Association of CYP19A1 polymorphisms with risks for atypical adenomatous hyperplasia and bronchioloalveolar carcinoma in the lungs

Takashi Kohno, Rytaro Kakinuma¹, Motoki Iwasaki², Taiki Yamaji³, Hideo Kunitoh³, Kenji Suzuki⁴, Yoko Shimada, Kouya Shiraishi, Yoshiho Kasuga⁵, Gerson Shigeaki Hamada⁶, Koh Furuta⁷, Koji Tsuta⁸, Hiromi Sakamoto⁹, Aya Kuchiba⁹, Seiichiro Yamamoto¹⁰, Yae Kanai¹¹, Shoichiro Tsuchane² and Jun Yokota¹²

Biological Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan. ¹Cancer Screening Technology and Development Division, National Cancer Center, Tokyo 104-0045, Japan. ²Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo 104-0045, Japan. ³Thoracic Oncology Division and ⁴Thoracic Surgery Division, National Cancer Center Hospital, Tokyo 104-0045, Japan. ⁵Department of Surgery, Nagano Matsushiro General Hospital, Nagano 381-1231, Japan. ⁶Nikkei Disease Prevention Center, São Paulo 04122-000, Brazil. ⁷Clinical Support Laboratory and ⁸Clinical Laboratory Division, National Cancer Center Hospital, Tokyo 104-0045, Japan. ⁹Genetics Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan. ¹⁰Cancer Information Services and Surveillance Division, Center for Cancer Control and Information Services, National Cancer Center, Tokyo 104-0045, Japan and ¹¹Pathology Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan

¹²Present address: Department of Respiratory Medicine, Mitsui Memorial Hospital, Kanda-Zaimuchio 1, Chiyoda-ku, Tokyo 101-8645, Japan

To whom correspondence should be addressed. Tel: +81 3 3547 5272; Fax: +81 3 3542 8007; Email: jyokota@ncc.go.jp

Estrogen has been indicated to play an etiological role in the development of lung adenocarcinoma (ADC), particularly bronchioloalveolar carcinoma (BAC), a type of ADC that develops from a benign adenomatous lesion, atypical adenomatous hyperplasia (AAH). Polymorphisms in the CYP19A1 gene cause interindividual differences in estrogen levels. Here, 13 CYP19A1 single-nucleotide polymorphisms (SNPs) were examined for associations with lung AAH risk. AAH is detected as ground-glass opacity (GGO) by computed tomography (CT) examination, and this study consisted of 100 individuals diagnosed with GGO in their lungs among 3088 CT-based cancer screening examinees and 424 without. Minor allele carriers for the rs3764221 SNP showed an elevated risk for GGO [odds ratio (OR) = 1.72, P = 0.017]. Associations of this SNP with risks for lung AAH and BAC in the lungs were next examined using 359 ADC cases whose resected lung lobes were subjected to a histological examination for AAH accompaniment and the presence of BAC components and 330 controls without cancer. The ORs were also increased for lung ADC accompanied by AAH (OR = 1.74, P = 0.029) as well as lung ADC with BAC components (OR = 1.41, P = 0.091). The minor allele was associated with an increased circulating estradiol level (P = 0.079) in a population of 363 postmenopausal women without cancer. These results indicate that CYP19A1 polymorphisms are involved in the risk for lung AAH and BAC in the lungs by causing differences in estrogen levels.

Introduction

Adenocarcinoma (ADC) is the commonest histological type of lung cancer, comprising ~40% of lung cancer cases, among European, North American and Asian countries and is increasing in incidence (1). Development of ADC is more weakly associated with smoking than those of two other major histological types of lung cancer, squamous cell carcinoma (SCC) and small-cell lung carcinoma. Thus, effective ways of preventing ADC are being searched for. Recent studies indicate that estrogen plays a role in the growth of lung ADC cells (2,3). Estrogen receptor (ER) β is expressed in bronchioloepithelial cells (4). ERβ expression was detected in >75% of lung ADC being more frequent than SCC and small-cell lung carcinoma, and the expression was preferentially observed in bronchioloalveolar carcinoma (BAC) (4), a differentiated type of lung ADC developed in the peripheral lung (5). ERβ expression was also detected in atypical adenomatous hyperplasia (AAH) (4), a possible precancerous lesion for BAC (6). Growth of lung ADC cells with ERβ expression was enhanced by estrogen, whereas it was suppressed by antagonizing estrogen (2,4). Therefore, estrogen is probably to play an essential role in the growth of lung ADC cells. In fact, an ER antagonist, fulvestrant, is being examined for its utility in the treatment of lung ADC (7).

Estrogen treatment significantly increased the development of adenoma and ADC in the lungs of ovariectomized female and male mice, therefore, estrogen is a risk factor for the development of lung ADC in mice (8). In a cohort study of 44 667 lifelong never-smoking women in Japan, women of either early age menarche or late age menopause showed significant increase in the risk for lung cancer, and involvement of the use of hormone replacement therapy in the risk for lung cancer of postmenopausal women was also suggested (9). Since ADC comprised >85% of lung cancer cases in this study, estrogen is a candidate risk factor for lung ADC also in the human. However, the involvement of endogenous and exogenous estrogen in the etiology of lung cancer of women has been inconsistent in other populations (10–18). In addition, the significance of estrogen on lung cancer risk of men has not been reported to our knowledge. Although men have similar levels of circulating estrogen to postmenopausal women (19) and ERβ expression was detected in lung ADC both of men and women (4,20). Therefore, estrogen is a possible target for prevention of lung ADC, and the significance of estrogen on its etiology should be further investigated.

Polymorphisms in genes involved in estrogen metabolism have been suggested to be associated with circulating estrogen levels (19). Particularly, polymorphisms in the CYP19A1 gene, encoding an aromatase responsible for the final step in the biosynthesis of estrogens, estradiol (E2) and estrone (E1) (21), have been most intensively investigated (22). A tandem repeat polymorphism, (TTTA)n, in this gene, encoding CYP19A1, was associated with circulating estradiol levels in men (25). Recently, by a large-scale association study, in which >3000 postmenopausal women of European descent were analyzed for 103 SNPs dispersed in the CYP19A1 gene, SNPs located in the 3’ region (i.e. exons 2–10) of the CYP19A1 gene, such as rs10046, in the 3’-untranslated region of exon 10 were reported to be associated with circulating estrogen levels in postmenopausal women (23,24). The tandem repeat polymorphism was also associated with circulating estrogen levels in men (25). Therefore, it was indicated that polymorphisms in the 3′ region of the CYP19A1 gene are responsible for interindividual differences in circulating estrogen levels. On the other hand, in a recent association study involving 1068 men from Sweden and 2568 men from the USA, SNPs in the 3′ region of the CYP19A1 gene, including rs10046, also showed associations with serum E2 and E1 levels in men (19).

Abbreviations: AAH, atypical adenomatous hyperplasia; ADC, adenocarcinoma; BAC, bronchioloalveolar carcinoma; CI, confidence interval; CT, computed tomography; ER, estrogen receptor; GGO, ground-glass opacity; HWE, Hardy–Weinberg equilibrium; LD, linkage disequilibrium; OR, odds ratio; SNP, single-nucleotide polymorphism; SCC, squamous cell carcinoma.

© The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
which include BAC as the majority, and 330 controls without cancer. BAC components among 172 cases diagnosed with small-sized ADC, study consisted of 151 cases diagnosed with lung ADC containing the third study was to examine association with risk for BAC. This lesion that particularly develops to BAC, a type of ADC. Therefore, without cancer. (iii) AAH has been considered as a precancerous resected lobes serially sliced at intervals of 5 mm and 330 controls admitted to hospital. This study consisted of 81 cases diagnosed with risk for ADC accompanied with AAH(s) in the lungs among patients CYP19A1 age categories. (ii) AAH is an incidental histologic finding detected in ines without GGO who were matched to the GGO cases in sex and resolution) CT examination among 3088 examinees and 424 exam-

Therefore, it was indicated that polymorphisms in intron 1 of the CYP19A1 gene also affect the estrogen levels. Since the rs2470152 SNP was not examined in the association study above in postmenopausal women (26), polymorphisms responsible for estrogen levels remain unclear. However, these studies strongly indicate that CYP19A1 polymorphisms are a critical determinant of interindividual differences in the serum estrogen levels both in men and women. We investigated here the significance of CYP19A1 SNPs on risks for AAH and ADC by conducting four independent association studies to further obtain information on estrogen in the etiology of lung ADC. (i) AAH in the lungs is detected as a ground-glass opacity (GGO) by helical computed tomography (CT) examination (6,27–30). Therefore, the first study was to examine association of CYP19A1 SNPs with GGO risk in the lungs among examinees admitted to a single cancer screening center. This study consisted of 100 cancer screening examinees diagnosed with GGOs by a thin-section (high resolution) CT examination among 3088 examinees and 424 examinees without GGO who were matched to the GGO cases in sex and age categories. (ii) AAH is an incidental histologic finding detected in 16–35% of lungs bearing primary lung ADC (6,31). Therefore, the second study was to examine association of CYP19A1 SNPs with the risk for ADC accompanied with AAH(s) in the lungs among patients admitted to hospital. This study consisted of 81 cases diagnosed with lung ADC accompanied with AAH(s) among 359 lung ADC cases who received lobectomy followed by a histological examination of resected lobes serially sliced at intervals of 5 mm and 330 controls without cancer. (iii) AAH has been considered as a precancerous lesion that particularly develops to BAC, a type of ADC. Therefore, the third study was to examine association with risk for BAC. This study consisted of 151 cases diagnosed with lung ADC containing BAC components among 172 cases diagnosed with small-sized ADC, which include BAC as the majority, and 330 controls without cancer. (iv) Finally, CYP19A1 SNPs that were associated with GGO, AAH and BAC risks were examined for association with circulating estrogen levels of 363 postmenopausal women without cancer.

Subjects and methods

Subjects for association study on GGO risk

Study subjects were Japanese and consisted of examinees who underwent helical CT examination of the lungs from 2005–07 as a cancer screening program provided by the Research Center for Cancer Prevention and Screening of the National Cancer Center, Japan. Details of the screening program have been described elsewhere (32). All examinees gave written informed consent to allow their data and materials collected through the screening program to be used for the purpose of medical research. The study protocol was approved by the institutional review board of the National Cancer Center, Tokyo, Japan. Eligible examinees were individuals who underwent helical CT examination of the lungs. Details of the CT screening method were described previously (33). Examinees diagnosed with lung cancer or with a history of malignancies were considered ineligible. In a consecutive series of 3088 examinees aged from 40 to 79, 2322 fulfilled the necessary conditions above. One hundred and five examinees were defined as GGO cases because they had at least one GGO ≥5 mm in diameter by a screening CT examination followed by validation by a thin-section (high resolution) CT examination. Four hundred and forty examinees were chosen as control subjects from examinees without GGO by frequency matching to these GGO cases in sex and four age categories (ages 40–49, 50–59, 60–69 and 70–79 years). Genomic DNAs were available for 100 cases and 424 controls of these subjects for this study (the GGO set, Table I). One hundred and two examinees were chosen by a simple random sampling method from 512 examinees diagnosed as having at least one GGO <5 mm in diameter by screening and/or high-resolution CT examinations and were examined as a population containing GGO cases as a subset.

Before undergoing the screening program, examinees completed a self-administered questionnaire concerning medical history and lifestyle characteristics, including smoking habit. The composition of the questionnaire has been detailed elsewhere (32,34). The questionnaire inquired about smoking habits by first determining smoking status (current, former and never) and then expressing lifetime exposure to cigarette smoking among current- and former-smokers by pack-years, with one pack-year defined as the smoking of 20 cigarettes every day for 1 year. Both current- and former-smokers were expressed as smokers in this study.

Subjects for association study on lung ADC risk

All 359 cases and 330 controls were Japanese and were admissions to the National Cancer Center Hospital from 1999 to 2004. Cases were admissions who were diagnosed with lung ADC by histological examinations according to World Health Organization classification (5) and received lobectomies at National Cancer Center Hospital. Controls were admissions who were not diagnosed with lung cancers and had no history of cancers (the lung ADC set, Table I). They were individuals who had been suspected to carry lung or gastric cancer in other hospitals and were not diagnosed with these cancers in National Cancer Center Hospital by CT, endoscope examinations, etc. All cases and controls, from whom informed consent as well as blood samples were obtained, were consecutively included in this study without any exclusion criteria. The participation rate was nearly 80%. From each individual, a 20 ml whole-blood sample was obtained.

All 359 ADC cases were subjected to pathological search for AAH in the resected lobes as described (35). Briefly, resected lungs were inflated with 10%
formalin through bronchial cut ends, and after fixation for a few days were serially sliced at intervals of 5 mm, and each cut surface was macroscopically examined. Sliced lungs containing a lesion(s) suspected for AAH were further examined microscopically. Even in cases without macroscopic lesions, at least one tissue block was prepared from all sliced lungs and subjected to microscopic examination. The criteria for AAH were as follows and as described previously (36,37): (i) a localized lesion with well-defined boundaries; (ii) an alveolar wall slightly thickened with mild infiltration of inflammatory cells but without scar formation; (iii) proliferating atypical epithelial cells abutting each other but not as compact as in ADC; (iv) atypical epithelial cells that were cuboidal to low columnar or peg-shaped in appearance, resembling either type II pneumocytes or non-ciliated bronchial epithelial cells (Clara cells) and (v) the presence of some atypical cells with two or more nuclei, most of which had relatively smaller and smoother contours than those of ADC. These criteria are compatible with those described in the reference of World Health Organization (37).

One hundred and fifty-one cases (87%) contained BAC components in the tumor, whereas the remaining 21 cases (13%) did not. The study protocol was approved by the institutional review board of the National Cancer Center, Tokyo, Japan. Smoking histories of the case and control subjects were obtained via interview using a questionnaire. The definitions of never-smokers and smokers are described above.

Subjects for association with estrogen levels
Postmenopausal women who participated as controls in multicenter hospital-based case–control studies of breast cancer (38–40) were analyzed in the present study. This study was designed to determine lifestyle factors and genetic susceptibility to the risk for breast cancer and to compare potential risk factors among Japanese living in Nagano, Japan and Japanese Brazilians and non-Japanese Brazilians living in São Paulo, Brazil. Written informed consent was obtained from all these subjects. This study was approved by Comissão Nacional de Ética em Pesquisa (CONEP, National Committee of Ethics in Research), Brasília, Brazil and by the institutional review board of the National Cancer Center, Tokyo, Japan.

Estrogen (E2 and E1) levels in serum for Nagano and in plasma for São Paulo were determined by radioimmunoassay by Mitsubishi Kagaku Bio Clinical Laboratories (Tokyo, Japan). Both the hormone levels and genomic DNA from peripheral blood cells of 185 Japanese, 44 Japanese Brazilians and 134 non-Japanese Brazilians were available for the present study.

SNP analysis
Genomic DNA was extracted from whole-blood cells using a Blood Maxi Kit (QiAGEN, Tokyo, Japan) according to the supplier’s instructions. Thirteen SNPs located in the CYP19A1 gene were selected. Five SNPs, rs4646, rs10046, rs2414096, rs727479 and rs1008805, were chosen since significant associations with serum estrogen levels of postmenopausal women were reported (26). rs2470152 was chosen since a significant association with serum estrogen levels of men was reported (19). The other seven SNPs were chosen based on the fact that their minor allele frequencies in the Japanese population were >0.1 in the Gemdbj SNP database (https://gemdbj.nibio.go.jp/gemdbj/). Genotyping of GGO set subjects for six SNPs, rs4646, rs10046, rs2414096, rs727479, rs1008805 and rs3764221 was performed by the Goldengate assay (Illumina, San Diego, CA) and that for the remaining seven SNPs was performed by the Taqman assay (Applied Biosystems, Foster City, CA) according to the supplier’s instructions. Genotyping of lung ADC set subjects for the rs3764221 SNP and genotyping of the subjects for association of the rs3764221 and rs10046 SNPs with serum estrogen levels was performed by the Taqman assay.

Statistical analyses
A Hardy–Weinberg equilibrium (HWE) test was performed using the SNPAlalyze version 3 software (DYNACOM, Chiba, Japan), and SNPs with a P value for deviation >0.05 were considered to be in HWE. Calculation of the D’ and R² values between SNPs was performed by the expectation–maximization algorithm using the SNPAlalyze version 3 software.

Table II. Association of CYP19A1 (rs3764221) genotypes with lung ADC risk

<table>
<thead>
<tr>
<th>Category</th>
<th>Genotype</th>
<th>Control, N (%)</th>
<th>Case, N (%)</th>
<th>OR* (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C/C</td>
<td>262 (62)</td>
<td>47 (47)</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C/T</td>
<td>138 (33)</td>
<td>42 (42)</td>
<td>1.59 (0.99–2.56)</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>T/T</td>
<td>24 (6)</td>
<td>11 (11)</td>
<td>2.47 (1.09–5.28)</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>Dominant</td>
<td></td>
<td></td>
<td>1.72 (1.10–2.70)</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>Recessive</td>
<td></td>
<td></td>
<td>2.03 (0.94–4.23)</td>
<td>0.077</td>
</tr>
<tr>
<td>ADC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C/C</td>
<td>187 (57)</td>
<td>184 (51)</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C/T</td>
<td>123 (37)</td>
<td>145 (40)</td>
<td>1.21 (0.88–1.67)</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>T/T</td>
<td>20 (6)</td>
<td>30 (8)</td>
<td>1.47 (0.80–2.77)</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Dominant</td>
<td></td>
<td></td>
<td>1.25 (0.92–1.70)</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Recessive</td>
<td></td>
<td></td>
<td>1.37 (0.76–2.53)</td>
<td>0.30</td>
</tr>
<tr>
<td>AAH an compositeb</td>
<td>Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C/C</td>
<td>35 (43)</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C/T</td>
<td>38 (47)</td>
<td>1.18 (1.01–2.85)</td>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T/T</td>
<td>8 (10)</td>
<td>2.05 (0.79–4.93)</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dominant</td>
<td></td>
<td></td>
<td>1.74 (1.06–2.86)</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>Recessive</td>
<td></td>
<td></td>
<td>1.66 (0.66–3.82)</td>
<td>0.26</td>
</tr>
<tr>
<td>Absent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C/C</td>
<td>149 (54)</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C/T</td>
<td>107 (38)</td>
<td>1.10 (0.78–1.55)</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T/T</td>
<td>22 (8)</td>
<td>1.33 (0.68–2.60)</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dominant</td>
<td></td>
<td></td>
<td>1.13 (0.81–1.57)</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>Recessive</td>
<td></td>
<td></td>
<td>1.29 (0.68–2.47)</td>
<td>0.44</td>
</tr>
<tr>
<td>BAC components</td>
<td>Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C/C</td>
<td>72 (48)</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C/T</td>
<td>64 (42)</td>
<td>1.34 (0.88–2.03)</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T/T</td>
<td>15 (10)</td>
<td>1.87 (0.88–3.90)</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dominant</td>
<td></td>
<td></td>
<td>1.41 (0.95–2.09)</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Recessive</td>
<td></td>
<td></td>
<td>1.65 (0.80–3.35)</td>
<td>0.17</td>
</tr>
</tbody>
</table>

b Adjusted for age, sex and smoking.
*ORs according to the accompaniment of AAH were assessed by the multinomial logistic regression model.

Other SNPs located in the CYP19A1 gene with GGO risk were examined by a trend test adjusted for gender, age (<49, 50–59, 60-69 and ≥70) and smoking (never-smoker versus smoker). Associations of the rs3764221 SNP with GGO and ADC risks were digitized as odds ratios (ORs) adjusted for gender, age (<49, 50–59, 60-69 and ≥70) and smoking (never-smoker versus smoker) with 95% confidence intervals (CIs) by unconditional logistic regression analysis (41). ORs for ADC risk according to the accompaniment of AAH were assessed by the multinomial logistic regression model. These analyses were performed using the JMP version 6.0 software (SAS Institute, Cary, NC). Linear trends for estrogen levels according to increases in the number of minor alleles for the rs3764221 and rs10046 SNPs were tested in a multivariate regression model using SAS software version 9.1 (SAS Institute). Variables used for adjustment in each test are described in the footnotes to Tables II and III. A level of P < 0.05 in a test was judged as significant and that of 0.05 < P < 0.1 was judged as marginal.

Results

Association of a CYP19 SNP with lung GGO risk

Thirteen SNPs dispersed in the CYP19A1 gene region were examined for association with GGO risk in a case–control study that consisted of 100 examinees with GGO and 424 without (GGO set in Table I). All 13 SNPs were in HWE both in cases and controls. Significant association with GGO risk was observed for an SNP, rs3764221, located in intron 1 of the CYP19A1 gene (P by trend test = 0.0085) (Figure 1; supplementary Table I is available at Carcinogenesis Online).

Five SNPs associated with estrogen levels in postmenopausal women of European descent (indicated by blue lines in Figure 1) were in strong linkage disequilibrium (LD) with each other (D’ = 0.85–1.0) as reported (26). These five SNPs also showed LD with rs3764221 (D’ = 0.75–0.92), however, none of them showed significant associations with GGO risk (supplementary Table I is available at Carcinogenesis Online). The rs2470152 SNP associated with estrogen levels in men from Sweden and the USA (indicated by a green line in Figure 1) were in a complete LD (D’ = 1.0) with rs3764221, and this SNP showed a marginal association (P = 0.076) with GGO risk (supplementary Table I is available at Carcinogenesis Online).

Heterozygotes and homozygotes for the minor allele of the rs3764221 SNP showed increased ORs for the GGO risk (Table II), and the increase in the homozygotes was statistically significant. The OR in the dominant mode (C/T + T/T versus C/C) also
showed a statistically significant increase [OR = 1.72 (1.10–2.70) \(P = 0.017 \)] (Table II; supplementary Figure 1 is available at Carcinogenesis Online). The OR in the dominant mode was also calculated against 102 examinees with GGO < 5 mm in diameter by screening and/or high-resolution CT examinations. An increase in OR in the dominant mode was also observed [OR = 1.42 (0.90–2.23)]; however, the increase did not reach a statistical significance (\(P = 0.13 \)).

Association of a CYP19 SNP with lung ADC risk
Association of the rs3764221 SNP with lung ADC risk was examined in a case–control study consisting of 359 lung ADC cases and 330 controls (Lung ADC set in Table I). This SNP was in HWE both in cases and controls. ORs of heterozygotes and homozygotes for the minor allele and those in both the dominant and recessive modes for the lung ADC risk were increased; however, the increases were not statistically significant (Table II; supplementary Figure 1 is available at Carcinogenesis Online).

All 359 lung ADC cases were informative for the presence of AAH in the lung lobe with primary ADC (Table I). Eighty-one (23%) cases had AAHs with primary ADC, consistent with previous reports that AAHs were detected in 16–35% of lungs with primary ADC (6,31). The ORs of heterozygotes and homozygotes for the minor allele and those in the dominant and recessive modes were higher for the risk for ADC with AAH than for ADC without AAH, although their 95% CIs overlapped (Table II; supplementary Figure 1 is available at Carcinogenesis Online). ORs of heterozygotes and in the dominant mode for the risk for ADC with AAH were statistically significant.

Among the 359 cases, 172 cases had small-sized ADC (i.e. <2cm in maximum diameter) and were informative whether their tumors contained BAC components or not (Table I). Tumors of 151 cases were diagnosed as containing BAC components. The ORs of heterozygotes and homozygotes for the minor allele and those in the dominant and recessive modes were higher for ADC with BAC components than for overall ADC, although their 95% CIs overlapped (Table II; supplementary Figure 1 is available at Carcinogenesis Online). ORs in the dominant mode for the risk for ADC with BAC components were marginally significant. The number of ADC cases without BAC components was small; therefore, ORs for ADC without BAC components were not calculated.

Association of the rs3764221 SNP with estrogen level
Association of the rs3764221 SNP with GGO and ADC risks prompted us to examine whether this SNP is associated with estrogen levels or not. For this purpose, we examined the allele distribution of this SNP in 363 postmenopausal women, consisting of 185 Japanese, 44 Japanese Brazilians and 134 non-Japanese Brazilians, whose information on circulating E2 and E1 levels was available (38–40). We also examined the allele distribution of the rs10046 SNP because the E2 and E1 levels in heterozygotes and homozygotes for the minor allele had been shown previously to be significantly higher than those in major allele homozygotes (Caucasian in Table III) (26). Heterozygotes and homozygotes for the minor allele for the rs3764221 SNP in all subjects showed higher E2 and E1 levels as for rs10046 in the previous report (Table III) (26). The increase in the E2 level according to increases in the number of minor alleles in all subjects was marginally significant (\(P = 0.078 \)), whereas that in the E1 level was not significant. Heterozygotes and homozygotes for Japanese subjects also showed higher E2 and E1 levels, although the differences were not statistically significant. On the other hand, heterozygotes and homozygotes for the minor allele for the rs10046 SNP showed only slightly increased levels of E1 and E2 in this study population.

Discussion
In this study, the rs3764221 SNP in the CYP19A1 gene was shown to be associated with risk for GGO (Table II). AAHs are usually detected as GGOs by CT examinations and a subset of these AAHs progress to ADC, including BAC (28,30,42). Therefore, this SNP was suggested to be involved in the risk for the development of AAH and also of lung ADC, particularly of BAC in the lungs. This suggestion was supported by the following two findings. First, the rs3764221 SNP showed a significant association with the risk for ADC accompanied by AAH but not for ADC not accompanied by AAH (Table II). Second, this SNP showed a marginal association with the risk for ADC containing BAC components, and the association in this subset of ADC was more evident than that in overall lung ADC (Table II). This result is consistent with the concept that AAH is a precancerous lesion of ADC, preferentially of BAC (5,6,43). The frequency of having AAH in the lungs has been shown to be considerably higher in ADC patients than in individuals without cancer (6,31,36,37,44). Therefore, the susceptibility to the development of AAH is probably to be associated with that of ADC in the lungs. Thus, the rs3764221 SNP might confer lung ADC risk by affecting the susceptibility to the development of AAH that progress to ADC, preferentially BAC.

In the present study, the minor allele for the rs3764221 SNP was marginally associated with a higher estrogen level in postmenopausal women. Notably, rs3764221 was in complete LD \((D' = 1) \) with rs2470152, whose association with serum estrogen levels in men had been reported (19). Accordingly, the rs2470152 SNP also showed a marginally significant association with risk for GGO (Figure 1).

Table III. Association of CYP19A1 SNPs with circulating estrogen levels SNP

<table>
<thead>
<tr>
<th>Population</th>
<th>Genotype</th>
<th>No. of subjects</th>
<th>Increase in estradiol (E2)</th>
<th>(P) for trend</th>
<th>Increase in estrone (E1)</th>
<th>(P) for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>CC</td>
<td>220</td>
<td>Ref</td>
<td>0.078*</td>
<td>Ref</td>
<td>0.26*</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>120</td>
<td>+4.8%</td>
<td></td>
<td>+1.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>17</td>
<td>+16.0%</td>
<td></td>
<td>+13.4%</td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td>CC</td>
<td>86</td>
<td>Ref</td>
<td>0.11*</td>
<td>Ref</td>
<td>0.30*</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>86</td>
<td>+6.6%</td>
<td></td>
<td>+1.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>12</td>
<td>+17.1%</td>
<td></td>
<td>+17.0%</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>GG</td>
<td>116</td>
<td>Ref</td>
<td>0.92*</td>
<td>Ref</td>
<td>0.36*</td>
</tr>
<tr>
<td></td>
<td>GA</td>
<td>193</td>
<td>+0.04%</td>
<td></td>
<td>-1.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>54</td>
<td>+0.69%</td>
<td></td>
<td>+5.3%</td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td>GG</td>
<td>61</td>
<td>Ref</td>
<td>0.83*</td>
<td>Ref</td>
<td>0.43*</td>
</tr>
<tr>
<td></td>
<td>GA</td>
<td>93</td>
<td>+0.8%</td>
<td></td>
<td>+2.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>31</td>
<td>-2.3%</td>
<td></td>
<td>+6.1%</td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>GG</td>
<td>835</td>
<td>Ref</td>
<td>(2.9 \times 10^{-9})</td>
<td>Ref</td>
<td>(1.1 \times 10^{-8})</td>
</tr>
<tr>
<td></td>
<td>GA</td>
<td>1691</td>
<td>+5.7%</td>
<td></td>
<td>+5.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>799</td>
<td>+12.8%</td>
<td></td>
<td>+11.7%</td>
<td></td>
</tr>
</tbody>
</table>

*Adjusted for age, ethnic group, age at menarche, age at menopause, number of births, age at first birth, height, body mass index, smoking, alcohol drinking and physical activity in the past 5 years.

Data from Haimann et al. (26).
Interestingly, intron 1 of the CYP19A1 gene contains 10 tissue specific promoters, which have been indicated to play regulatory roles in CYP19A1 gene expression differentially among diverse tissues (21,22). rs2470152 and rs3764221 SNPs are located, respectively, in and 3' to the L4 promoter, which enables CYP19A1 expression in skin, testis and adipose tissues (21,45,46). Therefore, genetic variations in the region spanning these two SNPs might be responsible for differential CYP19A1 expression among individuals, and this might cause interindividual differences in estrogen levels. In contrast to previous reports (26), the rs10046 SNP did not show association with estrogen levels in the present study. Such an inconsistency might have come from ethnic differences of subjects examined. Since the minor allele frequency for the rs3764221 SNP is considerably lower in Europeans (<0.05) than in Asians (>0.2) (http://www.ncbi.nlm.nih.gov/projects/SNP/), this SNP was not examined in previous association studies of Europeans (19,26). The rs3764221 SNP is in LD with SNPs located in the 3’ region of the CYP19A1 gene, including rs10046, therefore, it is also possible that SNP(s) critical for estrogen levels is located in this 3’ region.

Interaction of CYP19A1 genotypes with smoking and gender was also investigated. The ORs for the risks for GGO and lung ADC were consistently higher in never-smokers than in smokers, although their 95% CIs overlapped (supplementary Table II is available at Carcinogenesis Online). This result went along with the result of meta-analysis showing that hormone replacement therapy particularly increases lung ADC risk of never-smokers (10). This stronger association of CYP19A1 genotypes with GGO and lung ADC risks in never-smokers than smokers might be due to the anti-estrogenic effect of smoking (47,48). Smoking has been indicated to be associated with low levels of estrogen and with decreased risks for estrogen-dependent cancers, such as endometrial cancers (49–51). On the other hand, risks for GGO and lung ADC were not consistently associated with gender (supplementary Table III is available at Carcinogenesis Online); therefore, the interaction of CYP19A1 genotypes with gender remains unclear.

The present study proposes that CYP19A1 polymorphisms are involved in the risk for AAH and BAC in the lungs by causing differences in estrogen levels. Association studies of a single population among CYP19A1 genotypes, estrogen levels and the risk for AAH and BAC, by taking gender and smoking into account, will further authenticate the present results. The contribution of CYP19A1 polymorphisms to cancer risks has been investigated in estrogen-dependent cancers, such as ADCs of breast and endometrium. The contribution has been indicated to be possible but remains inconclusive due to inconsistent results among studies (22,26,52). Studies of CYP19A1 polymorphisms on risks for ADCs of a variety of organs, including the lungs, breast and endometrium, will further elucidate the significance of these polymorphisms and estrogen levels on cancer risks.

Supplementary material
Supplementary Figure 1 and Tables I–III can be found at http://carcin.oxfordjournals.org/

Funding

Acknowledgements
We thank Chisato Hamashima, Shizuka Sasazuki, Norie Kurahashi, Masahiro Kaneko, Masahiko Kusumoto, Takaaki Tsuchida and Hiroshi Saito for their help in data and sample collection for the GGO set; Daizo Saito and Sachiyu Mimaki for their help in data and sample collection for the lung ADC set. K.S. is an awardee of a Research Resident Fellowship from the Foundation for Promotion of Cancer Research in Japan. We are also grateful to the participants in the São Paulo-Japan Breast Cancer Study and the Nagano Breast Cancer Study.

Conflict of Interest Statement: None declared.

References
23. Tworoger, S.S. et al. (2004) Association of CYP17, CYP19, CYP1B1, and COMT polymorphisms with serum and urinary sex hormone
34. Otani,T. et al. (2006) Serum triglycerides and colorectal adenoma in a case-control study among cancer screening examinees (Japan). Cancer Causes Control, 17, 1245–1252.

Received June 1, 2010; revised July 6, 2010; accepted July 8, 2010