TRPV2 channel negatively controls glioma cell proliferation and resistance to Fas-induced apoptosis in ERK-dependent manner

Massimo Nabissi1, Maria Beatrice Morelli1,2, Consuelo Amantini1, Valerio Farfariello1,2, Lucia Ricci-Vitiani3, Sara Caproddisi4, Antonella Arcella4, Matteo Santoni2, Felice Giangaspero4, Ruggero De Maria3 and Giorgio Santoni1

1Department of Experimental Medicine and Public Health, University of Camerino, 62032 Camerino (Macerata), Italy, 2Department of Experimental Medicine, University “La Sapienza”; 00161 Rome, Italy and 3Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli (Isernia), Italy

*To whom correspondence should be addressed. Tel: 39 0737 403312/403319; Fax: 39 0737 403325; Email: giorgio.santoni@unicam.it

The aim of this study was to investigate the expression and function of the transient receptor potential vanilloid 2 (TRPV2) in human glioma cells. By Real-Time–PCR and western blot analysis, we found that TRPV2 mRNA (RNA) and protein were expressed in benign astrocytose tissues, and its expression progressively declined in high-grade glioma tissues as histological grade increased (n = 49 cases), and in U87MG cells and in MZC, FCL and FSL primary glioma cells. To investigate the function of TRPV2 in glioma, small RNA interfering was used to silence TRPV2 expression in U87MG cells. As evaluated by RT-Profiler PCR array, siTRPV2-U87MG transfected cells displayed a marked downregulation of Fas and procaspase-8 mRNA expression, associated with upregulation of cyclin E1, cyclin-dependent kinase 2, E2F1 transcription factor 1, V-raf-1 murine leukemia viral oncogene homolog 1 and Bcl-2-associated X protein (Bcl-X) mRNA expression. TRPV2 silencing increased U87MG cell proliferation as shown by the increased percentage of cells incorporating 5-bromo-2-deoxyuridine expressing βgal-tubulin and rescued glioma cells to Fas-induced apoptosis. These events were dependent on extracellular signal-regulated kinase (ERK) activation: indeed inhibition of ERK activation in siTRPV2-U87MG transfected cells by treatment with PD98059, a specific mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway inhibitor, resulted in reduced ERK1/2 activation has been also implicated in cellular protection from various apoptotic signals (11,12). Thus, Fas-mediated signalling in Jurkat T cells is abrogated by ERK activation (13), and ERK activity inhibits caspase-8 cleavage but not death-inducing signalling complex assembly (6).

Members of transient receptor potential vanilloid (TRPVs) channel family control cellular homeostasis by regulating calcium influx, cell proliferation, differentiation and apoptosis; moreover, in the last years, an additional pathophysiological role for TRPV channel family in malignant growth and progression has been demonstrated (14,15). In this regard, we have recently reported a marked loss of transient receptor potential vanilloid type 1 (TRPV1) channel in high-grade gliomas, and TRPV1 involvement in the triggering of p38 MAP kinase (p38) mitogen-activated protein kinase (MAPK)-dependent GBM cell apoptosis in response to its specific agonist, capsaicin (16).

Transient receptor potential vanilloid type 2 (TRPV2), also called vanilloid receptor like-1 (VRL-1), is another member of TRPV cation channel family. Like TRPV1, this receptor is predicted to contain six transmembrane domains, a putative pore-loop region, a cytoplasmic amino terminus with three ankyrin-repeat domains, and a cytoplasmic carboxy terminus (17). TRPV2 shows high Ca2+ permeability; functional studies have revealed that TRPV2 responds to noxious heat with an activation threshold of >52°C (17), as well as to changes in osmolarity and membrane stretch (18); in addition, TRPV2 is triggered by agonists such as 2-aminoethoxydiphenyl borate (20).

Although the gene encoding TRPV2 is highly expressed in the central nervous system (17), TRPV2 transcripts are also found in non-neuronal tissues (17,21–23), suggesting that TRPV2 subserves a relatively broad repertoire of physiological functions.

In non-neuronal cells, TRPV2 channel activity can be regulated by growth factor signalling (24). In this regard, the mouse ortholog of TRPV2 (mTRPV2) is activated by growth factors such as insulin growth factor-1, platelet-derived growth factor, and the neuropeptide...
TRPV2 in proliferation and survival of glioma cells

Probes and primers

DxRT–PCR was performed using human TRPV2 and β-actin probes–primers designed with Primer Premier 5 (Bio-Rad, Hercules, CA) purchased from Sigma-Aldrich. Primers and probes sequences were: β-actin: forward: 5'-GAC ATC GCG AAA GAC GTG TAC G-3'; reverse: 5'-GCC AGG GCA GTG ATC TCC TCC-3'; probe (Fam): 5'-TGC TGT CGG GCC GCA CCA CCA TGC-3'; TRPV2: forward: 5'-GCC AGG GCA AAC ATC GAG-3'; reverse: 5'-CAC AGA AGC GAC GTC ATA CAG C-3'; probe (Texas Red): 5'-ACC CGG AGA GCC CCA TAG CAC CA-3'.

Materials and methods

Cells and tissues

The U87MG glioma cell line (American Type Culture Collection, LGC Promochem, Teddington, UK) and the primary glioblastoma cell lines MZC, FSL, and FCL, derived from biotptic samples surgically removed from patients who gave informed consent to the study, were maintained in modified Eagle’s medium supplemented with 10% heat inactivated fetal calf serum, 2 mM t-glutamine, 100 IU/ml penicillin, 100 μg streptomycin, non-essential amino acids and 1 mM sodium pyruvate. All cell lines were maintained at 37°C, 5% CO2, and 95% humidity. Paraffin-embedded glioma tissues (n = 49) and benign astrocyte tissues (n = 7) were prepared from biotptic samples surgically removed from patients who gave informed consent to the study. Brain tumors of astrocytic origin were grouped according to malignancy in grade II (n = 25), III (n = 13), IV (n = 11); (World Health Organization classification) (1). Primary glioma cell lines and glioma tissues are available at the human glioma bank INM Neuromed (Pozzilli, Isernia, Italy).

Reagents and antibodies

Etoposide (VP-16), c1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine), 5-bromo-2-deoxyuridine (BrdU) and the MEK inhibitor PD98059 were purchased from Sigma-Aldrich (St Louis, MO), and Tocris Bioscience (Bristol, UK), respectively. The following mouse monoclonal antibodies (mAbs) were used: anti-β-actin (1:1000; Santa Cruz Biotechnology, Santa Cruz, CA), anti-Fas (1:1000; Sigma-Aldrich), antiphospho ERK (1:1000; Cell Signaling Technology, Danvers, MA), anti-Bcl-XL (1:200; Santa Cruz Biotechnology), anti-caspase-8 (1:4000; BD Biosciences, San Jose, CA), anti-phospho-p38 MAPK (1:1000; Cell Signaling Technology), anti-phospho tubulin (1:100; Cell Signaling Technology), anti-BrdU FITC-conjugated (1:10; BD Biosciences), anti-Fas (clone CH-11) (MBL Corporation, Woburn, MA). The following polyclonal antibodies (Abs) were used: goat anti-TRPV2 (1:200; Santa Cruz Biotechnology), rabbit anti-ERK (1:1000; Santa Cruz Biotechnology), rabbit anti-glial fibrillary acidic protein (GFAP; 1:100; Cell Signaling Technology), rabbit anti-Akt (1:1000; Signalway Antibody, Pearland, TX), rabbit anti-phospho Akt (1:1000; Cell Signaling Technology), rabbit anti-p38 MAPK (1:1000; Cell Signaling Technology), phosphorylated goat antianti-mouse i-mannoglutamin G (IgG1:20; BD Biosciences), p-hcycrythrin-conjugated goat antianti-IgG (1:20; BD Biosciences), horseradish peroxidase-conjugated donkey antianti-goat IgG (Santa Cruz Biotechnology), horseradish peroxidase-conjugated goat antimouse IgG (1:2000, GE Healthcare Europe GmbH, Milano, Italy), horseradish peroxidase-conjugated donkey antianti-rabbit IgG (1:5000; GE Healthcare) were used as secondary Abs.

Total RNA extraction and complementary DNA synthesis

Total RNA from cell samples and paraffin-embedded sections (5–7 μm thick), was extracted accordingly to the manufacture’s instructions, with the RNeasy Mini Kit (Qiagen GmbH, Hilden, Germany) and the Optimum FFPE RNA isolation kit (Applied Biosystems, Foster City, CA), respectively. Total RNA (100 ng for each sample) was treated with 1 U/ml of DNase I (Qiagen GmbH) and reverse transcribed into complementary DNA (cDNA), in a final volume of 25 μl, using the High-Capacity cDNA Archive Kit (Applied Biosystems). One microctlor of the resulting cDNA products was used as template for duplex real-time PCR (dRT–PCR) quantification.

Cancer pathway finder profile analysis

The Human Cancer Pathway Finder™ PCR Array and related reagents were purchased from SABiosciences (Frederick, MD). Total RNA from siGLO- and siTRPV2-U87MG transfected cells at day 3 post-transfection was extracted and 2 μg of total RNA from each sample were subjected to reverse transcription in a total volume of 20 μl using the ReactionReady™ first strand cDNA (SABiosciences). cDNAs were analyzed by quantitative RT–PCR performed using the iQ5 Multicolor Real-time PCR Detection System, the SuperArray’s RT2 real-time SYBR Green PCR Master Mix and the Human Pathways CancerFinderTM (SABioscience) according to manufacturer’s instructions. Measurement of four of two housekeeping genes (β-actin, glyceraldehyde-3-phosphate dehydrogenase) on the samples was used to normalize mRNA content, and the gene expression levels of siTRPV2-transfected cells were expressed as relative fold respect to siGLO-U87MG transfected cells. Data acquisition was performed using the web-based integrated PCR Array Data Analysis Template provided by SABiosciences.

Western blot

Glioma cells and tissues were lysed in lysis buffer (1 M Tris pH 7.4, 1 M NaCl, 10 mM ethyleneglycol-bis(aminoethylether)-tetraacetatic acid, 100 mM NaF, 100 mM Na3VO4, 100 mM phenylmethylsulfonyl fluoride, 2% deoxycholate, 100 mM ethylenediaminetraacetatic acid, 10% Triton X-100, 10% glycerol, 10% sodium dodecyl sulfate, 0.1 M Na2P04 containing protease inhibitor cocktail (Sigma-Aldrich) by using a Mixer Mill MM300 (Qiagen GmbH). Lysates were separated on sodium dodecyl sulfate polyacrylamide gel (7–12%) and transferred onto Hybond-C extra membranes (GE Healthcare). Non-specific binding sites were blocked with 5% low-fat dry milk in phosphate-buffered saline (PBS) Tween 20 for 1 h at room temperature. Blots were incubated for 1 h with the primary Abs in PBS–Tween 20 supplemented with 3% low-fat dry milk, washed three times with PBS–Tween 20 buffer, and incubated with the appropriate secondary Abs. Immunostaining was revealed by enhanced ECL Western Blotting analysis system (GE Healthcare). Densitometric analysis was performed by ChemiDoc using the Quantity One software (Bio-Rad).

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay

Glioma cells were cultured with different doses of VP-16, BCNU or anti-Fas mAb, alone or in combination, and the percentage of cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
Expression of TRPV2 mRNA and protein on glioma tissues and cell lines

We determined TRPV2 mRNA expression in glioma tissues with different grades, as well as in U87MG and MZC, FCL, and FSL primary glioma cells by dxRT–PCR; we found that TRPV2 mRNA levels were expressed in benign astrocyte control tissues and its expression progressively declined in low- (grade II) versus high-grade gliomas (grades III and IV); furthermore, TRPV2 mRNA expression was markedly reduced in U87MG cells, and strongly downregulated in MZC, FCL, and FSL primary glioma cells as compared with controls (Figure 1A). Consistent with dxRT–PCR data, a progressive reduction of TRPV2 protein expression was evidenced by western blot analysis in glioma tissues as pathologically grade increased, with a complete loss in grade IV glioblastomas (Figure 1B), as well as in U87MG and MZC glioma cells (Figure 1C). No reactivity was observed with normal goat serum used as negative control (data not shown).

In conclusion, the loss of TRPV2 expression in high-grade glioblastoma cells and tissues suggests a negative role for TRPV2 in tumor progression.

TRPV2 silencing affects gene expression in U87MG cells

In order to study the functional role of TRPV2 in glioma cells, we silenced TRPV2 gene in U87MG cells by small RNA interference. No changes in cell viability, morphology, and adhesive properties were observed in transfected versus untransfected U87MG cells (data not shown). As evaluated by dxRT–PCR, a progressive decrease of TRPV2 mRNA levels from day 1 up to day 4 post-transfection was observed in siTRPV2-transfected cells, with a marked loss detected already at day 2 (Figure 2A); similarly, western blot analysis revealed a parallel decrease of TRPV2 protein at day 3 (Figure 2B). No major differences in TRPV2 mRNA expression were observed in siGLO-transfected cells.

Thereafter, we investigate the role of TRPV2 in glioma cells, by evaluating the expression of 84 genes representative of six biological pathways involved in transformation and tumorigenesis, in siTRPV2- and siGLO-U87MG transfected cells by performing an RT-Profiler...
PCR array using a customized Cancer Pathway Finder PCR array. TRPV2 silencing significantly modulated the expression of genes controlling cell cycle, proliferation and apoptosis being five genes upregulated and two genes downregulated. Among them, expression of cyclin E1, cyclin-dependent kinase 2, E2F1 transcription factor 1, Raf-1 and the anti-apoptotic Bcl-XL genes was increased, whereas reduced expression of death receptor apoptosis-related genes, such as Fas and procaspase-8, was observed (Figure 2C).

Overall, our data indicate that silencing of TRPV2 in U87MG cells promotes a genetic program favoring cell proliferation and survival, thus suggesting that this receptor negatively controls glioma growth and progression.

ERK phosphorylation is increased in TRPV2-silenced U87MG cells

Our finding that Raf-1 mRNA is upregulated in siTRPV2-U87MG cells together with the major role described for ERK1/2 and p38MAP kinases in the control of glioma cell proliferation and apoptosis (9,16) prompted us to evaluate the ERK1/2 phosphorylation status in siTRPV2-U87MG transfected cells. We found enhanced ERK phosphorylation in siTRPV2-U87MG transfected cells, which was completely inhibited by the specific pharmacological MEK inhibitor PD98059 (Figure 3A). As previously described, ERK was phosphorylated at basal level in U87MG cells (28); no statistically significant changes in ERK protein and phosphorylation levels were found in siTRPV2-U87MG transfected cells (Figure 3C), whereas no changes were found in siGLO control cells (data not shown). Moreover, PD98059, at the dose that completely inhibited ERK phosphorylation, reverted the induced downregulation of Fas and markedly reduced Bcl-XL overexpression in siTRPV2 glioma cells (Figure 3C). Neither changes of

Fig. 2. Cancer pathways related genes affected by TRPV2 gene silencing in U87MG cells. (A) TRPV2 mRNA levels were evaluated by dxRT–PCR in siTRPV2-U87MG transfected cells at different transfection times (0–4 days). Relative TRPV2 expression, normalized to β-actin mRNA levels, were calculated using day 0 of transfection as calibrator. Statistical analysis was performed comparing transfection times with day 0, *P* < 0.01. (B) Lysates from siTRPV2-U87MG transfected cells were separated on sodium dodecyl sulfate–polyacrylamide gel electrophoresis and probed with specific goat antihuman TRPV2 Ab. Glyceraldehyde-3-phosphate dehydrogenase protein levels were evaluated as loading control. Relative TRPV2 expression values were calculated using day 0 as calibrator. Data shown are the mean ± SD of three separate experiments. Statistical analysis was performed comparing transfection times with day 0, *P* < 0.01. (C) The RT profiler PCR array in mRNA samples extracted from siTRPV2 and siGLO-U87MG at day 3 post-transfection. Right column represent fold differences of individual gene expression between siTRPV2- and siGLO (calibrator)-U87MG cells. The expression levels were normalized to the average Ct value of two housekeeping genes (β-actin and glyceraldehyde-3-phosphate dehydrogenase), calculated by the ΔΔCt method and expressed as fold change from calibrator. Table includes genes whose expression is, at least, two-fold up- or downregulated in siTRPV2-U87MG transfected cells.
procaspase-8 protein expression nor caspase-8 activation were found in PD98059-treated siTRPV2-U87MG transfected cells (Figure 3C). No significant difference in Bcl-XL, Fas, and procaspase-8 protein expression were found in PD98059-treated versus untreated siGLO-U87MG transfected cells used as control (data not shown).

We also evaluated the role of ERK activation in the control of PI3-kinase pathway in siTRPV2-U87MG transfected cells by evaluating the phosphorylation of the downstream effector molecule Akt/PKB. A basal level of Akt/PKB phosphorylation was observed siGLO-U87MG transfected cells that was strongly reduced upon TRPV2 silencing. This inhibition was completely reverted by PD98059 treatment (Figure 3D).

Overall, our findings indicate that ERK activation following TRPV2 silencing, alters the balance between proapoptotic and antiapoptotic signals in that it decreases Fas expression and PI3K/Akt activation and parallelly increases Bcl-XL expression.

TRPV2 silencing increases survival and proliferation of U87MG glioma cells

As decreased expression of TRPV2 by small RNA interfering resulted in transcriptional activation of genes controlling cell survival and proliferation, as well as increased ERK phosphorylation, we evaluated the viability and proliferation of siTRPV2- and siTRPV2- and siGLO-U87MG transfected cells by MTT and BrdU incorporation assays, respectively.

Augmented glioma cell viability was evidenced in siTRPV2 cells as compared with siGLO cells (Figure 4A) and was associated with an increased percentage of cells incorporating BrdU (Figure 4B). We further characterized the phenotype of proliferating U87MG cells by analyzing the expression of astrocytic GFAP and neuronal βIII-tubulin markers on BrdU-positive cells. FACS analysis revealed a significant increase in the percentage of proliferating BrdU+βIII-tubulin+ but not in BrdU+GFAP+ siTRPV2 U87MG cells with respect to siGLO control cells (Figure 4C and D).

We also evaluated the role of ERK activation in the control of enhanced siTRPV2-U87MG transfected cells proliferation, using the MEK inhibitor PD98059. A decrease cell viability and percentage of BrdU+ cells was evidenced only in PD98059-treated siTRPV2-U87MG transfected cells compared with untreated cells (Figure 4A and B), being both U87MG GFAP+ and βIII-tubulin+ proliferating cell populations inhibited (Figure 4C and D). Overall, these results suggest ERK activation is a major event controlling the enhanced U87MG cell proliferation upon TRPV2 silencing.

TRPV2 silencing protects U87MG cells from ERK-dependent apoptosis induced by Fas in combination with chemotherapeutic treatment

U87MG glioma cells express the death receptor Fas and are moderately sensitive to apoptosis induced by its triggering (32). Thus, we evaluated the effects of specific mAb-mediated Fas triggering in
sTRPV2-U87MG transfected cells. Treatment of siGLO glioma cells with anti-Fas mAb triggered apoptosis, as measured by MTT and Annexin-V assay, whereas sTRPV2-U87MG transfected are completely resistant to anti-Fas mAb-mediated effects (Figure 5A). Then, we evaluated the effects of the combined treatment with anti-Fas mAb (250 ng/ml) and a suboptimal dose of VP-16 (50 μM) or BCNU (100 μM), on apoptotic cell death. We found that Fas triggering in combination with drug treatment did not augment the sensitivity of sTRPV2-U87MG transfected cells to apoptotic cell death, whereas it exerted proapoptotic effects in siGLO-U87MG transfected cells (Figure 5B and C). In addition, according to previously report (33), we suggested that overexpression of Bcl-XL in sTRPV2-U87MG transfected cells conferred less sensitivity of sTRPV2-U87MG transfected cells to both VP-16 and BCNU as compared with siGLO control cells (Supplementary Figure 1 is available at Carcinogenesis Online).

We also evaluated whether inhibition of enhanced ERK activation in sTRPV2-U87MG transfected cells by PD98059 treatment promoted apoptosis and sensitized these cells to Fas-induced cell death. Treatment of sTRPV2-U87MG transfected cells with PD98059 reduced cell viability (4.1 ± 0.3% versus 28.3 ± 2.0%) and induced mitochondrial-dependent apoptosis as shown by the increase in the percentage of Annexin-V^+^ cells (3.4 ± 0.3% versus 26.3 ± 2.5%) and of cells showing ΔΨ_m dissipation (8.6 ± 0.4 versus 28.1 ± 0.8%). Moreover, sTRPV2-U87MG transfected cells became more sensitive to apoptosis induced by anti-Fas mAb used alone or in combination with VP-16 or BCNU, following inhibition of ERK activation (Figure 5D, E and F).

Overall, our results indicate that inhibition of ERK activation sensitizes sTRPV2-U87MG transfected cells to mitochondrial-dependent apoptosis induced by Fas in combination with chemotherapeutic treatment.

Discussion

Malignant cell transformation resulting from enhanced proliferation, aberrant differentiation, and resistance to apoptotic cell death is responsible for abnormal tissue growth, which can eventually turn into uncontrolled expansion and invasion, characteristics of cancer. Such transformation is often accompanied by changes in ion channel expression, and consequently by alterations of the cellular responses that they mediate (15).

Human glioma cells express a variety of ion channels (34,35), including TRPV1 channel (16). Herein, we provide evidence on the expression of TRPV2 by glioma cells and tissues and its involvement in ERK-dependent regulation of glioma cell proliferation and susceptibility to Fas-induced apoptosis.

As evaluated by RT–PCR, TRPV2 mRNA and protein were expressed in benign astrocyte tissues; in addition, TRPV2 expression progressively decreased in U87MG and MZC glioma cells and tissues as pathological grade increased, with a marked reduction of TRPV2 in high-grade gliomas.

In conclusion, the loss of TRPV2 mRNA and protein expression in high-grade glioblastomas suggests a negative role for TRPV2 in tumor progression.
In order to explore the molecular mechanisms underlying the functional role of endogenously expressed TRPV2 in the control of glioma cell proliferation and survival, we silenced TRPV2 gene in U87MG cells by RNA interference.

By using a customized PCR array, we found that silencing of TRPV2 gene altered the expression of seven genes regulating glioma cell proliferation and apoptotic cell death. TRPV2 silencing resulted in upregulation of the cyclin E1, cyclin-dependent kinase 2, and E2F1 transcription factor 1 genes controlling G1 to S phase transition, the antiapoptotic Bcl-2 member, Bcl-XL, and of Raf-1 kinase that transduces mitogenic and prosurvival signals (9). In addition, marked downregulation of the proapoptotic death receptor Fas and procaspase-8 genes was also detected in TRPV2 siRNA-transfected U87MG cells.

Modulation of genes promoting cell proliferation and survival by TRPV2 silencing was accompanied by a marked increase in U87MG cell survival and proliferation, as assessed by MTT and BrdU incorporation assays. The increased proliferation was mainly sustained by cells expressing the neuronal βIII-tubulin marker with respect to GFAP⁺ cells of astrocytic origin. Notably, βIII-tubulin is not only an early neuronal marker but it is also highly expressed in diffuse astrocytic glioma and glioblastomas with an ascending grade of...
Fig. 6. TRPV2 transient transfection in MZC primary glioma cell line. (A) TRPV2 mRNA levels were evaluated by dRT–PCR in MZC pCMV (empty vector) and MZC pCMV-TRPV2 (TRPV2 encoding vector) transfected cells, 3 days post-transfection. Relative TRPV2 expression, in MZC pCMV-TRPV2 cells, normalized to β-actin mRNA levels, were calculated using MZC pCMV as calibrator. Data shown are the mean ± SD of three separate experiments. Statistical analysis was performed comparing MZC pCMV-TRPV2 with MZC pCMV cells, "P < 0.01. (B) Lysates from MZC-transfected cells were separated on sodium dodecyl sulfate–polyacrylamide gel electrophoresis and probed with specific goat antihuman TRPV2 Ab. glyceraldehydes-3-phosphate dehydrogenase protein levels were evaluated as loading control. Relative TRPV2 expression values were calculated using MZC pCMV as control. Statistical analysis was performed comparing MZC pCMV-TRPV2 with MZC pCMV cells, "P < 0.01. (C) Cell growth of MZC-transfected cells was determined by MTT assay. Data shown are the mean ± SD of three separate experiments. Statistical analysis was performed comparing MZC pCMV-TRPV2 with MZC pCMV cells, "P < 0.01. (D) The percentage of Annexin-V⁺ in MZC pCMV (gray area) and MZC pCMV-TRPV2 (white area) was evaluated by immunofluorescence and fluorescence activated cell sorting (FACS) analysis. (E) VP-16 and BCNU dose response in MZC-transfected cells. Cell viability was determined by MTT assay. Data shown are the mean ± SD of three separate experiments. Statistical analysis was performed comparing MZC pCMV-TRPV2 with MZC pCMV cells, "P < 0.01. (F) (Left panel) Lysates from MZC pCMV and MZC pCMV-TRPV2 transfected cells were separated on sodium dodecyl sulfate–polyacrylamide gel electrophoresis and probed with antihuman Fas mAb. glyceraldehyde-3-phosphate dehydrogenase protein levels were evaluated as loading control, (right panel). The percentage of Annexin-V⁺ in MZC pCMV and MZC pCMV-TRPV2 transfected cells, treated with anti-Fas mAb (250 ng/ml), was evaluated by immunofluorescence and FACS analysis. Data shown are the mean ± SD of three separate experiments. Statistical analysis was performed comparing MZC pCMV-TRPV2 with MZC pCMV cells, "P < 0.01.
histological malignancy and with correspondingly high proliferative indices (36). In addition, as evaluated by MTT and Annexin-V assays, enforced expression of TRPV2 on low TRPV2-expressing MZC glioma cells resulted in a marked inhibition of cell survival and enhancement of spontaneous apoptosis. Accordingly, myocytes from mTRPV2 transgenic mice undergo spontaneously to massive apoptosis (26).

Glioma cells are moderately sensitive to Fas-induced cell death (32); this sensitivity might be increased by treatment with some antitumor chemotherapeutic agents (37). Our results provide evidence that, in accordance with down-modulation of Fas expression and up-regulation of Bcl-XL, TRPV2 silencing in U87MG cells increased their resistance to apoptotic cell death triggered by anti-Fas-specific mAb used alone or in combination with suboptimal doses of anticancer agents such as VP-16 and BCNU, as shown by the decreased percentage of Annexin-V-positive cells (37).

These findings are in agreement with the increased sensitivity to Fas-induced apoptosis that we evidenced in TRPV2-transfected MZC glioma cells.

ERK activation is a key event controlling survival and proliferation of different cancer cells including glioma (38). ERK activation has been shown to prevent Fas-mediated apoptosis in Jurkat T cells (6–8,13,39); conversely, inhibition of ERK activation increases Fas expression, promotes the apoptosis of Raf-1 overexpressing lymphomas and solid tumor cells (40), and sensitizes HeLa cells to Fas receptor-mediated apoptosis (6). In addition, increased ERK phosphorylation and reduced sensitivity of cancer cells to chemotherapeutic drug-mediated apoptosis is induced by inhibition of PI3K/Akt pathway (31) that is mainly involved in the control of cell survival (32).

We have demonstrated that TRPV2 silencing of U87MG cells is associated with Raf-1 mRNA upregulation and increased ERK phosphorylation; this increase was abrogated by using the specific pharmacological MEK inhibitor PD98059, thus suggesting that impaired TRPV2 expression results in ERK activation in the survival and proliferation of siTRPV2-U87MG transfected cells and that we found that inhibition of ERK activation by PD98059 treatment markedly reduced cell viability and the percentage of BrdU-positive proliferating cells in siTRPV2-U87MG transfected cells. Our findings are consistent with previous results showing that the ERK1/2 activation inhibitor U0126 reduces U87MG transfected cells. Our findings are consistent with previous results showing that the ERK1/2 activation inhibitor U0126 reduces the proliferation of rat C6 glioma cells (41). Moreover, PD98059 significantly increased Fas expression and triggering in siTRPV2-U87MG transfected cells. Accordingly, inhibition of ERK activation was associated with an increased sensitivity of siTRPV2 glioma cells to Fas-induced apoptosis, with the maximal effects observed by using anti-Fas mAb in combination with VP-16 or BCNU. The increased sensitivity of Fas-triggered siTRPV2-U87MG transfected cells to the proapoptotic effects exerted by the chemotherapeutic agents may be attributable to the ability of VP-16 to directly activate caspase-8 processing (42) and of BCNU to increase Fas expression (43,44).

In addition, in accordance with previous findings demonstrating the involvement of the mitochondrial-dependent pathway in Fas-induced apoptosis of Bcl-XL-overexpressing glioma cells (45) and of ERK activation in the regulation of Bcl-XL expression (30,46), we showed that inhibition of ERK activation by reducing Bcl-XL levels sensitized siTRPV2-U87MG transfected cells to mitochondrial-dependent apoptosis induced by Fas triggering alone or in combination with the chemotherapeutic agents.

Our results also provide evidence that neither diminished procaspase-8 expression in TRPV2-silenced U87MG cells was reverted nor caspase-8 cleavage was induced by inhibition of ERK activation. In accordance with previous reports, these findings suggest that increased Fas levels (47,48) and reduced Bcl-XL expression (49) do not cause detectable caspase-8 activation, although these events trigger Fas-mediated apoptosis (50).

Finally, we found that Akt/PKB was phosphorylated in U87MG cells at basal levels and that TRPV2 silencing causes a profound reduction of Akt phosphorylation status that was markedly reverted by inhibition of ERK activation. These results are consistent with previous evidence showing that PI3-kinase inhibitors inhibit calcium overload and cell death in mTRPV2-transfected cells (25). Overall, our findings indicate that ERK activation following TRPV2 silencing regulates the susceptibility of U87MG glioma cells to Fas-induced apoptosis by altering the balance between proapoptotic and antiapoptotic signals.

In conclusion, we have identified ERK activation as a key signaling event regulating proliferation and chemoresistance in glioma cells exhibiting an impaired expression of TRPV2 channel: ERK activation following TRPV2 silencing drives cell proliferation and prevents glioma cell apoptosis by repressing Fas expression and PI3K/Akt activation and promoting Bcl-XL expression. Further investigations are required to completely understand the relationship between TRPV2 and ERK activation and Fas triggering in glioma cells. Our findings showing that TRPV2 negatively regulates glioma cell survival and proliferation as well as resistance to Fas-induced apoptotic cell death may have important pathophysiological implications, particularly in view of loss of TRPV2 mRNA and protein expression observed during glioma progression. Understanding the role of TRPV2 in the regulation of survival and proliferation signaling pathways could shed light on the mechanisms of resistance of these cancer cells to death receptor- and chemotherapeutic-induced apoptosis and lead to novel approaches to primary brain tumor therapy.

Supplementary material
Supplementary Figure 1 can be found at http://carcin.oxfordjournals.org/.

Funding
University of Camerino Grant 2009, AIRC Regional Grant 2007 and AIRC Regional Studentship 2009.

References
TRPV2 in proliferation and survival of glioma cells

Received November 19, 2009; revised January 13, 2010; accepted January 16, 2010.