1,1-Bis(3′-indolyl)-1-(p-substituted phenyl)methanes inhibit colon cancer cell and tumor growth through activation of c-jun N-terminal kinase

Ping Li1, Maen Abdellahim2,3, Sung Dae Cho1,4, Shengxi Liu1, Sudhakar Chintharlapalli1 and Stephen Safe1,5,

1Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, USA, 2Cancer Research Institute, M.D. Anderson Cancer Center—Orlando, Orlando, FL 32806, USA, 3Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA, 4Department of Oral Biology, School of Dentistry, Institute of Oral Biosciences, Chonbuk National University, Jeonju, Republic of Korea 561-756 and 5Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA

To whom correspondence should be addressed. Tel: +1 979 845 5988; Fax: +1 979 862 4929; Email: ssafe@cvm.tamu.edu

1,1-Bis(3′-indolyl)-1-(p-substituted phenyl)methanes (C-DIMs) activate the orphan receptors peroxisome proliferator-activated receptor γ (PPARγ) and Nur77 and induce receptor-dependent and -independent apoptotic pathways in colon and other cancer cells. Structure-activity studies show that the p-bromo (DIM-C-pPhBr) and p-fluoro (DIM-C-pPhF) analogs, which exhibit minimal activation of Nur77 and PPARγ, induce expression of CCAAT/enhancer-binding protein homologous protein (CHOP/GADD153) in colon cancer cells. Moreover, among a series of bromo and fluoro C-DIM analogs, their induction of CHOP was dependent on the position of the phenyl substituents (para ≥ meta ≥ ortho) and required a free indole group. DIM-C-pPhBr and DIM-C-pPhF not only induced CHOP but also activated death receptor 5 (CHOP dependent), cleavage of caspase 8 and poly (ADP ribose) polymerase (PARP) that is consistent with activation of the extrinsic pathway of apoptosis. These responses were associated with the activation of c-jun N-terminal kinase (JNK) pathway since inhibition of JNK inhibited induction of the extrinsic apoptotic pathway by these C-DIMs. However, in contrast to classical inducers of endoplasmic reticulum (ER) stress such as tunicamycin and thapsigargin, the C-DIM compounds did not induce gluconeogenesis via peroxisome proliferator-activated receptor γ (PPARγ), whereas the methoxy and unsubstituted analogs activate nerve growth factor-induced-B2 (Nur77), an orphan nuclear receptor. Both PPARγ-active and Nur77-active C-DIM compounds induce both receptor-dependent and -independent growth inhibitory and proapoptotic pathways in cancer cells and tumors including activation of ER stress in both pancreatic and ovarian cancer cell lines (11,26).

Materials and methods

Reagents and antibodies

C-DIMs were synthesized in this laboratory from the condensation of indole or indole-bisdiindolylmethanes (DIMs) and 1,1-Bis(3′-indolyl)-1-(p-substituted phenyl)methanes (C-DIMs) that are cytotoxic to cancer cells and inhibit tumor growth in vivo (11,18–28). C-DIM compounds containing para-trifluoromethyl (DIM-C-pPhCF3), 4-buty (DIM-C-pPhBu), phenyl (DIM-C-pPhC6H5) and cyano (DIM-C-pPhCN) activate peroxisome proliferator-activated receptor γ (PPARγ), whereas the methoxy and unsubstituted analogs activate nerve growth factor-induced-B2 (Nur77), an orphan nuclear receptor. Both PPARγ-active and Nur77-active C-DIM compounds induce both receptor-dependent and -independent growth inhibitory and proapoptotic pathways in cancer cells and tumors including activation of ER stress in both pancreatic and ovarian cancer cell lines (11,26).

Abbreviations: ASK1, apoptosis signal-regulating kinase-1; C-DIM, 1,1-Bis(3′-indolyl)-1-(p-substituted phenyl)methane; DIM, diindolylmethane; DMSO, dimethyl sulfoxide; DR5, death receptor 5; ER, endoplasmic reticulum; GRP78, glucose-related protein 78; JNK, c-jun N-terminal kinase; PARP, poly (ADP ribose) polymerase; PBS, phosphate-buffered saline; PPARγ, peroxisome proliferator-activated receptor γ; Tg, Thapsigargin; Tm, Tunicamycin.

© The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
out according to the manufacturer’s instructions. The absorbance of each sample was analyzed by FLUOstar OPTIMA Elisa reader (Okenburg, Germany) at 450 with 620 nm as the reference wavelength. All experiments were determined in triplicates and repeated at least two times and results are expressed as means ± SDs for each treatment group.

Transfection and luciferase assay
RKO cells were seeded in 12-well plates at 80% confluence and allowed to attach overnight. Various amounts of DNA [i.e. β-gal DNA (0.1 μg), pCHOP (0.4 μg), pGRP78 (0.4 μg) and pDR5 (0.4 μg)] or small inhibitory RNA (100 nM) were transfected with LipofectAMINE 2000 (Invitrogen) according to the manufacturer’s instruction. After incubation for 5–6 h, the transfection mix was replaced with Dulbecco’s modified Eagle’s medium/F12 media without phenol red containing either vehicle (DMSO) or the indicated compounds for 20–24 h. Cells were then lysed with 100 μl of 1 × reporter lysis buffer and 30 μl of cell extracts were subjected to luciferase and β-galactosidase assays. Luciferase and β-gal activity were measured with a microplate reader (FLUOstar OPTIMA) and luciferase activities were normalized to β-galactosidase. Results are expressed as means ± SDs for at least three independent determinations for each treatment group.

Western blot analysis
Whole-cell lysates were extracted with high-salt lysis buffer (50 mmol/l Na2HPO4, pH 7.2, 1 mg/ml protease inhibitor, 1 mmol/l sodium chloride, 1.5 mmol/l magnesium chloride, 1 mmol/l ethyleneglycol-bis (aminoxyethyl)-tetraacetic acid, 10% (vol/vol) glycerol, 1% Triton X-100 and 5 μg/ml of Protease Inhibitor Cocktail (Sigma)) and quantified with Bio-Rad Protein Assay (Heracles, CA). Equal amounts of protein from each treatment group were separated on a sodium dodecyl sulfate–polyacrylamide gel and then transferred to polyvinylidene difluoride membrane (Immobilon-P, Millipore Corp., Bedford, MA). The polyvinilidene difluoride membrane was then blocked with 5% milk in buffer containing 1:576 g/l Tris, 8.776 g/l sodium chloride and 0.5 ml/l Tween 20 and probed with primary antibodies, followed by incubation with horseradish peroxidase-conjugated secondary antibodies as indicated. For protein knockdown experiments, the small inhibitory RNA was transfected for 24–48 h before isolation of whole-cell lysates. Western blots are representatives of at least three independent experiments.

Immunostaining
Cells were fixed in 4% paraformaldehyde/phosphate-buffered saline (PBS) for 10 min and treated with 0.1% Triton X-100 (0.1%)–PBS for 10 min. After incubation with 10% normal goat serum (Vector Laboratories, Burlingame, CA)/Tween (0.1%)–PBS for 1 h, cells were probed with anti-phospho-JNK antibody (1:100) and fluorescein isothiocyanate-conjugated secondary antibody (1:200; Vector Laboratories). The fluorescence signal was then detected by Zeiss LSM 510 confocal microscope. Colon tumor tissue sections were then counterstained with hematoxylin and dehydrated for 15 min and treated with 0.3% Triton X-100–PBS for 10 min. Immunostaining representatives of at least three independent experiments.

Activation of ER stress (PARP cleavage and CHOP induction) by a series of substituted C-DIM analogs (Figure 1A) was investigated in RKO and SW480 colon cancer cells (Figure 1B and C). Treatment of RKO cells for 12 h with 7.5 or 15 μM concentrations of C-DIM analogs resulted in a structure-dependent activation of PARP cleavage and CHOP induction with the most active compound being the PPARγ-active C-DIMs and the cyano analog (which is also PPARγ active) along with the p-bromo-substituted (DIM-C-pPhBr) and p-bromomethyl substituted (DIM-C-pPhCM) analogs (Figure 1B and C). The positive control primers were 5′-TACTGGCGTITTACGCGG-3′ (forward) and 5′-TCGACAGGAGGCCAGGAGCAGCAGG-3′ (reverse), and they amplified a 167 bp region of human glyceraldehyde-3-phosphate dehydrogenase gene. The negative control primers were 5′-ATGGTTGCACCGGGATCT-3′ (forward) and 5′-TGCCAAAGCTGGGAGGAGAAG-3′ (reverse), and amplified a 174 bp region of genome DNA between human glyceraldehyde-3-phosphate dehydrogenase and chromosome condensation-related SMC-associated protein 1 genes. Polymerase chain reaction products were resolved on a 2% agarose gel in the presence of 1:10 000 CYBR gold.

Results
Activation of ER stress (PARP cleavage and CHOP induction).
The concentration-dependent (Figure 2C) and time-dependent (Figure 2D) induction of CHOP expression by two active and two relatively inactive analogs of the bromo- and fluoro-substituted C-DIMs was also determined in RKO cells. Treatment of RKO cells with 7.5, 12.5 and 15 μM DIM-C-pPhBr/DIM-C-pPhF (p) and their corresponding 2-methyl analogs (active compounds) for 12 h induced CHOP protein at concentrations of 7.5 and 12.5 μM (Figure 2B). In contrast, the N-methyl derivatives of DIM-C-pPhBr and DIM-C-pPhF did not induce CHOP expression at concentrations as high as 30 μM. The ortho-bromo (DIM-C-oPhBr) and ortho-fluoro (DIM-C-oPhF) compounds exhibited minimal activity except for 15 μM DIM-C-oPhBr that clearly induced CHOP expression. Fifteen micromolar concentrations of active and inactive C-DIM compounds were also used to determine their time-dependent induction of CHOP in RKO cells (Figure 2D). The active DIM-C-pPhBr and DIM-C-pPhF compounds and their corresponding 2-methyl analogs induced CHOP protein expression as early as 2 h after treatment, whereas the N-methyl analogs were inactive. Interestingly, the ortho-fluoro- and -bromo-substituted analogs also induced CHOP expression; however, both the timing and levels of induction were different from the more potent para-substituted DIM-C-pPhBr and DIM-C-pPhF. The structure-dependent effects of the bromo- and fluoro-substituted C-DIMs on RKO and SW480 cell viability was investigated using the WST assay. Treatment of RKO and SW480 cells with 15 μM DIM-C-pPhF and DIM-C-pPhBr and their corresponding 2-methyl-substituted analogs caused a 40–60% decrease in cell viability, whereas the N-methyl-substituted compounds were inactive (Figure 3A). These results paralleled the relative potencies of the same C-DIM compounds as inducers of CHOP. The ortho-substituted C-DIMs (DIM-C-oPhBr and DIM-C-oPhF) were approximately equipotent with the para isomers with respect to decreasing cell viability (Figure 3A), even though induction of CHOP (and PARP cleavage) was minimal in colon cancer cells after treatment for 12 h (Figure 2A). However, induction of CHOP and DR5 by the ortho

Fig. 1. Structure-dependent induction of CHOP. (A) Structure of C-DIMs. Structure-dependent activation of CHOP and PARP cleavage by C-DIMs in RKO (B) and SW480 (C) colon cancer cells. Cells were treated with either DMSO (D) or various C-DIM compounds at 15 μM for 12 h and changes in protein expression were determined by western blot analysis as described in Materials and Methods.
isomers was observed at later time points (24 h) (data not shown), and these structure-dependent temporal differences are currently being investigated.

The effects of DIM-C-pPhBr and DIM-C-pPhF and their corresponding inactive N-methyl derivatives on induction of proapoptotic responses were determined in RKO and SW480 cells treated with 15 µM DIM-C-pPhBr and DIM-C-pPhF for 24 h (Figure 3B). Caspase-dependent PARP cleavage and cleavage of caspases 8 and 3 were induced by both compounds, whereas the N-methyl analogs were inactive in this assay. Induction of ER stress by C-DIMs in other cancer cells was accompanied by induction of the stress response gene GRP78; however, in RKO and SW480 cells, neither DIM-C-pPhBr nor DIM-C-pPhF induced GRP78, although both compounds induced CHOP and DR5 as reported previously (11,26). In addition, C-DIM-induced cleavage of ATF-6, another marker of ER stress, was also not observed in these colon cancer cell lines (data not shown). The N-methyl compounds did not induce GRP78, DR5 or CHOP. In contrast, both DIM-C-pPhBr and DIM-C-pPhF but not their N-methyl derivatives induced phosphorylation of JNK and jun but did not affect expression of JNK or jun proteins (Figure 3B). In Figure 3C, the effects of DIM-C-pPhBr and DIM-C-pPhF are compared with the classical ER stress activators Thapsigargin (Tg) and Tunicamycin (Tm) on induction of GRP78/CHOP/DR5, activation of the JNK pathway and caspase-dependent PARP cleavage in RKO cells. All compounds induced CHOP and DR5 expression and cleavage of PARP, caspases 8 and 3; however, after the 24 h treatment period, PARP cleavage induced by Tm was less than observed for the other three compounds. The major difference between Tm–Tg and the C-DIM compounds was the induction of ER stress-dependent GRP78 expression by Tg and Tm but not by DIM-C-pPhF or DIM-C-pPhBr. Activation of the extrinsic apoptotic pathway is supported by the induction of caspase 8 cleavage (Figure 3B and C) and by caspase inhibitor studies (Figure 3D). Both the caspase 8 and pancaspase inhibitors Z-IETD-FMK and Z-VAD-FMK, respectively, significantly inhibited...
Fig. 3. Activation of proapoptotic pathways by C-DIMs in colon cancer cells. (A) C-DIMs decreased cell survival rates. RKO and SW480 cells were treated with various C-DIMs (15 μM) or DMSO (D) for 24 h and cell viability was measured with WST-1 assay as described in Materials and Methods. Results are expressed as means ± SDs for three replicate determinations for each treatment group and significantly (P < 0.05) decreased activity is indicated by *. Cell survival for DMSO treatment was set at 100%. Activation of PARP and caspase cleavage, induction of GRP78, DR5 and CHOP and phosphorylation of JNK in RKO and SW480 cells treated with 15 μM C-DIM analogs for 24 h (B) and comparison of DIM-C-pPhBr, DIM-C-pPhF with the classical ER stress activators, Tg and Tm (C). Colon cancer cells were treated with 15 μM C-DIMs, 10 μM Tg and 10 μg/ml Tm for 24 h and whole-cell lysates were analyzed by western blot as described in Materials and Methods. (D) Effects of caspase inhibitors on DIM-C-pPhBr-induced PARP cleavage in RKO cells. Cells were pretreated with 10 μM Z-IETD-FMK or Z-VAD-FMK for 1 h and then cotreated with DIM-C-pPhBr for 24 h. Whole-cell lysates were analyzed by western blot analysis as described in Materials and Methods.
DIM-C-pPhBr- and DIM-C-pPhF-induced PARP cleavage in RKO cells.

CHOP-dependent activation of DR5 was important for activation of the extrinsic pathway of apoptosis by C-DIMs (11,26) and, in RKO cells, DIM-C-pPhBr and Tg also induced CHOP and DR5 expression. In cells transfected with a construct containing a −991 to −7 DR5 promoter insert (pDR5), both DIM-C-pPhBr and Tg induced luciferase activity (Figure 4A). Moreover, in a chromatin immunoprecipitation assay, we also showed that in RKO cells treated with DIM-C-pPhBr, DIM-C-pPhF or Tg, there was recruitment of CHOP to the DR5 promoter (Figure 4B). As a positive control for the chromatin immunoprecipitation assay, we showed that the transcription factor TFII B was bound to the glyceraldehyde-3-phosphate dehydrogenase start site but not to exon 1 of the chromosome condensation-related SMC-associated protein 1 gene (Figure 4B).

Since C-DIMs did not induce the GRP78 marker of ER stress, the effects of DIM-C-pPhBr and DIM-C-pPhF on JNK activation were investigated in RKO cells. DIM-C-pPhBr and DIM-C-pPhF activated JNK phosphorylation in RKO cells within 1 h after treatment, and this persisted for up to 24 h (Figure 5A). Cells treated with 15 μM DIM-C-pPhBr were immunostained for JNK phosphorylation [Figure 5B(a) and (d)] and with propidium iodide to show nuclear staining [Figure 5B(b) and (e)]. Phospho-JNK and propidium iodide staining directly overlapped, showing that phospho-JNK is localized to the nucleus. Enhanced phosphorylation of JNK and c-jun in RKO cells treated with DIM-C-pPhBr or DIM-C-pPhF was inhibited by cotreatment with the JNK inhibitor SP600125, and this inhibitor also blocked induction of CHOP and PARP cleavage by the C-DIM compounds (Figure 5C). ER stress-independent activation of JNK may involve other kinases including apoptosis signal-regulating kinase-1 and mitogen-activated protein kinase kinase 4 (29); however, DIM-C-pPhBr and DIM-C-pPhF did not enhance phosphorylation of these kinases in RKO cells (Figure 5D). A recent study also reported that phorbol ester-dependent activation of JNK phosphorylation involved protein kinase C (30,31), and we therefore determined the effects of PKC and other kinase inhibitors on the induction on JNK phosphorylation by C-DIM compounds (Figure 5D). The protein kinase C inhibitor GF-109203X did not inhibit C-DIM-induced phosphorylation of JNK; moreover, inhibitory effects were also not observed in cells cotreated with inhibitors of phosphatidylinositol-3-kinase (wortmannin and LY 294002), p38 mitogen-activated protein kinase (SB 294002) or p42 MAPK (PD98059).

The effects of DIM-C-pPhBr (30 mg/kg) on tumor growth and weight were investigated in athymic nude mice bearing RKO cells as xenografts. The results show that DIM-C-pPhBr inhibited tumor volume (Figure 6A) and weight (Figure 6B) and also induced apoptosis in tumors as indicated in results of the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay (Figure 6C). Immunostaining of the tumors also showed that phospho-JNK was enhanced in tumors from treated versus non-treated mice (Figure 6C). These results complement the in vitro studies (Figure 5B) demonstrating that DIM-C-pPhBr-dependent activation of JNK; and the extrinsic pathway of apoptosis are major factors in the anticancerogenic activity of this compound in colon cancer. We also examined body or organ weights and observed minimal differences in treated versus untreated animals and histopathology did not detect compound-induced toxicities.

Discussion

Cells are constantly stressed through changes in nutrient and oxygen levels and other stressors and cellular homeostasis are maintained, in part, through activation of ER stress that triggers both survival and death pathways (1–8). Persistent ER stress invariably leads to cell death and there is evidence that some anticancer drugs and other therapeutic agents can act, in part, through activation of ER stress (9–17,32). The accumulation of unfolded proteins through ER stress can also lead to other human diseases including Parkinson’s disease, cystic fibrosis and other neurodegenerative disorders (33–37). ER stress can lead to cell survival or apoptosis through activation of several pathways and typically anticancer drugs preferentially induce cell death; however, these effects are dependent on the specific agent and cell/tumor context. Previous studies in this laboratory showed that DIM and 5,5′-dibromo-diindolylmethane induced ER stress and apoptosis in pancreatic cancer cells and PPARγ-active C-DIMs induced similar responses in ovarian cancer cells (11,26). In ovarian cancer cells, the C-DIMs activated GRP78, a hallmark of ER stress, and CHOP which in turn induced constitutively active DR5- and caspase 8-dependent apoptosis. In contrast, Nur77-active C-DIMs

![Figure 4](image-url)

Figure 4. CHOP-dependent induction of DR5 by DIM-C-pPhBr, DIM-C-pPhF and Thapsigargin in RKO cells. (A) DIM-C-pPhBr and Tg induced transactivation in RKO cells transfected with pDR5 constructs. Cells were transfected with pDR5-Luc construct and then treated with 10–15 μM DIM-C-pPhBr or 5–10 μM Tg for 24 h. Whole-cell lysates were analyzed for luciferase activity as described in Material and Methods. Results are expressed as means ± SDs for three replicates for each treatment group and significant (P < 0.05) induction is indicated by an asterisk. (B) Increased CHOP recruitment to the DR5 promoter as determined in a chromatin immunoprecipitation assay. Cells were treated with 15 μM DIM-C-pPhF, DIM-C-pPhBr or 5 μM Tg for 12 or 24 h, and recruitment of CHOP to the DR5 promoter was determined by chromatin immunoprecipitation assay as described in Materials and Methods. The interaction of TFII B with the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter but not genomic DNA between the GAPDH and chromosome condensation-related SMC-associated protein 1 genes served as positive and negative controls for the chromatin immunoprecipitation assay.
induce apoptosis through receptor-dependent activation of tumor necrosis factor-related apoptosis-inducing ligand.

In this study, we first investigated the structure-dependent activation of CHOP and PARP cleavage by a series of different \(p \)-substituted C-DIM analogs in RKO and SW480 cells (Figure 1). The PPAR\(\gamma \)-active C-DIMs containing \(p \)-trifluoromethyl, \(p \)-phenyl, \(p \)-t-butyl and \(p \)-cyano groups induced CHOP expression and PARP cleavage within 12 h after treatment. The \(p \)-cyano-substituted analog was the most active compound in SW480 cells. In contrast, DIM that causes ER stress in some cell lines (11,38) was inactive in SW480 cells at concentrations as high as 30 \(\mu \)M. At least two C-DIMs, namely DIM-C-\(p \)-PhBr and DIM-C-\(p \)-PhF that exhibit minimal activation of Nur77 or PPAR\(\gamma \) (18,19,25,28), induced CHOP and PARP cleavage in both colon cancer cell lines. These analogs were used as models for subsequent studies in order to minimize any Nur77- or PPAR\(\gamma \)-dependent proapoptotic responses induced by C-DIMs. The structural determinants important for activation of CHOP were initially investigated by varying the position of the Br or F substituents on the phenyl ring (\(para \), \(meta \) or \(ortho \)) and by comparing the activity of the 2- and 1-methylindole derivatives (Figure 2A). There were some structure-dependent differences and similarities between and among the DIM-C-\(p \)-Br and DIM-C-\(p \)-PhF analogs. The \(ortho \)- and \(meta \)-fluoro isomers were less active than the corresponding bromo isomers, whereas the \(para \)- and \(meta \)-bromo isomers exhibited comparable activities and were more active than the \(ortho \) isomer. DIM-C-\(p \)-PhBr and DIM-C-\(p \)-PhF and the corresponding 2-methyl derivatives exhibited similar activities as inducers of CHOP; however, their corresponding 1-methyl(\(N \)-methyl) derivatives were inactive (Figure 2B and C). The 12 h time course study illustrated in Figure 2D shows that both DIM-C-\(p \)-PhF and DIM-C-\(p \)-PhBr and their 2-methyl derivatives induce CHOP within 2–4 h after treatment, whereas minimal induction of CHOP was observed for the \(N \)-methyl isomers and similar results were obtained for induction of PARP cleavage and other putative ER stress-dependent responses (Figure 3B and C). These data complement a similar structure-dependent loss of metabolic activity in the WST assay (Figure 3A) demonstrating that the free indole group is a critical structural feature required for the cytotoxicity of these C-DIM analogs in colon cancer cells.

Previous studies have demonstrated that C-DIMs activate GRP78 and the JNK pathway resulting in induction of CHOP, DR5 and the extrinsic apoptotic pathway (11,26). DIM-C-\(p \)-PhBr and DIM-C-\(p \)-PhF but not the corresponding \(N \)-methyl derivatives induce CHOP (Figure 2B) that is recruited to the DR5 promoter (Figure 4B) and this results in induction of DR5/DR5 promoter (Figures 3B and 4A) and induction of apoptosis (Figure 3B–D). Moreover, activation of caspase-dependent PARP cleavage by the C-DIMs is inhibited by the caspase

Fig. 5. Induction of CHOP and apoptosis by C-DIMs mediated through activation of JNK. (A) Time-dependent activation of JNK phosphorylation by DIM-C-\(p \)-PhBr in RKO cells. Cells were treated with 15 \(\mu \)M DIM-C-\(p \)-PhBr and collected at indicated times, and whole-cell lysates were analyzed by western blots as described in Materials and Methods. (B) Immunostaining for phospho-JNK. Cells were treated with DMSO or 15 \(\mu \)M DIM-C-\(p \)-PhBr for 24 h and stained for phospho-JNK or nucleus with propidium iodide as described in Materials and Methods. (C) Inhibition of JNK and c-Jun phosphorylation, induction of CHOP and PARP cleavage by SP600125 in RKO cells. Cells were pretreated with 20 \(\mu \)M SP600125 for 1 h and then cotreated with 15 \(\mu \)M of the indicated compounds for 24 h, and whole-cell lysates were analyzed by western blots as described in Materials and Methods. (D) Effects of DIM-C-\(p \)-PhBr alone and in combination with various kinase inhibitors on phosphorylation of apoptosis signal-regulating kinase-1, mitogen-activated protein kinase kinase 4 and JNK. Cells were treated with 15 \(\mu \)M DIM-C-\(p \)-PhBr for 30–960 min or pretreated with kinase inhibitors, H89 (10 \(\mu \)M), Wortmannin (5 \(\mu \)M), LY 294002 (20 \(\mu \)M), SB 203580 (10 \(\mu \)M), GF-109203X (5 \(\mu \)M), PD98059 (5 and 20 \(\mu \)M) for 1 h and then treated with 15 \(\mu \)M DIM-C-\(p \)-PhBr for 24 h. Whole-cell lysates were analyzed by western blot analysis as described in Materials and Methods.
Materials and Methods.
mediated dUTP nick end labeling and phospho-JNK as described in

and Methods. The compound was administered daily (30 mg/kg/day) in corn

ies were stained for apoptosis terminal deoxynucleotidyl transferase-

independent activation of CHOP, DR5 and downstream caspases.

servation that C-DIMs do not induce GRP78 (Figure 3B and C) or ATF-

nduces GRP78, which is a hallmark of ER stress. Our current research is focused on determining the mech-

anism of C-DIM-dependent activation of JNK and identifying more proximal intracellular targets for these compounds. In addition, since in vivo treatment with C-DIMs results in minimal toxic side effects, we are also investigating clinical applications of C-DIMs alone or in combination with other drugs for colon cancer chemotherapy.

Funding
National Institutes of Health (ES09106 and CA108718); Texas Agricultural Experiment Station.

Acknowledgements
Conflict of Interest Statement: None declared.

References

Received January 24, 2008; revised April 22, 2008; accepted April 24, 2008