Go12/13 inhibition enhances the anticancer effect of bortezomib through PSMB5 downregulation

Yoon Mee Yang1, Sanghwan Lee2, Chang Won Nam2, Ji Hee Ha3, Muralidharan Jayaraman3, Danny N.Dhanasekaran1,3, Chang Ho Lee4, Mi-Kyong Kwak2 and Sang Geon Kim1,*

1Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea, 2Department of Pharmacy, College of Pharmacy, Yeungnam University, 214-1 Dae-dong, Gyeongsan-si, Gyeongsangbuk-do 712-749, Korea, 3Department of Cell Biology, OU Cancer Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA, and 4Department of Pharmacology and Institute of Biomedical Science, College of Medicine, Hanyang University, Seoul 133-791, Korea

To whom correspondence should be addressed. Tel: +82 2 880 7840; Fax: +82 2 872 1795; Email: sgk@snu.ac.kr

Abbreviations: DMEM, Dulbecco's modified Eagle's medium; FBS, fetal bovine serum; MECL-1, multicatalytic endopeptidase complex-like-1; mRNA, messenger RNA; MTT, 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide; PA28x, 115 subunit proteasome activator subunit-1.

Introduction

Targeting protein degradation by inhibiting the ubiquitin–proteasome pathway is a novel approach for cancer therapy. Bortezomib (PS-341, Velcade®) is a dipetidyl boronic acid that reversibly inhibits the 20S proteasome (1,2). It is a proteasome inhibitor first approved for anticancer therapy, especially for relapsed multiple myeloma and mantle cell lymphoma (i.e. the first-in-class drug). A series of clinical studies of bortezomib have also been conducted in solid tumors. However, the insufficiency of clinical advantage in the studies (3–5) suggests that the targets of bortezomib in solid tumors may not be the same as in hematologic malignancies. Unfortunately, the molecular mechanism associated with this difference is yet unclear.

The 26S proteasome is a multicatalytic protease complex containing the 20S core complex in charge of proteolysis and the 19S regulatory complex (6). It may also have a non-proteolytic activity (7). The 20S proteasome consists of a cylindrical stack of rings comprising of the catalytic core subunits β1 (PSMB6), β2 (PSMB7) and β5 (PSMB5). Among the subunits, the chymotrypsin-like activity of PSMB5 seems to be critical for the rate-limiting step of proteolysis (8). Bortezomib primarily targets the chymotrypsin-like activity at PSMB5 (9). However, the expression levels of proteasome subunits, particularly PSMB5, may cause resistance to bortezomib. PSMB5 overexpression or mutation of the gene may account for a resistant mechanism in variants of T-cell lymphoblastic lymphoma or bortezomib-resistant monocytic/macrophages (10–12). In clinical situations, resistance to bortezomib develops in the majority of patients; some even fail to respond to the therapy (13,14).

Materials and methods

Bortezomib was purchased from LC Laboratories (Woburn, MA). N-succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin (N-Suc-LLVY-AMC), Z-Leu-Leu-Glu-7-amino-4-methylcoumarin (Z-LEL-AMC), or Z-Ala-Arg-Arg-7-amino-4-methylcoumarin (Z-ARR-AMC) and MG132 were obtained from Calbiochem (La Jolla, CA). Proteasomal antibodies recognizing PSMB5 were provided from Research Diagnostics (Flanders, NJ). Antibodies directed against active Go12/13, and active Rho were obtained from NewEast Biosciences (Milvem, PA). Antibodies directed against Go13, Go12/13, and β-tubulin were supplied from Santa Cruz Biotechnology (Santa Cruz, CA). 3-(4,5-dimethylthiazole-2-yl)-2,5-bisphenyl tetrazolium bromide (MTT) and dimethyl sulfoxide were purchased from Sigma Chemical (St Louis, MO). DeadEnd™ Colorimetric TUNEL System was provided from Promega (Madison, WI).

Cell culture

Huh7, SNU886, SNU449 and SK-Hep1 cells were obtained from Korean Cell Line Bank (Seoul, Korea). MiaPaCa2 cells were provided from Korean Cell Line Bank (Seoul, Korea). MiaPaCa2 cells were provided from Amgen. MiaPaCa2 cells were provided from Amgen. MiaPaCa2 cells were provided from Amgen. MiaPaCa2 cells were provided from Amgen.
Dr D.N. Dhanasekaran. These cell lines were maintained in Dulbecco’s modified Eagle’s medium (DMEM) (high glucose) supplemented with 10% fetal bovine serum (FBS) and 100 μg/ml Normocin at 37°C in a humidified atmosphere with 5% CO₂. Cells were plated in a six-well dish at a density of 1 × 10⁶ cells per well for 2 days and serum starved for 24 h. Cells were incubated with either bortezomib or MG132 for the time indicated in figure legends.

MTT assay
To measure cytotoxicity, cells were plated in a 48-well dish (1 × 10⁶ cells per well). After drug treatment, viable cells were stained with MTT reagents (0.25 mg/ml) for 4 h. Formazan crystals were dissolved with dimethyl sulfoxide, and absorbance at 540 nm was detected by an enzyme-linked immunosorbent assay microplate reader (Tecan, Research Triangle Park, NC). Cell viability was defined relative to untreated control [i.e. viability (% control) = 100 × (absorbance of treated sample)/absorbance of control].

Immunoblot analysis
Immunoblot analyses were performed according to previously published methods (22). Briefly, the cells were lysed in buffer containing 10 mM Tris–HCl (pH 7.1), 100 mM NaCl, 1 mM ethylenediaminetraacetic acid, 10% glycerol, 0.5% Triton X-100, 0.5% Nonidet P-40, 1 mM dithiothreitol and 0.5 mM phenylmethylsulfonyl fluoride, supplemented with a protease inhibitor cocktail (Calbiochem). Proteins of interest were visualized by the ECL chemiluminescence detection kit (Amersham Biosciences, Buckinghamshire, UK).

Establishment of stably transfected cell lines
Huh7 cells were transfected with pCMV or the plasmid encoding for activated mutant of G13L (G13L/Q229L) or G13L/Q12 (G13L/Q226L and G13L,QL), whereas SK-HeP1 cells were transfected with pcDNA3 or a minigene construct expressing the C-terminal peptide of G13L or G13L (CT12 or CT13) using FuGENE®6 transfection reagent (Roche Applied Science, Indianapolis, IN). Stable transfectants were selected by incubating the cells in culture medium containing 500 μg/ml Genetin (G418, Invitrogen, Carlsbad, CA) for Huh7 cells and 1200 μg/ml Genetin for SK-HeP1 cells for 3 weeks. At least 100 NeoR colonies were pooled together to obtain stably transfected cells. Stable MiaPaCa2 cells were established as described previously (23). Briefly, MiaPaCa2 cells were transfected with pcDNA3 or a minigene construct expressing CT12 or CT13 by electroporation. Transfected cells were splitted in DMEM containing 10% FBS plus 400 μg/ml of active G418. As G418-resistant clones were visible, the concentration of G418 was decreased to 200 μg/ml of active G418. At day 14, the clones were isolated individually. When the cells became confluent, the cells were trypsinized and seeded in 100 mm culture dishes.

TUNEL assay
The DeadEnd™ Colorimetric TUNEL System was used to assay apoptotic cell death, according to the manufacturer’s instruction. MiaPaCa2 cells were fixed with 4% paraformaldehyde in phosphate-buffered saline for 25 min at room temperature. Cells were permeabilized with 0.2% Triton X-100 solution in phosphate-buffered saline and then incubated with 0.3% H₂O₂ for 5 min. After equilibrating the cells, each sample was incubated with biotinylated nucleotide mix and terminal deoxynucleotidyltransferase in 100 μl incubation buffer at 37°C for 60 min. The reaction was terminated by adding an equal volume of 125 mM sodium borate buffer (pH 9.0) consisting of 7.5% ethanol. Released fluorogenic AMC was detected at 368 nm excitation and 467 nm emission wavelengths using a fluorometric plate reader (Molecular Devices).

Results

The cytotoxic effects of bortezomib on hepatocellular carcinoma cells
To compare the cytotoxic effects of bortezomib on a panel of human hepatocarcinoma cell lines, we first treated Huh7 and SNU886 cells, or SK-HeP1 and SNU449 cells, which were chosen as representative cell lines of epithelial and mesenchymal origins (25), respectively, with increasing concentrations of bortezomib (0.1–10 μM) for 24 h. The growth inhibition of these cells was measured using MTT assay. Intriguingly, the carcinomas of epithelial cell types (Huh7 and SNU886) displayed greater sensitivity to the toxicity of bortezomib than those of mesenchymal cell types (SK-HeP1 and SNU449) (Figure 1A), displaying heterogeneity in the drug responsiveness. As supportive evidence that this differential effect of bortezomib results from proteasomal inhibition, we also evaluated the effect of MG132, another proteasome inhibitor, on the cell viability. Consistently, MG132 treatment inhibited the viability of Huh7 or SNU886 cells in a concentration-dependent manner but failed to do so in SK-HeP1 or SNU449 cells (Figure 1B).

As part of an effort to determine whether this differential sensitivity of hepatocellular carcinomas to bortezomib is associated with the altered levels of G13L, we next measured the expression of these G proteins. Immuno blot analyses revealed that the expression levels of Gα13L and Gα13 were both distinctly greater in SK-HeP1 or SNU449 cells than Huh7 or SNU868 cells (Figure 1C). Our results suggested that the inhibition of proteasome activity by bortezomib may lead to the lesser cytotoxic sensitivity in mesenchymal type of carcinomas than those of epithelial type and which may be associated with the upregulation of G13L.

The effects of G13L activity modulation on bortezomib-induced cytotoxicity
To associate the activation of G13L with the decreased anticancer effect of bortezomib, the effect of bortezomib was monitored in Huh7...
In this experiment, a decrease in active Gα and their growth inhibition was assessed using MTT assays. With 0.1, 1 or 10 μM bortezomib for 24 h following serum starvation (24 h), their viability was also monitored in the cells that had been stably transfected with CT12 or CT13 minigene (Figure 2B, upper). As expected, minigene inhibition of either Gα12 or Gα13 activity rendered this mesenchymal cell type greatly susceptible to bortezomib (Figure 2B, lower).

Given the previous report that MiaPaCa2 cells were extremely resistant to bortezomib with the IC50 of >10 μM (28), we were tempted to determine whether the resistance of this cell line resulted from alterations in the activity of Gα12/13. As expected, the anticancer effect of bortezomib was not observed in MiaPaCa2 cells at the concentrations from 0.1 to 10 μM. However, these cells exhibited sensitivities to bortezomib after transfection with either Gα12 or Gα13 minigene (Figure 3A). A similar result was obtained with MG132 treatment. We confirmed the altered cytotoxic effect of bortezomib using TUNEL assay; the number of TUNEL-positive cells was significantly increased in the cells that had been stably transfected with CT12 or CT13 minigene (Figure 3B). As an additional link between Gα12/13 activity and bortezomib resistance, we assessed the effect of Gα12QL or Gα13QL transfection on the cell viability; either transfection of CT12-MiaPaCa2 cells with Gα12QL or that of CT13-MiaPaCa2 cells with Gα13QL reversed the sensitivities of these cells to bortezomib (Figure 3C). Collectively, our results that MiaPaCa2 cells exhibited a greater sensitivity to bortezomib after CT12 or CT13 transfection than wild-type cells in conjunction with the reversal by Gα12QL or Gα13QL of the minigenes’ enhancement of cytotoxic sensitivity demonstrate that Gα12/13 contribute to the resistance of cancer cells to bortezomib-induced cytotoxicity.

Decreases in the messenger RNA levels of proteasome subunits by CT12 or CT13

To understand more in depth the inhibitory effects of Gα12/13 on the expression levels of major proteasome subunits, the messenger RNA (mRNA) levels of the catalytic, structural and immunoproteasome subunits of 20S proteasome along with representative subunit genes for 19S and 11S proteasomes were determined in wild-type MiaPaCa2 cells or those transfected with CT12 or CT13. Real-time polymerase chain reaction assay enabled us to identify the significant repression of certain proteasome subunits by CT12, which included PSMB5, MECL-1 and PA28γ (Table I). In contrast, inhibition of Gα12 activity moderately increased the mRNA levels of PSMC4 and 19S component proteasome non-ATPase subunit 1 compared with wild-type control. Moreover, CT13 transfection also repressed PSMB5, PSMB6, MECL-1 and PA28γ transcript levels. Inhibition of Gα13 activity by CT13 also increased the mRNA level of PSMB5. Overall, these results indicate that Gα12 and Gα13 may be overlappingly involved in the regulation of PSMB5, MECL-1 and PA28γ gene expression. In view of the key role of PSMB5 in the mechanism of cancer cell resistance to bortezomib, we next focused on the regulatory effect of Gα12/13 on PSMB5 expression.

PSMB5 repression by bortezomib in cells transfected with CT12 or CT13

To address the downstream regulatory effects of Gα12/13 on PSMB5 expression, we examined time-dependent effects of bortezomib on the PSMB5 transcript levels in wild-type or minigene-transfected MiaPaCa2 cells. In addition to the significant decreases in PSMB5 mRNA by CT12 or CT13 alone, bortezomib treatment further enhanced the ability of CT12 or CT13 to repress PSMB5 mRNA level at 3 h, which was maintained at least up to 12 h posttreatment (Figure 4A). Immunoblottings verified significant decreases in the level of PSMB5 protein in cells transfected with either CT12 or CT13 (Figure 4B). The inhibitory effects of bortezomib on PSMB5 expression could not be assessed by immunoblot assay presumably because of substantial PSMB5 repression by CT12 or CT13 and the low limit of immunoblotting sensitivity.

Next, we assessed the causal relationship between Gα12/13 activity and PSMB5 expression using Gα12QL or Gα13QL. As expected, either Gα12QL transfection of CT12-MiaPaCa2 cells or Gα13QL transfection of CT13-MiaPaCa2 cells significantly increased PSMB5 protein levels (Figure 4C). Our results demonstrate that the activation...
of Gx12/13 upregulates PSMB5 and that either Gx12 or Gx13 inhibition by minigene enhances the ability of bortezomib to repress PSMB5.

Inhibition of proteasome activities by bortezomib in combination with CT12 or CT13

Because CT12 or CT13 not only inhibited the expression of catalytic subunit of 20S proteasome but also did that of PA28α, a 11S proteasome, we finally investigated whether CT12 or CT13 led to inhibition of proteasome activities toward the fluorogenic substrates, N-Suc-LLVY-AMC, Z-LLE-AMC and Z-ARR-AMC, which represent chymotrypsin-like, caspase-like and trypsin-like peptidase activities, respectively. Transfection with CT12 resulted in significant decreases in chymotrypsin-like or caspase-like peptidase activities, which were comparable with those accomplished by CT13 transfection (Figure 5). It is also noteworthy that CT13 transfection was more effective in decreasing trypsin-like peptidase activity than CT12 transfection (Figure 5).

Bortezomib primarily targets the chymotrypsin-like activity by inhibiting PSMB5. As expected, we observed that bortezomib effectively inhibited chymotrypsin-like peptidase activity. Moreover, CT12 transfection greatly promoted the ability of bortezomib to inhibit chymotrypsin-like peptidase activity but that of CT13 only marginally increased it. Since bortezomib efficaciously inhibited the caspase-like peptidase activity, additional effect of CT12 or CT13 on the inhibition was minimal. In addition, bortezomib caused no significant change in inhibiting trypsin-like peptidase activity in minigene-transfected cells compared with wild-type ones. Overall, our results demonstrate that the inhibition of Gx12 or Gx13 resulted in the repression of proteasome activities in cancer cells resistant to bortezomib.

Discussion

The clinical results of bortezomib therapy in patients with solid malignancies are insufficient for its introduction into clinical practice (29). So, further studies are necessary to reach a clearer understanding of the relevance of bortezomib in the therapy of solid tumors. In particular, hepatocellular carcinoma is ranked the fifth most common cancer worldwide and is a highly malignant tumor that displays resistance to conventional cytostatic agents (30,31). Despite improvement in surgical techniques and operative management, the long-term outcome is unsatisfactory. Hence, advanced disease stages urgently require alternative treatment strategies that focus on targeting pathways in tumor development and maintenance (32). One potential target is the turnover of proteins; certain cancers are exquisitely prone to undergo apoptosis by inhibiting the ubiquitin–proteasome pathway (1).

Targeting the ubiquitin–proteasome pathway by inhibiting the catalytic site of the 26S proteasome is a novel approach for cancer therapy. Bortezomib inhibits chymotrypsin-like activity in proteasome, a rate-limiting step in the proteolysis of intracellular ubiquitinated proteins. Preclinical data have proved useful in identifying several of the biological processes implicated in the action of bortezomib, including cell cycle arrest at the G2/M phase, cyclin B1 accumulation, increased CDC2/cyclin-dependent kinase 1 activity, p21 upregulation, apoptosis induction, and microvessel density reduction (33,34). The effect of bortezomib on cell cycle arrest may also be due to a protein-proteolytic activity (35). The non-proteolytic proteasomal activity unperturbed after bortezomib therapy may affect the equilibrium of the proteasome action, explaining in part an indirect or side effect of bortezomib.

In a phase III trial, it exhibited an antitumor effect in relapsed multiple myeloma patients (36); response rate, time to progression and overall survival were improved in patients treated with bortezomib plus dexamethasone. However, resistance to bortezomib may be a major challenge. A phase II trial in patients with refractory relapsed multiple myeloma demonstrated 35% responses (37); however, a large fraction of patients (i.e. 65%) failed to respond to bortezomib. A previous study proposed overexpression of heat-shock proteins with bortezomib resistance in lymphoma cells (14). Interleukin-6 and insulin-like growth factor may help promote cell growth and cause resistance to bortezomib (14).

It is now recognized that variable apoptotic sensitivity exists in response to bortezomib therapy, which may be due to differences in...
Fig. 3. The cytotoxicity of bortezomib (BZ) in MiaPaCa2 cells. (A) The cytotoxicity of bortezomib (0.1, 1 or 10 µM; for 24 h) or MG132 (0.5, 1 or 5 µM; for 24 h) was assessed using MTT assays in MiaPaCa2 cells that had been stably transfected with Gα12 or Gα13 minigene (CT12 or CT13). Data represent the mean ± SE of three independent experiments (*P < 0.05, **P < 0.01, significant compared with wild-type cells treated with bortezomib or MG132 at respective concentrations). (B) Apoptosis was monitored in situ using TUNEL assays in the MiaPaCa2 cells that had been treated with 10 µM bortezomib for 24 h. (C) The effects of Gα12QL or Gα13QL transfection on the cytotoxicity of bortezomib to CT12-MiaPaCa2 or CT13-MiaPaCa2 were assessed using MTT assay. Data represent the mean ± SE of three independent experiments (**P < 0.01, significant compared with vehicle-treated control).

Table I. The relative mRNA levels of proteasome subunits in MiaPaCa2 cells or those transfected with CT12 or CT13

<table>
<thead>
<tr>
<th>Genes</th>
<th>Wild-type</th>
<th>CT12</th>
<th>CT13</th>
</tr>
</thead>
<tbody>
<tr>
<td>20S proteasome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalytic subunit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSMB5</td>
<td>1.00 ± 0.05</td>
<td>0.66 ± 0.08**</td>
<td>0.65 ± 0.10**</td>
</tr>
<tr>
<td>PSMB6</td>
<td>1.00 ± 0.28</td>
<td>0.83 ± 0.29</td>
<td>0.77 ± 0.13*</td>
</tr>
<tr>
<td>PSMB7</td>
<td>1.00 ± 0.21</td>
<td>1.58 ± 0.39</td>
<td>2.14 ± 0.68**</td>
</tr>
<tr>
<td>Structural subunit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSMA1</td>
<td>1.00 ± 0.33</td>
<td>1.68 ± 0.53</td>
<td>1.61 ± 0.66</td>
</tr>
<tr>
<td>PSMA4</td>
<td>1.00 ± 0.15</td>
<td>1.04 ± 0.28</td>
<td>1.13 ± 0.18</td>
</tr>
<tr>
<td>PSMC4</td>
<td>1.00 ± 0.11</td>
<td>1.57 ± 0.24*</td>
<td>1.59 ± 0.43</td>
</tr>
<tr>
<td>Immunoproteasome subunit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMP2</td>
<td>1.00 ± 0.12</td>
<td>1.06 ± 0.32</td>
<td>0.74 ± 0.29</td>
</tr>
<tr>
<td>LMP7</td>
<td>1.00 ± 0.11</td>
<td>0.86 ± 0.63</td>
<td>0.67 ± 0.27</td>
</tr>
<tr>
<td>MECL-1</td>
<td>1.00 ± 0.45</td>
<td>0.54 ± 0.12**</td>
<td>0.67 ± 0.20*</td>
</tr>
<tr>
<td>19S proteasome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPNI</td>
<td>1.00 ± 0.30</td>
<td>1.98 ± 0.08**</td>
<td>1.15 ± 0.13</td>
</tr>
<tr>
<td>11S proteasome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA28x</td>
<td>1.00 ± 0.07</td>
<td>0.29 ± 0.02**</td>
<td>0.40 ± 0.07**</td>
</tr>
</tbody>
</table>

LMP, low molecular mass polypeptide; RPNI, proteasome non-ATPase subunit 1.

Data represent the mean ± SE of three independent experiments (*P < 0.05, **P < 0.01, significant compared with WT MiaPaCa2 cells).
the expression levels of proteasome subunits or their mutations. Importantly, several lines of evidence suggest that PSMB5 could contribute to bortezomib resistance. Study of the molecular mechanism of bortezomib resistance in human myelomonocytic cells suggested: (i) PSMB5 overexpression in resistant cells, (ii) mutation residing in a highly conserved bortezomib-binding pocket in PSMB5 and (iii) restoration of bortezomib sensitivity of resistant cells by PSMB5 knockdown (11). The important role of PSMB5 in bortezomib resistance is supported by the increased resistance by PSMB5 overexpression (10). The G322A mutant of PSMB5 gene conferred bortezomib resistance in Jurkat cells, causing decreased cytotoxicity, apoptosis and inhibition of chymotrypsin-like activity (12). Mutations of the PSMB5 gene in Ala49 and Ala50 also confer varying bortezomib resistance (12).

The activated forms of Ga12/13 induce a variety of biological responses including promotion of cancer cell invasion and metastasis (19,20,38): inhibition of Ga12/13 signaling by the regulator of G-protein signaling homology domain of p115RhoGEF reduced the rate of metastatic dissemination of mammary carcinoma cells. Rho activation through Ga12/13 may be critical for cancer invasion. Signaling via the Ga12-Rho pathway may coordinate with that from cadherin to promote invasion away from the primary tumor; Ga12/13 negatively regulate the adhesive function of cadherin (39).

In another study, the Ga12/13-RhoA-ROCK pathway mediates the autophosphorylation of lysophosphatidic acid-induced focal adhesion kinase and thus contributes to ovarian cancer cell migration (38). In particular, lysophosphatidic acid activates GPCRs that regulate cascades initiated by small GTPases Ras for tumor cell migration and invasion (40). The observation that lysophosphatidic acid acyltransferase-β inhibitors induce cytotoxicity of multiple myeloma cells in patient resistant to bortezomib (41) implies that the pathways may be utilized for overcoming resistance. Ga12 members serve modulators or signal transducers in diverse signaling pathways. Although Ga12/13 act as modulators or signal transducers, it is yet to be elucidated whether alterations in Ga12/13 expression affect the anticancer activity of bortezomib. In the present study, hepatoma cell lines displayed differential sensitivity to bortezomib in association with altered Ga12 and Ga13 levels, which might affect the expression of proteasome subunits and peptidase activities. Moreover, Ga12/13 levels were much greater in SK-Hep1 or SNU449 cells than Huh7 or SNU886 cells, supporting

![Enhancement of bortezomib cytotoxicity by Ga12/13 repression](image)

Fig. 4. Repression of PSMB5 by Ga12 or Ga13 minigene. (A) The mRNA levels of PSMB5 were measured using real-time polymerase chain reaction assay in CT12-MiaPaCa2 or CT13-MiaPaCa2 cells that had been treated with 10 μM bortezomib (BZ) for the indicated time period. The relative mRNA levels were normalized by those of hypoxanthine–guanine phosphoribosyltransferase. Results were confirmed by repeated experiments (\(P < 0.05, \quad **P < 0.01, \quad \text{significant compared with wild-type cells treated with bortezomib at respective concentrations} \)). (B) The expression levels of PSMB5 protein were immunochemically monitored in the lysates of wild-type MiaPaCa2, CT12-MiaPaCa2 or CT13-MiaPaCa2 that had been treated with 10 μM bortezomib for 12 h. Immunoblottings for β-tubulin confirmed equal loading of samples. The relative levels of PSMB5 were assessed by scanning densitometry of the blots. Data represent the mean ± SE of three independent experiments (\(P < 0.05, \quad **P < 0.01, \quad \text{significant compared with untreated wild-type MiaPaCa2 cells} \)). (C) The expression levels of PSMB5 were immunochemically monitored in the lysates of CT12-MiaPaCa2 or CT13-MiaPaCa2 that had been infected with Ad-LacZ, Ad-Ga12QL or Ad-Ga13QL (6 h). Data represent the mean ± SE of three independent experiments (\(P < 0.05, \quad **P < 0.01, \quad \text{significant compared with LacZ transfection} \)).
Pancreatic cancer is the fourth leading cause of cancer death in the USA. The prognosis of patients after complete resection is poor, and >50% of patients develop tumor recurrence at distant sites, with an estimated 5 year survival of 20% (43). However, the clinical response rate of standard chemotherapeutic agent (e.g. gemcitabine) is modest due to the chemoresistance in pancreatic cancer (44). MiaPaCa2 is a human pancreatic adenocarcinoma with a mesenchymal phenotype (45); in our preliminary study, we observed that G12/13 levels were upregulated in the cell (data not shown). Moreover, MiaPaCa2 cells were extremely insensitive to bortezomib (28) and were resistant to other chemotherapeutic agents, including gemcitabine, 5-fluourouracil and cisplatin, possibly in part because of an inverse correlation between E-cadherin and its transcriptional suppressor, Zeb-1, expression (46). Our data showing increased G12/13 expression in MiaPaCa2 cells and their enhanced sensitivity to bortezomib by minigene inhibition of G12/13 suggest that resistance of pancreatic cancer to bortezomib (or possibly other agents) may be associated with G12/13 expression levels.

Our result here identified PSMB5 upregulation in cells with high levels of G12/13. The role of G12/13 in regulating PSMB5 was strengthened by PSMB5 repression in MiaPaCa2 cells transfected with CT12 or CT13. This hypothesis is further supported by the reversal of PSMB5 repression by the reintroduction of G12/13. These results together with the observation that G12/13 overexpression allowed CT12- or CT13-transfected MiaPaCa2 cells to restore bortezomib resistance, verify the regulatory role of G12/13 in proteasome function and consequent changes in bortezomib sensitivity. The notable reduction of chymotrypsin-like activity by CT12 or CT13 also supported this contention. Moreover, other proteasome subunits such as PSMB6 and PA28γ were also repressed in the cells transfected with CT12 or CT13. At this time point, it has not been clearly identified as to the role of 11S complex in the function of 20S proteasome. However, a recent report showed that the 11S complex is more abundant than the 19S in HeLa cells and it is associated with 20S as well as 26S hybrid proteasome (47). This finding may account for the reduced activities in trypsin-like and caspase-like peptidases in the CT12- or CT13-transfected cells. Factors involved in the regulation of proteasome subunit expression have not been fully identified. In several reports, proteasome subunits are coordinately regulated, and yeast transcription factor Rpn4 and eukaryotic transcription factor Nrf2 upregulate them upon stress conditions (24,48). Since G12/13 pathway associates with divergent cell signaling such as mitogen-activated kinases and non-receptor tyrosine kinases (49), activated G12/13 signaling in cancer cells may affect the expression level of the proteasome system by regulating signaling components and/or transcription factors. Overall, it is highly probably that G12/13 regulates chymotrypsin-like activity by inducing PSMB5, which may account for bortezomib resistance in mesenchymal cancer cells.

Epithelial-to-mesenchymal transition occurs in a number of diseases such as the progression of cancer (50) and is defined as the formation of mesenchymal cells from epithelium. At the molecular level, it is characterized by the loss of epithelial cell markers such as E-cadherin and the gain of mesenchymal markers. The disassembly of adherens junctions increases tumor cell motility and invasiveness, the acquisition of epithelial-to-mesenchymal transition features may be associated with chemoresistance, enhancing recurrence and metastasis after standard chemotherapy. In our study, G12/13QL or G12/13QtL overexpression increased cancer aggressiveness. Moreover, morphology of Huh7 cells was also altered by G12/13QL or G12/13QtL: epithelial-like, large, flat and spread-out appearance of the cells changed to rounded, bipolar, spindle-shaped and more fibroblastoid appearance. Likewise, the rate of cell migration was pronounced in Huh7 cells stably transfected with G12/13QL or G12/13QtL (data not shown). These phenotypic and functional changes may be associated with the resistance of mesenchymal cancer cells to bortezomib.

In conclusion, our results demonstrate that the inhibition of G12/13 may enhance the anticancer effect of bortezomib, and which is mediated with the repression of proteasome subunits including PSMB5, providing insight into the G12/13 pathways for the regulation of
proteasomal activity and applications of these molecules as potential targets for cancer chemotherapy. Furthermore, targeted inhibition of Gα12/13 pathway by minigene transfection may be of use to improve bortezomib therapy and reduce bortezomib resistance.

Funding
World Class University project (Ministry of Education, Science and Technology Development) (R32-2009-000-10098-0) and the National Research Foundation of Korea (MEST No. 2010-0001706) funded by the government of Korea.

Acknowledgements
Conflict of Interest Statement: None declared.

References

Enhancement of bortezomib cytotoxicity by Gα12/13 repression