Inhibition of apoptosis by downregulation of hBex1, a novel mechanism, contributes to the chemoresistance of Bcr/Abl+ leukemic cells

Kefeng Ding, Yanyan Su, Lingrong Pang, Qinghua Lu, Zhanhuai Wang, Suzhan Zhang, Shu Zheng, Jianshuan Mao1,† and Yongliang Zhu1,†,§

Carcinogenesis. vol.30 no.1 pp.35–42, 2009
doi:10.1093/carcin/bgn251
Advance Access publication November 21, 2008

Introduction

The Bcr/Abl fusion protein plays an important role in the blast crisis of chronic myeloid leukemia (CML). Activation of Bcr/Abl leads to both the malignant transformation of CML cells and resistance to various antitumor/apoptosis induction agents (1–3). Currently, inhibition of Bcr/Abl activity is regarded as one of the most effective treatments for Bcr/Abl+ CML (4,5). Imatinib (imatinib mesylate, STI571), a Bcr/Abl-specific inhibitor, can compete with adenosine triphosphate for the nucleotide-binding site in the catalytic group of Bcr/Abl and can inhibit catalytic activity of this kinase, making it unable to phosphorylate and activate downstream effectors, which results in the suppression of cell proliferation and increased apoptosis (6,7). Imatinib is one of the first batch of molecular-targeted drugs approved for the clinical treatment of CML and gastrointestinal stroma tumors (8,9). In recent years, it has also been determined that imatinib may kill tumor stem cells during the G0 phase (10). However, many CML patients treated with imatinib developed a recurrence of the disease, suggesting that acquired drug resistance of the leukemia cells to imatinib is a major concern that has yet to be overcome (11–13).

The development of resistance against imatinib in Bcr/Abl+ tumor cells is a complex process. In addition to the production of multidrug resistance proteins (Mdrs), namely adenosine triphosphate-binding cassette transport proteins (ABC), the enhanced antiapoptosis capacity of these cells plays an important role in the process of drug resistance (14,15). Overexpression of Bcl-2/Bcl-xL and inhibition of Bim expression by RNAi can inhibit the killing effect of imatinib on Bcr/Abl+ tumor cells (16,17). Additionally, activation of extracellular signal-regulated kinase 1/2 through RhoA and RASAP1 increased the drug resistance. Inhibition of mitogen-activated protein kinase (MAPK) activity promoted imatinib-induced cell apoptosis (18–20). Besides the Bcl-2 family and MAPK, it was unclear if the antiapoptotic capacity of leukemia cells could be increased via other mechanisms. Furthermore, overexpression of the ABC transporter, Mdr-1, is closely associated with acquired resistance of the majority of tumor cells, but Mdr-1 provides minimal protection against cell growth inhibition and apoptosis induced by imatinib (21). Previous studies have also reported the establishment of imatinib-resistant Bcr/Abl+ tumor cells that express Mdr-1, but do not exhibit changes in Bcl-2 family members and MAPK activity, indicating that molecules other than Bcl-2 and MAPK are involved in enhancing antiapoptotic capacity (22).

In this study, we established an imatinib-resistant K562 cells (KR cells) that demonstrates high expression of Mdr-1 but does not change the expression levels of Bcl-2 family members. When analyzing the gene expression profile of KR cells, we identified human brain expressed protein 1 (hBex1) as a downstream target of the p75 neurotrophin receptor pathway in imatinib-resistant K562 cells by comparing the gene expression profiles with the parent K562 cells. Silencing hBex1 inhibited imatinib-induced cell apoptosis and overexpression of hBex1-sensitized cells to imatinib-induced apoptosis. Further investigation revealed that hBex1 associates with protocadherin 10 (PCDH10). Silencing of pcdh10 attenuated apoptosis induced by imatinib in hBex1 transfected cells, suggesting that, in addition to Mdr and Bcl-2 family members, reduced expression of hBex1 can also inhibit imatinib-induced apoptosis.

These data provide evidence that expression of hBex1 in leukemic cells is a novel mechanism by which chemoresistance is achieved and suggests that hBex1 is a potential molecular target for the development of novel leukemia treatments.

Abbreviations: ABC, adenosine triphosphate-binding cassette transport proteins; ANOVA, analysis of variance; CML, chronic myeloid leukemia; FBS, fetal bovine serum; FCVM, flow cytometry; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein; hBex1, human brain expressed X-linked 1; INK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; Mdr, multidrug resistance protein; NF-κB, nuclear factor-kappa B; PCR, polymerase chain reaction; p75NTR, p75 neurotrophin receptor; PCDH10, protocadherin 10.

†These authors are co-corresponding author

© The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
scanned with an argon ion laser scanner at 570 nm. Initial absolute and comparative analysis of the resulting data images was performed with Affymetrix custom image analysis software (GeneChip version 3.1). The differences between K562 cells and KR cells, hBex1 transfected KR cells (KR/hBex1) and pEGFP-C1 blank vector transfected KR cells (KR/pEGFP) were compared by univariate and multivariate analysis of variance (ANOVA) statistical analysis. The detection specificity of the genechip was 1/100 000 copies. Expressions of the target genes were judged to be increased if the value was ≥2.0 times that of the K562 cells or KR/pEGFP cells and to be decreased if it was <0.5 times that of the K562 cells or KR/pEGFP cells. The false gene information resulted, as per http://masker.ncbi.nlm.nih.gov/ev; the gene analytic data were from the GenBank database: http://www.ncbi.nlm.nih.gov or the gene cards database: http://hipp.weimann.ac.il, except as indicated in the references (23).

Real-time polymerase chain reaction

Total RNA was isolated from 1 × 10^6 cells using the RNAeasy mini kit. cDNA was synthesized from total RNA by reverse transcription. The primers (sense: 5'-ATCTCTGCTTGACTTGAGAAGGTCACA-3'; antisense: 5'-CTCTGCTGGTCCTCCGGCAATAGGCAAATACTC-3') and cDNAs (1 μl, respectively) were added in 25 μl SYBR Green Mix (Invitrogen, Carlsbad, CA) for real-time polymerase chain reaction (PCR) assay. Lightcycle PCR conditions were 94°C for 2 min, then 30 cycles of 94°C for 30 s. PCR products were subsequently precipitated with protein A/G-agarose beads (Santa Cruz) at 4°C overnight (mouse antibody to Bcr-Abl and rabbit antibody to green fluorescent protein (GFP); Santa Cruz Biotechnology, Santa Cruz, CA) to overnight (mouse antibody to HA-tag; Cell Signaling Technology, Danvers, MA) or normal IgG (control). The samples were subsequently precipitated with protein A/G-agarose beads (Santa Cruz) at 4°C overnight. The resulting immunocomplex was washed three times with ice-cold RIPA buffer, suspended in Laemmli sample buffer containing dithiothreitol, heated to 100°C for 5 min, centrifuged at 13 000 r.p.m. for 5 min and subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis. For western blot analysis, total cellular extracts were obtained by lysis of cells in a lysis buffer and a protease inhibitor cocktail. Protein concentrations of the cell lysates were determined by the Bradford method (Bio-Rad, Hercules, CA). An equal volume of 2× sodium dodecyl sulfate loading buffer was added, and the samples were boiled for 5 min. Protein samples (70 μl per lane) were separated on sodium dodecyl sulfate–polyacrylamide gel electrophoresis and transferred to nitrocellulose filters (Amersham Biosciences, Piscataway, NJ). The filters were blocked with Tris–HCl buffer containing Tween-20 buffer (pH 7.6, 10 mM Tris–HCl buffer, 0.15 M NaCl and 0.05% Brij 35) for 1 h (mouse antibody to Bcr-Abl and rabbit antibodies against GFP; Santa Cruz, 1:500) or at 4°C overnight (rabbit monoclonal antibodies against Bcl-2, Bcl-xL, Mcl-1, total and phosphorylated extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase (JNK), p38, Akt, Bax, Bad, Bid, Bim, Bmf, Diablo, smac, Puma and myc-tag were purchased from Cell Signaling Technology, 1:1000; mouse monoclonal antibody against human PCDH10 was obtained from Abnova (Taipeh, China), Taiwan, 1:1000; mouse monoclonal against glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was acquired from Kangchen Biotechnology, Shanghai, China, 1:5000), followed by the addition of an horseradish peroxidase-conjugated antibody (Cell Signaling Technology, 1:2000). The bands were visualized using the enhanced chemiluminescence substrate (Cell Signaling Technology).

Plasmid construction

hBex1/pEGFP-C1 plasmid construction: a pair of specific primers (sense: 5'--GATCTCTGCTTCGAGGATGAAATGGAGTCTACA-3'; antisense: 5'-CTCTGCTGGTCCTCCGGCAATAGGCAAATACTC-3') were designed and used to amplify the coding region of hBex1. PCR was performed using the cDNA from K562 cells to generate full-length templates. After pre-denaturing 94°C for 2 min, the samples were subjected to 35 cycles of 94°C for 15 s, at 58°C for 30 s and at 72°C for 30 s. PCR products were separated by electrophoresis in a 1% agarose gel and target fragments were recovered using a DNA recovery kit (Qiagen). The recovered fragments were digested with BamHI/XhoI restriction enzymes and subcloned into BamHI/
equilibrated at room temperature for 15 min, followed by the addition of 30 µl binding buffer and 10 µg nuclear proteins and the addition of a lysis buffer to achieve a final volume of 50 µl. The plate was incubated for 1 h at room temperature. It was washed three times with 1× wash buffer. Primary antibodies (anti-p65, anti-p50, anti-p52, anti-Rel-B and anti-Rel-C; 100 µl) at a 1:1000 dilution were added to each well, and the plate was incubated for 1 h at room temperature. The plate was washed three times with 1× wash buffer. Hors eradish peroxidase-labeled secondary antibody (100 µl) at a 1:2000 dilution was added to each well, and the plate was incubated for 1 h at room temperature. The plate was washed three times with 1× wash buffer. Horseradish peroxidase-labeled secondary antibody (100 µl) at a 1:2000 dilution was added to each well, and the plate was incubated for 1 h at room temperature. The plate was washed three times with 1× wash buffer. Horseradish peroxidase-labeled secondary antibody (100 µl) at a 1:2000 dilution was added to each well, and the plate was incubated for 1 h at room temperature. The plate was washed three times with 1× wash buffer. Horseradish peroxidase-labeled secondary antibody (100 µl) at a 1:2000 dilution was added to each well, and the plate was incubated for 1 h at room temperature. The plate was washed three times with 1× wash buffer. Horseradish peroxidase-labeled secondary antibody (100 µl) at a 1:2000 dilution was added to each well, and the plate was incubated for 1 h at room temperature.

Rhodamine 123 retention test

The cells were mixed with 2 µl Rhodamine 123 dye (Sigma) and incubated at 37°C under an atmosphere of 5% CO₂ for 4 h followed by washing twice with cold phosphate-buffered saline (pH 7.4, 10 mM) by centrifugation and FCM assay.

Caspase activity

A volume of 100 µl (2000 cells/ml) of cells were seeded in each well of a 96-well plate and 10 µl per well imatinib at a final concentration of 2.2 µM was added and cultured at 37°C under an atmosphere of 5% CO₂ for 24 h, followed by adding 100 µl caspase-Glo® substrate mixtures (Promega, Madison, WI) per well for 1 h to allow evaluation of the fluorescence intensity.

Proliferation assay

Cells at a 50% density were seeded in 50 ml flask, washed three times with serum-free RPMI 1640 medium and incubated overnight in a serum-free medium, followed by incubation in RPMI 1640 medium containing 15% FBS for cell synchronization. The synchronized cells (2000 cells per well) were seeded into a 96-well plate and incubated at 37°C under an atmosphere of 5% CO₂ for 24 h, followed by the addition of 20 µl per well of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-oxphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt and an electron coupling reagent [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-oxphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, solution (Promega) and adequate mixing. The absorbance (A) of each well was measured at 0 and 2 h by using a microculture plate reader at a test wavelength of 490 nm. The proliferation rate was expressed as ΔA = A₂₅ - A₀₅.

Results

KR cell resistant to imatinib is related to Mdr-1 and independent of Bcl-2 family members

To explore the molecular mechanism by which Bcr/Abl+ cells develop resistance to imatinib, we established imatinib-resistant Bcr/Abl+ leukemia K562 cells (KR) which were also slightly resistant to doxorubicin. After >6 months of induction, the maintenance concentration of imatinib reached 2.2 µM (Figure 1a). PCR/DNA sequencing analysis showed that transcription of Bcr/Abl messenger RNA in KR cells was not significantly increased, no mutation was found in the exons, and western blot analysis revealed that there was no significant increase in Bcr/Abl protein in K562 cells (Figure 1b), suggesting that KR cells had no Bcr/Abl mutations and no increase in Bcr/Abl protein levels. This demonstrated that the imatinib resistance of KR cells is independent of Bcr/Abl. To further analyze the ABC transporter family members change during the development of resistance in KR cells, we used Affymetrix U133 plus 2.0 cDNA expression genechip detection and found that only ABCB1 (Mdr-1) was significantly increased, whereas ABCG2 slightly declined; the other ABC transporter family members displayed no significant change (Figure 1c). Western blotting for ABCB1 and ABCG2 showed results that were consistent with the genechip findings (Figure 1d), suggesting that drug resistance in KR cells is primarily related to the excessive expression of Mdr-1. However, since increased antiapoptosis cell capability is an important event in the resistance process and high expression of Mdr-1 has been shown for provide weak protection from imatinib-induced K562 cell proliferation inhibition and cell apoptosis (21) and inhibition of Mdr-1 activity by Verapamil did not fully restore sensitivity to imatinib (data not shown), it is possible that genes other than Mdr-1 maybe involved in the inhibition of KR cell apoptosis. It is known that Bcl-2 family members participate in drug resistance by blocking apoptosis induced

Fig. 1. Resistance of KR cells to imatinib involved Mdr-1 expression, but was independent of the pro-survival proteins of the Bcl-2 family. (a) Imatinib resistance in KR cells. KR cells were resistant to imatinib and were also slightly resistant to doxorubicin compared with parent K562 cells as revealed by a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-oxphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. (b) Detection of Bcr/Abl protein in KR and K562 cells. Bcr/Abl protein was detected in lysates from KR and K562 cells by western blot analysis. GAPDH levels were used as a loading control. (c) Alteration of ABC transporter family messenger RNA (mRNA) in KR cells. ABCB1 messenger RNA was increased and ABCG2 messenger RNA was decreased in KR cells versus K562 cells as measured by genechip analysis. The results were validated by real-time reverse transcription–PCR. The messenger RNA level of each gene was normalized to the GAPDH messenger RNA levels. (d) Detection of ABCB1, ABCG2 and the pro-survival proteins of the Bcl-2 family in KR and K562 cells. ABCB1 (Mdr-1), ABCG2 and three main pro-survival proteins of the Bcl-2 family (Bcl-2, Bcl-xl and Mcl-1) were detected in lysates from KR and K562 cells by western blot analysis. GAPDH levels were used as a loading control.
by imatinib; therefore, we examined the pro-survival proteins of the Bcl-2 family. Western blot analysis revealed that Bcl-2, Bcl-xL and Mcl-1 were not significantly changed in KR cells (Figure 1d), suggesting that blocking of KR cell imatinib-induced apoptosis maybe independent of the pro-survival proteins of the Bcl-2 family.

hBex1 in KR cells is downregulated and re-expression of hBex1 promoted the sensitivity of KR cells to imatinib
To confirm the molecular mechanism involved in the inhibition of imatinib-induced apoptosis, we analyzed gene expression differences in K562 cells and KR cells and found hBex1, a downstream target of the p75NTR pathway, underwent the most notable transcriptional 'silencing' in KR cells. Compared with K562 cells, hBex1 decreased by >1000 times in KR cells and subsequently demonstrated no significant increase after tens of passage with or without the presence of imatinib (P > 0.05, ANOVA). KR cells were treated with 0–10 μM of the putative demethylation reagent, 5′-Aza-2′-deoxycytosine, for 48 h. Real-time PCR revealed no significant increase in the number of hBex1 copies in the KR cells after 5′-Aza-2′-deoxycytosine treatment (P > 0.05), suggesting that downregulation of hBex1 transcription in KR cells has no effect on the methylation of its promoter (Figure 2a).

To investigate the impact of hBex1 expression on KR cells, we transfected KR cells with hBex1-pEGFP (KR/hBex1) and empty vector pEGFP plasmids (KR/expanded green fluorescent protein), respectively. We found that 24 h after transfection, hBex1 transfected KR cells demonstrated no significant change in cell apoptosis; however, 24–48 h after adding a maintenance dose of imatinib, FCM demonstrated that apoptosis of hBex1 transfected cells increased significantly (Figure 2b). Similarly, the growth of cell colonies of KR cells infected with hBex1-pLXSN recombinant retrovirus in soft agarose was also lower than that of the control group (P < 0.05, ANOVA) (Figure 2c). These results suggested that overexpression of hBex1 increased the sensitivity of cells to imatinib and that KR cells may prevent imatinib-induced apoptosis through the silencing of hBex1.

hBex1 activated JNK independent of Bcr/Abl pathway
The experiments described above prove that re-expression of hBex1 promotes the KR cell sensitivity to imatinib. Thus, since imatinib is a specific inhibitor of Bcr/Abl, it remained to be determined whether hBex1 is a downstream molecule in the Bcr/Abl pathway. To this end, we tested whether hBex1 promoted the sensitivity of KR cells to imatinib by inhibiting the JNK pathway.

Fig. 2. hBex1 transcription in KR cells was downregulated and overexpression of hBex1 enhanced the sensitivity of KR cells to imatinib. (a) hBex1 transcription in KR cells was downregulated. The hBex1 messenger RNA level is decreased in KR cells versus K562 cells as measured by genechip and real-time reverse transcription–PCR analysis. The messenger RNA levels of each gene were normalized to GAPDH messenger RNA levels. The messenger RNA levels of hBex1 were not significantly increased after treatment with 0–10 μM 5′-Aza-2′-deoxycytosine (Aza) as shown with real-time reverse transcription–PCR analysis. (b) Overexpression of hBex1 enhanced the sensitivity of KR cells to imatinib. hBex1/pEGFP (KR/hBex1) or blank vector pEGFP (KR/pEGFP) were transiently transfected into KR cells, which were then treated with a maintenance dose of imatinib for 24 h and FCM analysis of propidium iodide (PI)-stained nuclei was performed. The percentage of apoptotic cells was increased in hBex1 transfected cells compared with their blank vector transfected and untransfected counterparts in the presence of the maintenance dose of imatinib. (c) Overexpression of hBex1 decreased the soft agarose colony formation. KR cells infected with hBex1/pLXSN or pLXSN blank vector retrovirus for 24 h were used for a soft agarose colony formation test, as described in the Materials and Methods. The cell colonies were counted per cm² in each plate. Data are the mean ± SE. from three different determinations. The colony numbers in the hBex1/pLXSN transfected group (KR/hBex1) were significantly decreased compared with both the pLXSN blank vector group (KR/pLXSN) and the blank group (KR).
end, we used semiquantitative PCR to first detect hBex1 levels in vincristine-resistant K562 cells and found that hBex1 was also downregulated in vincristine-resistant K562 cells compared with the control group (Figure 3a). We subsequently analyzed the amino acid sequence and found that, although phosphorylation at Ser102 existed in hBex1 (http://www.expasy.ch/uniprot/Q9HBH7#general), there was no clear Bcr/Abl tyrosine phosphorylation site in its sequence. Coimmunoprecipitation experiments showed that hBex1 and Bcr/Abl could not be coprecipitated with the anti-Bcr-Abl and anti-GFP antibodies, respectively (Figure 3b). Because the Bcr/Abl pathway can activate Akt, MAPK and NF-kB, we also evaluated the impact of hBex1 expression on the activity of Akt, MAPK and NF-kB in cells. Western blot analysis demonstrated that the JNK of the MAPK pathway was obviously activated, whereas Akt and p38 showed no significant change in K562 cells with stable expression of hBex1 (Figure 3c). An enzyme-linked immunosorbent assay revealed that stable expression of hBex1 in KR cells and K562 cells did not significantly increase p50, p65, p52 and Rel-B and Rel-C levels in nuclear proteins (P > 0.05, ANOVA) (Figure 3d). In summary, downregulation of the hBex1 transcription was not imatinib-specific, but was associated with an enhanced antiapoptosis capacity in the process of cell resistance; therefore, hBex1 is not a downstream target of the Bcr-Abl pathway. It can activate MAPK, but does not affect NF-kB activity in Bcr/Abl+ cells.

In the presence of imatinib, hBex1 activates caspase 3/7 via the nonclassical pathway

To analyze the molecular mechanism by which hBex1 induces cell apoptosis, we carried out Rhodamine 123 efflux experiments, which examined whether hBex1 induces apoptosis through inhibiting the function of Mdr-1. Results demonstrated that transient and stable transfection of KR cells with hBex1 also resulted in no obvious change in the Rhodamine 123 efflux capacity (Figure 4a), suggesting that hBex1 does not affect Mdr-1 function. The above experiments prove that hBex1 can enhance JNK activity and that activation of the JNK pathway can trigger apoptosis. We subsequently examined the impact of the JNK pathway on cell apoptosis. However, inhibition of JNK with SP600125, a putative JNK-specific inhibitor, decreased KR cell proliferation and increased apoptosis (Figure 4b), suggesting that JNK maintains the survival of KR cells. To determine whether imatinib can affect the Bcl-2 pro-apoptotic proteins, we also examined whether hBex1 induces apoptosis through the endogenous or exogenous pathway (24). Western blot analysis demonstrated that Bad, Bim, Bid, Bmf and smac/diablo also showed no significant change in hBex1 transfected KR cells in the presence or absence of imatinib (Figure 4c). The luciferase assay showed that, in the presence of imatinib, caspase 3/7 was activated in hBex1 transfected KR cells, whereas caspases 8 and 9 showed no significant changes (Figure 4d). These results suggest that the caspase 8 and endogenous apoptosis pathways are not involved in hBex1-induced apoptosis; in the presence of imatinib, hBex1 activates caspase 3/7 via the nonclassical pathway.

hBex1 induced apoptosis through PCDH10

To screen for target proteins involved in hBex1-induced apoptosis, we used U133 plus 2.0 genechip to analyze the major alteration of global gene expression in KR cells, hBex1 transfected KR cells. The results demonstrated that pcdh10, as a member of cadherin superfamily, was significantly decreased in hBex1-silenced KR cells, while its expression in hBex1 transfected KR cells was significantly increased (Figure 5a). When 293T cells were cotransfected with pcdh10/pCMV-Myc and hBex1/pCMV-HA plasmids, we found that PCDH10 could be coimmunoprecipitated by hBex1 (Figure 5b), suggesting that hBex1 interacts with PCDH10. Transfection of K562 cells, HL-60 cells and colon cancer SW480 cells with pcdh10/pDNA 3.1(+) significantly inhibited the proliferation of these cells (Figure 5c). Interestingly,
pcdh10, silenced by shRNAi, inhibited imatinib-induced apoptosis in KR cells (Figure 5d). These results suggest that PCDH10 promotes cell apoptosis and that KR cells inhibit apoptosis and promote the growth of resistant cells by downregulating PCDH10 through hBex1.

Discussion

Our research on the resistance of Bcr/Abl⁺ tumor cells to imatinib demonstrated that, in addition to drug efflux by overexpression of Mdr-1, silencing of hBex1 can strengthen the antiapoptosis capacity of the cells. Additionally, re-expression of hBex1 both increased PCDH10 and partially recovered sensitivity to imatinib, suggesting that the hBex1/PCDH10 pathway is a novel mechanism by which cells develop drug resistance.

Bex is a member of the cell death precursor (p75NTR-associated cell death executor) molecule in the downstream p75NTR/TrkA/B pathway, belonging to tumor necrosis factor receptor superfamily members. Currently, five highly homologous members have been...
found, namely Bex1 (TCEAL8), Bex2, Bex3, Bex4 (TCEAL7) and Bex5. Bex is primarily expressed in nerve cells. Bex1 and Bex2 are also expressed in the hematological system and other tumor cells (25–27). Fischer and Quentmeier (28,29) found that Bex1 and Bex2 are the markers of acute myeloid leukemia with mixed lineage leukemia rearrangements. Bex is a signal transduction mediator whose function is not yet fully understood. Most studies suggest that Bex functions as a tumor suppressor gene. Qian found that its function needs to be further clarified. PCDH10 maybe a candidate druggable target.

As a candidate tumor suppressor gene, hBex’s function is inseparable from apoptosis; however, the mechanism of apoptosis induced by hBex1 remains unclear. It was first found that ectopic expression of Bex can enhance the NGF-induced apoptosis of HEK293 through activating caspases 2 and 3 cascades (32). Because hBex exists downstream in the p75NTR pathway, p75NTR can induce apoptosis through the activation of the JNK pathway in nerve cells (33). Though hBex1 expression increased JNK activity, we found that the inhibition of JNK is not involved in imatinib-induced apoptosis of KR cells. Western blot analysis revealed that imatinib activated caspase 3 activity independent of the endogenous apoptosis pathway in KR cells. As a candidate tumor suppressor gene, hBex1 may have different mechanisms and functions in different cells.

Fig. 5. hBex1 induced apoptosis through PCDH10. (a) Alteration of pcdh10 messenger RNA (mRNA) in KR cells pre- and post-transfection of hBex1. pcdh10 messenger RNA was decreased in KR cells compared with K562 cells and was increased after transfection of hBex1 in KR cells versus mock cells as measured by genechip analysis. The results were validated by real-time reverse transcription–PCR. The messenger RNA levels of each gene were normalized to the GAPDH messenger RNA levels. (b) hBex1 interacted with PCDH10 in 293T cells. The 293T cells were cotransfected with pcdh10/pCMV-Myc and hBex1/pCMV-HA plasmids as described in the Materials and Methods. The results showed that PCDH10 could be coimmunoprecipitated by hBex1, suggesting hBex1 interacts with PCDH10. (c) Enforced expression of PCDH10 inhibited cell proliferation. The cell proliferation activities of pcdh10-transfected K562, HL-60 and colon cancer SW480 cells, detected by a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium dye assay, was lower than the values observed with the blank vector pDNA3.1 (+) transfected and blank cells (P < 0.05, respectively, Student’s t-test). (d) Silencing of pcdh10 inhibited apoptosis of KR cells. KR cells with stable expression of hBex1 were transfected with shRNA of pcdh10 for 72 h and cultured in 2.2 μM imatinib for an additional 24 h followed by adding caspase-Glo® substrate mixtures to detect caspase 3/7 activities. The results showed that in the presence of imatinib, caspase 3/7 activities were lower in pcdh10 knockdown cells than in liposome transfected KR cells.
by promoter methylation in nasopharyngeal carcinoma tissues and leukemic cells. Inhibiting methylation or overexpression of PCDH10 significantly inhibited colony formation and proliferation of cultured cells in vitro (35). Uemura (36) found pcdh10−/− mice presented deficiencies in axon transportation. In this study, our findings suggest that PCDH10 may also participate in cell apoptosis, which maybe involve the unique CM2 domain of PCDH10 in the cytoplasm. Furthermore, hBex1 interacts with PCDH10 as revealed using commu-noprecipitation experiments. The role of PCDH10’s participation in apoptosis needs to be further clarified.

In summary, our research demonstrates that hBex1 silencing in Bcr/ Abl+ K562 cells, in addition to resulting in the high expression of Mdr-1 protein, can also inhibit imatinib-induced apoptosis. Re-expression of hBex1 recruited PCDH10 and partially recovered sensitivity to imatinib. To our knowledge, our study marks the first report on the role of hBex1 uppcdh10 silencing in the development of drug resistance in Bcr/Abl+ cells and subsequently, inhibition of imatinib-induced apoptosis.

Funding

Natural Science Foundation of China (30772473, 30672266); Science and Technology Bureau of Zhejiang Province (2006C33034); Natural Science Foundation of Zhejiang Province (Y205175).

Acknowledgements

We are very grateful to Prof. Xun Hu in our institute for kindly providing vincristine-K562 cells, Dr. Xiaoyong Lu for his excellent statistical analysis and the entire laboratory for fruitful discussions.

Conflict of Interest Statement: None declared.

References

Received July 13, 2008; revised October 29, 2008; accepted November 1, 2008