Copy number variant in the candidate tumor suppressor gene MTUS1 and familial breast cancer risk

Bernd Frank1,2, Justo Lorenzo Bermejo1, Kari Hemminki1,2, Christian Sutter4, Barbara Wappenschmidt5,6, Alfons Meindl7, Marion Kiechle-Bahat7, Peter Bugert8, Rita K.Schmutzler5,6, Claus R.Bratram4 and Barbara Burwinkel1,2

1Division of Molecular Genetic Epidemiology and, 2Helmholtz-University Group Molecular Epidemiology, German Cancer Research Center, DKFZ, Heidelberg, Germany, 3Center for Family Medicine, Karolinska Institute, Huddinge, Sweden, 4Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany, 5Division of Molecular Gynaeco-Oncology, Department of Gynaecology and Obstetrics, Clinical Center University of Cologne, Germany, 6Center of Molecular Medicine Cologne, University Hospital of Cologne, Germany, 7Department of Gynaecology and Obstetrics, Klinikum rechts der Isar, Technical University, Munich, Germany and 8Institute of Transfusion Medicine and Immunology, Red Cross Blood Service Baden-Württemberg-Hessia, Faculty of Clinical Medicine, University of Heidelberg, Mannheim, Germany

Copy number variants (CNVs), insertions, deletions and duplications, contribute considerably to human genetic variation and disease development. A recent study has characterized 100 CNVs including a deletion in the mitochondrial tumor suppressor gene 1 (MTUS1) lacking the coding exon 4. MTUS1 maps to chromosome 8p, a region frequently deleted and associated with disease progression in human cancers, including breast cancer (BC).

To investigate the effect of the MTUS1 CNV on familial BC risk, we analyzed 593 BC patients and 732 control individuals using a case–control study design. We found a significant association of the deletion variant with a decreased risk for both familial and high-risk familial BC (odds ratio (OR) 0.58, 95% confidence interval (CI) = 0.37–0.90, \(P = 0.01 \) and OR = 0.41, 95% CI = 0.23–0.74, \(P = 0.003 \)), supporting its role in human cancer. To our knowledge, the present study is the first to determine the impact of a CNV in a tumor suppressor gene on cancer risk.

Introduction
Within the past years, numerous submicroscopic structural copy number variants (CNVs) or copy number polymorphisms have been identified as a novel form of genetic variation in the human genome (1–3). They are suggested to arise from a recurrent rearrangement by nonallelic homologous recombination, resulting in duplication, inversion or deletion of intermediate sequences (2). About 5% of the human genome are enriched with intrachromosomal duplications, predisposing to aberrant recombination (2). CNVs are considered to be substantially related to human diversity and may influence susceptibility to complex diseases such as neurological disease, autism, obesity and cancer (1–4). Chromosomal regions such as 6cen, 5pter and 15q13-14 are deemed copy number variation hot spots comprising up to four CNV clusters (1). By applying an array-based comparative genomics approach, Hinds et al. (5) examined 100 deletion polymorphisms ranging from 70 bp to 7 kb. These included a common deletion in the mitochondrial tumor suppressor gene 1 (MTUS1) encompassing the complete coding exon 4.

Abbreviations: BC, breast cancer; CI, confidence interval; CNV, copy number variant; MTUS1, mitochondrial tumor suppressor gene 1; OR, odds ratio; PCR, polymerase chain reaction.

MTUS1 has been detected and characterized as mitochondrial tumor suppressor gene being ubiquitously expressed in normal tissue but transiently up-regulated during initiation of cellular quiescence and differentiation processes (6). mRNA expression studies in different tumors and tumor cell lines supplied final evidence of the tumor suppressor function of MTUS1. Native MTUS1 mRNA expression was shown to be markedly reduced in tissue from pancreatic tumor and the pancreatic tumor cell line MIA PaCa-2, whereas recombinant expression in MIA PaCa-2 cells inhibited proliferation (6). The regulation of cellular proliferation by a mitochondrial protein may be caused by different mitochondrial functions, such as the maintenance of energy supply, the production of reactive oxygen intermediates and other cell cycle regulators, e.g. TP53 (6). MTUS1 which is also designated MTSG1, GK1 (7) or ATIP1 (angiostatin II AT2 receptor-interacting protein) maps to chromosome 8p21.3-22, a region frequently deleted and associated with disease progression in a wide range of human cancers, including bladder, colorectal, esophageal, head and neck squamous cell, hepatocellular, lung, ovarian, pancreatic, prostate and especially breast carcinomas (8–14). In a variety of cellular models, MTUS1/ATIP1 is an early mediator of angiostatin II (AT2) receptor activation. Together with AT2, it antagonizes AT1 receptor function, inhibiting epidermal growth factor signaling via epidermal growth factor receptor autophosphorylation, growth factor-induced extracellular regulated kinase activity, phosphorylation of signal transducer and activator of transcription 3 (STAT3), activation of protein kinase C, involving apoptosis and proliferation (15–20).

To investigate the effect of this CNV on familial breast cancer (BC) risk, we refined the break point region and size of the MTUS1 deletion and performed a case–control study.

Materials and methods

Study population
The analysis of the MTUS1 deletion was performed on 593 German BC families and 732 control individuals.

The cases comprised unrelated, female index patients (19–87 years of age, median 45) without mutations in the high-penetration genes BRCA1 and BRCA2. They were collected during the years 1996–2005 through the Institute of Human Genetics (Heidelberg, Germany), the Department of Gynaecology and Obstetrics (Cologne, Germany) and the Department of Medical Genetics (Munich, Germany). According to the German Consortium for Hereditary Breast and Ovarian Cancer (21), the BC cases were divided into six categories based on family history: (A1) families with two or more BC cases including at least two cases with onset below the age of 50 years (232 cases); (A2) families with at least one male BC case (four cases); (B) families with at least one BC and one ovarian cancer case (137 cases); (C) families with at least two BC cases including one case diagnosed before the age of 50 years (153 cases); (D) families with at least two BC cases diagnosed after the age of 50 years (49 cases) and (E) single cases of BC diagnosed before the age of 35 (18 cases). The categories A1 and B were considered as high-risk categories due to stringent family history inclusion criteria and high BRCA1/2 mutation frequencies in German breast/ovarian cancer families compared with the remaining categories (21). Thus, high-risk families have more cases of BC than one would expect by chance alone. Among the familial BC cohort, 370 unrelated, German women were at high risk (23–87 years of age, median 44).

The control series consisted of healthy, unrelated female and ethnically matched blood donors (26–68 years of age, median 49). They were recruited in 2004 and 2005 by the Institute of Transfusion Medicine and Immunology (Mannheim, Germany) from the southwestern area of Germany that corresponds to the geographical origin of the patients. According to the German guidelines for blood donation, all blood donors were examined to rule out cardiovascular, malignant and other diseases by a standard questionnaire, cardiac auscultation, blood pressure and pulse measurement. Blood donors with previous malignant disease were excluded from blood donation.

The study was approved by the Ethics Committee of the University of Heidelberg (Heidelberg, Germany), and written informed consent was obtained from all individuals.
Genotyping
Detection and genotyping of the MTUS1 deletion was carried out by polymerase chain reaction (PCR) amplification (Figure 1). The identity of PCR products was confirmed by sequencing deletion-specific and wild type-specific amplicons as described previously (22). PCR and sequencing primer sequences are available upon request.

Statistical analysis
The differences in genotype frequencies between BC cases and controls were evaluated for statistical significance by \(\chi^2 \) tests; when the expected number of cases was smaller than five, Fisher’s exact tests were applied. Likelihood ratio tests were used to compare a general three genotype model with dominant and recessive models.

Genotype-specific odds ratios (ORs), 95% confidence intervals (CI) and \(P \) values were computed by unconditional logistic regression using the Statistical Analysis System software (version 9.1; SAS Institute, Cary, NC). \(P < 0.05 \) was deemed significant. Hardy–Weinberg equilibrium and in line with the data by Hinds et al. (2003).

To assess the relevance of our finding, we calculated the proportion of cases in the general population attributable to the identified gene–disease association (population attributable fraction) (23,24).

To assess the relevance of our finding, we calculated the proportion of cases in the general population attributable to the identified gene–disease association (population attributable fraction) (23,24).

Results and discussion
Recent studies have reported CNVs as relevant contributors to human diversity and cancer susceptibility (1–3). Hinds et al. (5) have described several CNVs, including a deletion in the mitochondrial tumor suppressor gene MTUS1, using a high-density oligonucleotide array design. In order to evaluate the influence of this CNV on familial BC risk, we confirmed the deletion variant lacking the entire exon 4 by means of PCR amplification and sequencing (Figure 1), refining the deletion size from 1312 bp (5) to 1128 bp (Figure 2).

In the subsequently performed case–control study, genotype frequencies in controls were in agreement with the Hardy–Weinberg equilibrium and in line with the data by Hinds et al. (5). The three MTUS1 genotypes differed statistically in the risk of both familial \((\chi^2 = 6.19, P = 0.045) \) and high-risk familial \((\chi^2 = 8.62, P = 0.003) \) BC. Results from the likelihood ratio test \((\chi^2 = 0.263, P = 0.608) \) supported a dominant model for the association of the MTUS1 deletion and familial BC. ORs were 0.58 (95% confidence interval = 0.37–0.90, \(P = 0.01 \), Table I) for familial and 0.41 (95% confidence interval = 0.23–0.74, \(P = 0.003 \), Table I) for high-risk familial BC. Adjustment for sex and age did not change the results. Assuming dominant penetrance and the estimated protective effects to be true, the identified deletion would result in a population attributable fraction of 5.9%. This is in agreement with the fact that relatively common variants associated with slight changes in disease risk would explain many cases in the general population (23,24).

Fig. 1. (A) Schematic diagram of the MTUS1 gene deletion that comprises the complete exon 4 and parts of introns 3 and 4. Deletion assessment was done in two separate PCRs with one set of amplification primers, respectively. The PCR primers DEL_FOR and DEL_REV are located in intron 3 and intron 4, whereas Ex4_FOR and Ex4_REV are exon-specific. (B) MTUS1 PCR amplification products. DEL_FOR/DEL_REV primers flank the deleted region and generate a 270 bp product in the presence of the deletion. Ex4_FOR/Ex4_REV amplify an exon 4-specific 133 bp product, indicating absence of the deletion. Whereas homozygous wild type carriers (wt/wt) exclusively exhibit the 133 bp fragment, homozygous deletion carriers (DEL/DEL) exclusively exhibit the 270 bp fragment. Heterozygous deletion carriers (wt/DEL) are characterized by both PCR products.
Fig. 2. Multiple MTUS1 sequence alignment of the deletion-specific PCR product (generated with DEL_FOR and DEL_REV primers) sequence and the respective 5’ and 3’ sequences of full-length MTUS1 derived from GenBank NT_030737.9. The presence of the highly homologous flanking 5’ and 3’ repeats predisposed these regions to recurrent rearrangement by non-allelic homologous recombination, leading to the deletion of the intervening sequence. PCR primer sequences are underlined. Letters in black indicate identity, letters in gray indicate mismatches and asterisks underscore the homologous deletion break point region. NT_030737.9 positions 5,426,695 and 5,425,568 were used to define the deletion size of 1128 bp.

#We assume that the mismatch is due to a sequence error in NT_030737.9.

Table I. Genotype frequencies for the MTUS1 deletion variant in unrelated, female German BRCA1/2 mutation-negative familial and high-risk familial BC patients and healthy, unrelated female control subjects, ORs with 95% CI and P values

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Controls</th>
<th>OR (95% CI), P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familial BC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wt/wt</td>
<td>562 (94.8)</td>
<td>668 (91.3)</td>
<td></td>
</tr>
<tr>
<td>wt/DEL</td>
<td>30 (5.1)</td>
<td>63 (8.6)</td>
<td></td>
</tr>
<tr>
<td>DEL/DEL + wt/DEL</td>
<td>31 (5.2)</td>
<td>64 (8.7)</td>
<td></td>
</tr>
<tr>
<td>OR (95% CI), P value</td>
<td>0.58 (0.37–0.90), 0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(DEL/DEL + wt/DEL) versus (wt/wt)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-risk familial BC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wt/wt</td>
<td>355 (96.2)</td>
<td>668 (91.3)</td>
<td></td>
</tr>
<tr>
<td>wt/DEL</td>
<td>14 (3.8)</td>
<td>63 (8.6)</td>
<td></td>
</tr>
<tr>
<td>DEL/DEL</td>
<td>0 (0)</td>
<td>1 (0.1)</td>
<td></td>
</tr>
<tr>
<td>DEL/DEL + wt/DEL</td>
<td>14 (3.8)</td>
<td>64 (8.7)</td>
<td></td>
</tr>
<tr>
<td>OR (95% CI), P value</td>
<td>0.41 (0.23–0.74), 0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(DEL/DEL + wt/DEL) versus (wt/wt)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgements

We wish to thank all participants who joined the study and are grateful to Kerstin Wagner for her comments on the manuscript. The German BC samples were collected within a project funded by the Deutsche Krebshilfe. It was supported by the Center of Molecular Medicine Cologne (CMMC) and the EU, LSHC-CT-2004-503465.

Conflict of Interest Statement: None declared.

References

Received October 27, 2006; revised January 25, 2007; accepted February 7, 2007