology was observed under inverted microscopy (original magnification ×200) after 36 h of EGCG or H2O2 treatment. Arrows indicate the apoptotic cell bodies.
concentrations for JNK and p38. This was consistent with the slight increment of cell proliferation in the treatments with 10 and 25 mM EGCG. Also, the application of PD98059 dramatically intensified the damage to HT-29 cells caused by EGCG. Both events highlighted the positive function of ERKs in cell proliferation and survival. The simultaneous sustained activation of all three major MAPKs, which have different and in some case opposite biological function, indicates that the balance and integration of MAPK pathways may modulate the commitment of cells to apoptosis or survival following external stimuli (46,47). In our study, co-treatments of JNK inhibitor and EGCG led to an increased ERK activation. Furthermore, ERK inhibitor and EGCG led to the increased effects of GSH and NAC against EGCG-induced MAPK activation. This indicates that the cross-talk exists between these two pathways. It has been shown that there are extensive interactions among the upstream kinases of all three MAPKs (38). Future investigation about the influence of EGCG on these upstream elements will shed light on how those MAPKs are activated and how EGCG-initiated chemical signals are converted to apoptotic response.

Among all of the green tea phenolic compounds, EGCG is the most potent in terms of the bioactivity, and EGCG also contains the most hydroxyl functional groups in its chemical structure. Previous studies on the antioxidative property of EGCG have demonstrated both the trapping effect of reactive oxygen species (ROS) as well as the inhibitory effect of lipid peroxidation (48). However, after neutralizing the peroxyl and/or other radicals, EGCG itself could be converted to phenoxyl radical (49). In addition, under normal physiological pH condition, EGCG may undergo auto-oxidation to form dimers, accompanying with the generation of ROS intermediates (31,50). In the present study, the chemical property of EGCG as a potential pro-oxidant was highlighted by the blocking effects of GSH and NAC against EGCG-induced MAPK activation, cytochrome c release and cell death. It has been shown that EGCG may induce the production of hydrogen peroxide (H$_2$O$_2$) in the culture media (27,28). However, pre-treatment of catalase in our study failed to diminish EGCG-induced MAPK activation and apoptosis in HT-29 cells. This observation appears to be consistent with a previous report that the inhibition of β-catenin expression by EGCG may not be related to the generation of H$_2$O$_2$ (51). Further studies are required to examine whether other oxidizing radicals are involved in the initiation of stress signals generated by EGCG.

In conclusion, in this study, we examined the molecular mechanism of EGCG-induced apoptosis on HT-29 human colon adenocarcinoma cell line. EGCG treatments induce oxidative stress, thereafter activate stress signals, such as JNK pathway, which lead to the changes on mitochondrial membrane permeability and the release of cytochrome c. Subsequently, caspase-9 and -3 are activated, followed by DNA fragmentation and nuclear condensation. Collectively, these results imply that the pro-apoptotic effect of EGCG may in part contribute to its overall chemopreventive function against colonic carcinogenesis.

Acknowledgements

We thank Dr Eileen White for providing ultracentrifuge for cytochrome c experiments, Dr Debra Laskin for fluorescence microscopy, Dr Peter Lobel for CytoFluro II fluorescence reader and Drs Anning Lin and Michael Karin for providing GST-c-Jun construct. We also thank all the members in Dr Tony Kong’s lab for their help in the preparation of this manuscript. Works described here were supported by grant R01-CA92515 from National Institute of Health (NIH).

References

Epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis, 19, 1771–1776.

Mitochondria and JNK in EGCG-induced apoptosis

Received March 26, 2003; accepted May 4, 2003; accepted May 17, 2003