ETS1 transcriptional activity is increased in advanced prostate cancer and promotes the castrate-resistant phenotype

A.M. Smith, V.J. Findlay, S.G. Bandurraga, E.Kistner-Griffin, L.S. Spruill, A.Liu, A.R. Golshayan and D.P. Turner*

Department of Pathology and Laboratory Medicine, 1Department of Medicine, 2Hollings Cancer Center and 3Division of Hematology and Oncology, Medical University of South Carolina, Charleston, SC 29425, USA. Tel: Room RS308, Medical University of South Carolina, 39 Sabin Street, Charleston, SC 29425, USA. Tel: +1 843 792 8011; Fax: +1 843 792 2666; Email: turmerda@musc.edu

Advanced disease accounts for the majority of prostate cancer-related deaths and androgen deprivation therapy (ADT) is the standard of care for these patients. Many patients undergoing ADT become resistant to its effects and progress to castrate-resistant prostate cancer (CRPC). Current therapies for CRPC patients are inadequate, with progression-free survival rates as low as 2 months. The molecular events that promote CRPC are poorly understood. ETS (v-ets erythroblastosis virus E26 oncogene) transcription factors are regulators of carcinogenesis. Protein levels of the archetypical ETS factor, ETS1, are increased in clinical and latent prostate cancer relative to benign prostatic hyperplasia and normal prostate to promote multiple cancer-associated processes, such as energy metabolism, matrix degradation, survival, angiogenesis, migration and invasion. Our studies have found that ETS1 expression is highest in high-grade prostate cancer (Gleason 7 and above). Increased ETS1 expression and transcriptional activity promotes an aggressive and castrate-resistant phenotype in immortalized prostate cancer cells. Elevated AKT (v-akt murine thymoma viral oncogene homolog) activity was demonstrated to increase ETS1 protein levels specifically in castrate-resistant cells and exogenous ETS1 expression was sufficient to rescue invasive potential decreased by inhibition of AKT activity. Significantly, targeted androgen receptor activity altered ETS1 expression, which in turn altered the castrate-resistant phenotype. These data suggest a role for oncogenic ETS1 transcriptional activity in promoting aggressive prostate cancer and the castrate-resistant phenotype.

Introduction

Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer death among men in the western world (1). Despite issues with overdiagnosis, prostate-specific antigen (PSA) screening has improved early detection methods and has led to the identification of thousands of men with localized prostate cancer that can be treated by prostatectomy and/or radiation treatment (2,3). However, there is a growing acceptance of initial active surveillance as opposed to definitive therapy in men with localized prostate cancer. This is because many men with prostate cancer have asymptomatic indolent disease that does not require immediate treatment (3). The optimum criteria for the identification of such men remain to be defined. However, a substantial number of patients treated for localized disease progress to an advanced stage or are already at an advanced stage at time of diagnosis (4,5). Advanced disease accounts for the majority of prostate cancer-related deaths and is a result of lymphatic, local or contiguous spread. Androgen deprivation therapy (ADT) (medical castration, bilateral orchectomy or both) targets androgen receptor (AR) activity by reducing available ligand (the hormone androgen) and is the standard of care for men with advanced prostate cancer (4,5). ADT decreases PSA levels, promotes tumor regression and improves patient symptoms (6). However, many patients undergoing ADT become resistant to its effects and progress to castrate (androgen/hormone)-resistant prostate cancer (CRPC). Despite the recent additions of several new agents, treatment strategies for patients with CRPC are inadequate, with progression-free survival rates as low as 2 months (6–8). The molecular events that augment the change from castrate-sensitive prostate cancer to CRPC are poorly understood but AR activity is thought to remain critical through the regulation of alternative gene sets to that observed in castrate-sensitive prostate cancer (9). Mechanisms mediating restoration of AR transcriptional activity in CRPC are thought to include (i) enhanced AR sensitivity to ligand; (ii) AR mutations which increase the AR ligand repertoire; (iii) activation by alternative signaling pathways; (iv) AR overexpression; (v) local tumor androgen production; (vi) intrinsic cell resistance and (vii) increased regulatory cofactor recruitment (10,11).

Mounting evidence associates members of the ETS (v-ets erythroblastosis virus E26 oncogene) family of transcription factors with prostate cancer progression as well as AR transcriptional activity (11). Whole-genome analysis in immortalized prostate cancer cells demonstrates that ~70% of androgen response elements are adjacent to ETS consensus binding sites within gene promoters (12). AR–ETS transcriptional coregulation has been shown to regulate cancer-associated genes, such as members of the matrix metalloproteinase family (13,14), NKX3.1 (15), PTHR1 (16), CCNG2 (12) and PSA (17). An analysis of over 14 000 molecular concepts identifies elevated ETS factor expression as a critical transition point at different stages of prostate cancer progression (18). Additionally, prostate cancer-specific chromosomal rearrangements between ETS family members (ERG, EZT1 and ETV4) and the androgen-responsive TMPRSS2 gene have been identified (19,20). In CRPC, ERG regulated trefoil 3 (TFF3) expression is a potential mechanism promoting tumor cell aggressiveness resulting from ERG rearrangements (21).

This study examines the contribution of the archetypical ETS factor ETS1 to prostate cancer progression and the castrate-resistant phenotype. ETS1 levels are increased in epithelial tumors, leukemia’s, astrocytomas and sarcomas (22,23) and are increased in clinical and latent prostate cancer relative to benign prostatic hyperplasia and normal prostate (24). Thus, ETS1 represents a potential marker of poor prognosis (25–28). Increased ETS1 activity is associated with aberrant transcriptional regulation of multiple cancer-associated genes which can result in enhanced energy metabolism, cell survival, matrix degradation, cell growth, angiogenesis as well as migration and invasion (23,24,29). ETS1 activity has recently been associated with the castrate-resistant phenotype. Angiogenesis is increased in CRPC through increased levels of angiogenin II type-1 receptor expression (30,31). ETS1 is a direct regulator of angiogenin II and in castrate-resistant cells specifically, angiogenin II type-1 receptor therapeutic blockade inhibits angiogenesis through, at least in part, an inhibition of ETS1 expression (32).

This study demonstrates that ETS1 expression is highest in high-grade prostate cancer. In vitro, ETS1 expression and nuclear phosphorylation correlated with both aggression and the castrate-resistant phenotype in the lymph-node carcinoma of the prostate (LNCaP) model of prostate cancer progression. In the same model, elevated AKT (v-akt murine thymoma viral oncogene homolog) activity increased ETS1 protein levels preferentially in castrate-resistant cells and exogenous ETS1...
expression rescued invasive potential when AKT activity was pharmacologically inhibited. Targeted AR activity altered ETS1 expression levels in immortalized cells. Significantly, modulated ETS1 expression altered the castrate-resistant response to AR antagonist treatment. In combination, these data strongly suggest a role for ETS1 transcriptional activity in promoting aggressive prostate cancer and the castrate-resistant phenotype.

Materials and methods

Tumor samples

Upon Institutional Review Board approval, DNA extracted from a cohort of 32 de-identified fresh frozen human prostate cancer tumor samples were obtained from the Hollings Cancer Center Tissue Biorepository here at the Medical University of South Carolina (MUSC). DNA concentration and integrity was monitored using an Agilent 2100 Bioanalyzer. Samples were divided into 16 low-grade (Gleason 4–6) and 16 high-grade (Gleason 7–9) groupings. Four normal prostate tissue samples were also obtained as controls. A subset of matching tissue samples were also obtained for immunohistochemical (IHC) studies. Prostate cancer tissue microarray slides containing 5× normal, 1× Gleason 3, 3× Gleason 4, 5× Gleason 5, 5× Gleason 6, 5× Gleason 7, 1× Gleason 8, 2× Gleason 9 and 2× Gleason 10 prostate tissue samples were obtained from US Biomax (Rockville, MD).

Cell culture

LNCaP prostate cancer progression cell lines consisting of the LNCaP parental line, LNCaP C4 (C4), LNCaP C4-2 (C4-2) and LNCaP C4-2B (C4-2B) were recently obtained from ViroMed (Minnetonka, MN) and cultured in the recommended media (33,34). Stocks were immediately generated and stored in liquid nitrogen. Cells were only cultured up to 30 passages before being replaced from low passage stocks. All cell lines were propagated at 37°C in an atmosphere containing 5% CO2. Mycoplasma-negative cultures were confirmed by PCR testing prior to investigations. Cells were monitored throughout for consistent morphology and doubling-time. Castrate-resistant LNCaP cells were developed by repeated passage in phenol red-free growth media containing 10% charcoal stripped fetal bovine serum (Invitrogen, Carlsbad, CA).

Immunohistochemistry

All tissue specimens obtained from the MUSC biorepository were formalin-fixed and paraffin-embedded. Samples/slides were rehydrated and antigen retrieval was performed by heating in a microwave in 10 mM citrate, pH 6.0 for 30 min. Endogenous peroxidase activity was blocked using 0.3% H2O2 in methanol for 30 min. Sections were washed and non-specific binding was blocked using the Vectastain Elite ABC kit (Vector Laboratories, Burlingame, CA) as instructed; then incubated overnight at 4°C with a target-specific primary antibody at a 1:100 dilution in the Vectastain blocking solution. ETS1 primary antibody used for IHC was from Leica Biosystems (Chicago, IL). Overnight incubation at 4°C was followed by three 10 min washes in Tris-buffered saline. Tissue staining was performed using the Vectastain® Elite ABC peroxidase-based detection system and the Vector NovaRed substrate kit for peroxidase (Vector Laboratories) as per manufacturer’s instructions. All sections were examined using an Olympus BX50 microscope and pictures were taken using an Olympus DP 70 camera connected to DP Controller software (Olympus, Center Valley, PA). Tissues were scored for intensity of staining and percent of specific staining of the cancer cells. The overall IHC score was calculated by multiplying the intensity score by the percent (% of positive cells [IHC score = (intensity) × % positive cells]) (35).

Real-time PCR analysis

One microgram of total RNA was reverse transcribed in a 20 μl reaction using iScript (Bio-Rad, Hercules, CA). Real-time PCR was performed with 5 μl of a 1:20 dilution of reverse transcribed complementary DNA using Roche SYBR Green qPCR master mix in a LightCycler480 (Roche, Nutley, NJ), as per the manufacturer’s instructions. The cycling conditions for all genes were recommended and phosphorylated), ETS1 pThr38 and ETS1 pSer282/285 localization was determined and phosphorylated mutants of ETS1 (T38A and T38E—a kind gift from Dr Dennis Watson, Department of Pathology and Laboratory Medicine, MUSC) was transfected into LNCaP cells using Nanojuice transfection reagent (EMD, Gibbstown, NJ) and incubated in normal growth media for 48 h. Transient transfection of phosphorylation mutants of ETS1 (T38A and T38E—a kind gift from Dr Dennis Watson, MUSC) were also performed in the same manner. Stable pools of LNCaP cells expressing pcDNA-ETS1 were generated by repeated growth in media containing 300 μg/ml neomycin. To transiently reduce ETS1 expression, 50 nM of Stealth small interfering RNA (siRNA) primers specific for ETS1 or scrambled control (Qiagen, Valencia, CA) were transfected using Xtreme gene transfection reagent (Roche) and incubated in normal media for 48 h. C4-2-pooled cells stably expressing a short hairpin RNA (shRNA) vector, targeting ETS1 (pUSH-ETS1; Origene, Rockville, MD), were generated by repeated selection in 1 μg/ml puromycin as per the vector manufacturer’s instructions. For AKT1 exogenous expression, 1 μg of pBabe-AKT1 construct expressing myristoylated AKT (a kind gift from Dr Carola Neumann, Department of Pharmacology, MUSC) was also transfected using Nanojuice transfection reagent (EMD) as detailed above. Knockdown and overexpression levels were monitored by western blot analysis. Western blot analysis

LNCaP cell lines were used for isolation of total protein. Cells at 70–80% confluence were washed twice with ice-cold 1× phosphate-buffered saline and were lysed in RIPA buffer containing protease/phosphatase inhibitors (Sigma, St Louis, MO). Equal amounts of total protein (50 μg) were resolved by 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis and transferred to western blotting membranes using Enhanced chemiluminescence system (Pierce–Fisher Scientific, Rockford, IL). Total protein lysates were examined for total ETS1 (C20; Santa Cruz, Santa Cruz, CA), ETS1 Thr38 and ETS1 Ser282/285 (Invitrogen) and AR (N20;Santa Cruz). GAPDH was used as a loading control (Cell Signaling Technology, Danvers, MA).

Modulation of ETS1 and AKT expression

For transient ETS1 expression, 1 μg of pcDNA3-ETS1 construct containing the full ETS1 open reading frame (a kind gift from Dr Dennis Watson, Department of Pathology and Laboratory Medicine, MUSC) was transfected into LNCaP cells using Nanojuice transfection reagent (EMD, Gibbstown, NJ) and incubated in normal growth media for 48 h. Transient transfection of phosphorylation mutants of ETS1 (T38A and T38E—a kind gift from Dr Dennis Watson, MUSC) were also performed in the same manner. Stable pools of LNCaP cells expressing pcDNA-ETS1 were generated by repeated growth in media containing 300 μg/ml neomycin. To transiently reduce ETS1 expression, 50 nM of Stealth small interfering RNA (siRNA) primers specific for ETS1 or scrambled control (Qiagen, Valencia, CA) were transfected using Xtreme gene transfection reagent (Roche) and incubated in normal media for 48 h. C4-2-pooled cells stably expressing a short hairpin RNA (shRNA) vector, targeting ETS1 (pUSH-ETS1; Origene, Rockville, MD), were generated by repeated selection in 1 μg/ml puromycin as per the vector manufacturer’s instructions. For AKT1 exogenous expression, 1 μg of pBabe-AKT1 construct expressing myristoylated AKT (a kind gift from Dr Carola Neumann, Department of Pharmacology, MUSC) was also transfected using Nanojuice transfection reagent (EMD) as detailed above. Knockdown and overexpression levels were monitored by western blot analysis.

Transwell migration and invasion assays

Transiently transfected LNCaP cells expressing exogenous ETS1 or C4-2 cells, treated with ETS1-specific siRNA, were seeded in triplicate into the upper chamber of transwell inserts (BD Biosciences, San Diego, CA) either uncoated (for migration assessment) or precoated with matrigel (for invasion assessment) (Thermo Fisher Scientific, Hudson, NH) in serum-free media at a density of 100 000 cells per well. Media containing 10% serum was placed in the lower chamber to act as a chemoattractant, and cells were further incubated for 48 h. Control cells consisted of cells transiently transfected with control vector or scrambled siRNA, respectively. Non-invasive cells were removed from the upper chamber by scraping and the cells remaining on the lower surface of the insert were stained using Diff-quick (Dade Behring, Newark, DE). Cells were quantified as the number of cells found in 10 random microscope fields. Error bars represent the standard deviation from three separate experiments.

Soft agar assay

Stable cells with exogenous or reduced ETS1 expression were used to analyze contact-independent growth. Two milliliters of 0.6% agarose in 2× Dulbecco’s modified Eagle’s medium were plated in each well of a six-well plate and left to set for 20 min. This layer was overlaid with 1.0 ml Dulbecco’s modified Eagle’s medium. Cells were incubated as normal for 14 days and the colonies were counted.

Western blot analysis

LNCaP cells were seeded onto sterile cover-slips (18 mm in diameter) coated with 5 μl/ml fibronectin and allowed to attach overnight. Cells were fixed with 2% formaldehyde, permeabilized with 0.1% Triton X-100 and blocked in 2% bovine serum albumin for 1 h at room temperature. Total ETS1 (unphosphorylated and phosphorylated), ETS1 Thr38 and ETS1 Ser282/285 localization was examined using the antibodies detailed above and visualized using appropriate Alexa Fluor secondary antibodies (Invitrogen). TO-PRO was used as a nuclear stain (Invitrogen) and phalloidin (Invitrogen) was used to stain actin.

Immunofluorescence

Cells were seeded onto sterile cover-slips (18 mm in diameter) coated with 5 μl/ml fibronectin and allowed to attach overnight. Cells were fixed with 2% formaldehyde, permeabilized with 0.1% Triton X-100 and blocked in 2% bovine serum albumin for 1 h at room temperature. Total ETS1 (unphosphorylated and phosphorylated), ETS1 Thr38 and ETS1 Ser282/285 localization was examined using the antibodies detailed above and visualized using appropriate Alexa Fluor secondary antibodies (Invitrogen). TO-PRO was used as a nuclear stain (Invitrogen) and phalloidin (Invitrogen) was used to stain actin.
Immunofluorescence was examined using an Olympus IX70 confocal microscope and accompanying software.

Pharmacological treatment

Cells were seeded 50,000 in each well of a six-well plate and allowed to attach overnight. The following day, cells were treated with 1 nM R1881 (Perkin Elmer, San Jose, CA), 10 μM LY294002 or 10 μM U0126 (Cell Signaling Technology), respectively. Cells were incubated for 24 h before collection and analysis.

Co-immunoprecipitation assays

ETS1–AR protein interaction was investigated using Invitrogen’s Dynabead Co-IP kit as per instructions using Dynabead cross-linked C20 ETS1 antibody for immunoprecipitation and N20 AR antibody for western blot (Santa Cruz).

Cell viability assays

Stable cells with exogenous or reduced ETS1 expression were used for analysis in cell viability assays. Cells were trypsinized and 50,000 seeded into individual wells on a six-well plate and allowed to attach overnight. Cells were treated with 10 nM Flutamide (Sigma) for 72 h. Drug was replaced every 24 h after which cell growth medium was isolated to collect dead and unattached cells and the attached cells trypsinized and combined with the growth medium. The combined cell lysate was then centrifuged at 2500 r.p.m. to collect the cell pellet containing both dead and viable cells. Cells were resuspended in 250 μl of 1× phosphate-buffered saline and 10 μl was stained with trypan blue and loaded onto a counting chamber. Dead and viable cells were quantified in triplicate using a Countess Cell Counter (Invitrogen). Graphs represent the results from three experiments with three individual pooled stable clones.

Statistical analysis

For statistical testing, two-sample unpaired Student’s t-tests were calculated. In general, P < 0.05 was considered statistically significant. Error bars represent standard deviations of independent experiments unless indicated otherwise.

Results

ETS1 levels are elevated in high-grade human prostate cancer tissues

Human prostate cancer tissue samples were divided into 16 low-grade (Gleason 5 and 6) and 16 high-grade (Gleason 7–9) groups. Four normal prostate samples were also analyzed as controls. Reverse transcription–PCR analysis shows a significant increase in ETS1 messenger RNA (mRNA) levels in high Gleason grade tumors compared with low Gleason grade (Figure 1A and B). Similar ETS1 expression levels were observed for normal prostate and low Gleason grade tumors, and elevated ETS1 protein levels in high-grade tumors were confirmed in a subset of corresponding tumor samples by IHC (Supplementary Figure 1 is available at Carcinogenesis Online). ETS1 protein expression levels were also analyzed by tissue microarray analysis and confirmed increased ETS1 expression in high-grade prostate cancer (Figure 1C). Compared with normal prostate, no statistical difference in ETS1 staining was observed in Gleason 3, 4 or 5 tumor samples (Figure 1C and D). However, a statistically significant increase in ETS1 staining intensity was observed in high-grade tumor samples of Gleason 7 (4/5), 9 (1/2) and 10 (2/2) (Figure 1C) but not in the single grade 8 tumor sample on the slide (Figure 1C). When present, positive ETS1 staining in normal and low-grade tumor samples (Gleason 3–6) was mainly confined to the stromal compartment but was predominantly nuclear in the higher grade samples (see insets Figure 1D).

Increased ETS1 levels correlate with aggression and castrate resistance in the LNCaP progression model

The four cell lines comprising Leland Chung’s LNCaP progression model reflect increasing invasive/metastatic ability and the castrate-sensitive (LNCaP) and castrate-resistant (C4, C4-2 and C4-2B) phenotypes (33,34). To establish an in vitro model for examining ETS1 function, ETS1 mRNA and protein levels were examined in all four cell lines by real-time PCR and western blot analysis, respectively. Increasing PSA mRNA levels (Figure 2A) and slightly reduced AR protein levels (Figure 2B) are characteristics for this progression model (36). ETS1 mRNA levels were elevated in all three derivative cell lines compared with LNCaP. Highest mRNA levels were observed in the C4 cell line (Figure 2A) but this was not reflected at the protein level. However, we observed a moderate but robust increase in ETS1 protein expression in the two most aggressive castrate-resistant cell lines (1.7-fold in C4-2 and 2.8-fold in C4-2B) compared with the LNCaP parental (Figure 2B).

To assess the contribution of ETS1 activity to the aggressive phenotype, we examined the effect of targeting ETS1 expression in the LNCaP parental and C4-2 subline. ETS1 was exogenously expressed in LNCaP cells transfected with pcDNA3-ETS1 vector (Figure 2C, left) and ETS1 levels reduced in C4-2 cells transiently transfected with siRNA (Figure 2C, middle) or stably transfected with shRNA vector (Figure 2C, right) targeting ETS1. Compared with controls, we observed an ∼12-fold increase and ∼8-fold decrease in ETS1 expression 48 h post-transfection (Figure 2C). In transwell invasion assays through matrigel-coated inserts, exogenous ETS1 expression in the LNCaP parental line increased invasive capacity to levels comparable with the more invasive C4-2 subline (Figure 2D). siRNA targeting of ETS1 expression in C4-2 reciprocally reduced invasive capacity to levels similar to that observed for parental LNCaP cells (Figure 2D). Although modulated ETS1 expression does affect cell viability at the 72 h time-point (as shown in Figure 6), this was statistically insignificant at the 48 h time-point used in the invasion assays (results not shown).

Although cells cannot invade without motile function, conformation of the ability of ETS1 to stimulate cellular migration was confirmed in Transwell migration assays (Supplementary Figure 2A is available at Carcinogenesis Online). Once again increased ETS1 expression promoted and loss of ETS1 expression inhibited the migratory ability of LNCaP and C4-2 cells, respectively. C4 cells did not demonstrate increased ETS1 protein levels compared with the parental LNCaP cell line. However, siRNA-mediated ETS1 loss in these cells still inhibited invasive potential (Supplementary Figure 2B is available at Carcinogenesis Online). Similar effects were observed in soft agar assays, where stable ETS1 expression in LNCaP cells increased anchorage-independent growth to C4-2 levels and stable ETS1 loss (shRNA) decreased anchorage-independent growth closer to LNCaP levels (Figure 2E; Supplementary Figure 3 is available at Carcinogenesis Online).

Activating ETS1 phosphorylation increases with progression in the LNCaP prostate cancer model

ETS1 transcriptional activity is regulated by post-translational modification (37–39), so we examined the phosphorylation status of ETS1 in the LNCaP progression model. Immunofluorescence studies in the castrate-sensitive LNCaP (Figure 3A) and castrate-resistant C4-2 (Figure 3B) cell lines demonstrates cytoplasmic and nuclear staining for total ETS1. An examination of phosphorylated ETS1 localization using ETS1Thr38 and ETS1Ser282/285-specific antibodies shows only nuclear staining in both the LNCaP and C4-2 cell lines. Furthermore, a comparison of phosphorylated protein levels by western blot analysis defines a graduated increase in ETS1Thr38 through the LNCaP, C4, C4-2 and C4-2B cell lines and a graduated decrease in ETS1Ser282/285 (Figure 3C). This indicates increased ETS1 transcriptional activity (37,38) in the more aggressive castrate-resistant cell lines. As ETS1 protein expression levels are not elevated in the C4 cell line compared with LNCaP parental cells (Figure 2B), these results indicate that increased ETS1 transcriptional activation rather than increased expression may promote its oncogenic activity in this least invasive castrate-resistant cell line.

ETS1Thr38 phosphorylation is mediated by the mitogen-activated protein kinase (MAPK)–extracellular signal-regulated kinase pathway (38,40,41). To examine if this pathway inhibits ETS1 function, MAPK activity was pharmacologically inhibited in C4-2 cells using the MAPK kinase inhibitor U0126 (10 μM for 24 h) and invasive potential examined in transwell invasion assays. As observed for LNCaP parental cells (Figure 2E), exogenous expression of ETS1 in the C4-2 derivative increased invasive potential (Figure 3D). Inhibition of MAPK activity with U0126 reduced the ability of C4-2 cells to invade across matrigel-coated membranes but invasive potential was partially restored.
when ETS1 was exogenously expressed in U0126-treated cells (Figure 3D). The effect of exogenous expression of ETS1 phosphorylation mutants on invasive potential was also examined. Compared with the endogenous expression of wild-type ETS1, expression of constitutively active ETS1 (T38E) stimulated invasive potential of LNCaP cells, whereas expression of a phosphorylation inactive ETS1 mutant (T38A) did not stimulate invasive potential (Figure 3E).

The AKT pathway stimulates ETS1 expression in castrate-resistant cells

The AKT signaling pathway is implicated in prostate cancer progression and the castrate-resistant phenotype (42,43). We examined a possible relationship between AKT activity and increased ETS1 levels in the LNCaP prostate cancer model. We observed an increase in AKT activity within the LNCaP progression model as represented by increased AKT phosphorylation at Ser 473 (Figure 4A), which is known to correlate with increased aggression and the castrate-resistant phenotype (31,44). We next examined the effect of modulated AKT activity on ETS1 protein expression and biological function. Pharmacological inhibition of phosphorylated AKT with the PI3K inhibitor LY294002 (10 μM or 20 μM for 24 h) reduced ETS1 protein levels in castrate-resistant C4-2 cells but not to the same extent in castrate-sensitive LNCaP cells (Figure 4B). As shown by western blot analysis, exogenous expression of constitutively activated

Fig. 1. ETS1 levels are elevated in high-grade human prostate cancer tissues and correlate with high PSA. (A) Real-time PCR analysis of ETS1 mRNA levels in a cohort of 16 low-grade (Gleason 5 and 6) and high-grade (Gleason 7–9) human prostate cancer samples. P values calculated relative to normal prostate values. (B) Real-time PCR analysis of ETS1 mRNA extrapolated to show individual Gleason score levels of ETS1 mRNA expression. P values calculated relative to Gleason 6 values. (C) Tissue microarray analysis of ETS1 protein expression in normal and prostate cancer tissue samples. P values calculated relative to normal prostate values. NS, not significant; ND, not determined. (D) Representative IHC staining of ETS1 protein levels on the tissue microarray. Large pictures ×20 and insets ×40 magnification.
(myristoylated) AKT1 in LNCaP cells leads to a significant increase in ETS1 protein levels (Figure 4C). Once again exogenous expression of ETS1 in the C4-2 derivative subline increased invasive potential in transwell invasion assays (Figure 4D). Inhibition of AKT activity with LY294002 reduced the ability of C4-2 cells to invade across matrigel-coated membranes but invasive potential was restored when ETS1 was exogenously expressed in LY294002-treated cells (Figure 4D). Exogenous expression of AKT was also sufficient to rescue invasive potential in the presence of LY294002 (Supplementary Figure 4 is available at Carcinogenesis Online).

Targeted AR activity alters ETS1 expression levels

When castrate-sensitive prostate cancer cells are grown in hormone-depleted (phenol red free and charcoal stripped) media, AR activity is inhibited by the reduction of receptor ligand, which induces cell growth inhibition and apoptosis. We examined the effect of AR ligand deprivation on ETS1 protein expression in castrate-sensitive LNCaP cells and found a significant reduction in ETS1 protein levels after 7 days of growth in hormone-deprived media (Figure 5A). Prolonged culture of LNCaP cells in hormone-depleted media (eight passages and above) produces a castrate-resistant subline (castrate-resistant LNCaP cells). An examination of ETS1 protein levels in castrate-resistant LNCaP cells shows a significant restoration of ETS1 expression upon the loss of androgen dependence and acquisition of castrate resistance (Figure 5B). R1881 is a synthetic androgen, which stimulates AR transcriptional activation to promote cell proliferation and tumor growth in vitro and in vivo. Treatment of LNCaP cells with R1881 (1 nM for 24 h) produces a substantial increase in ETS1 protein expression as shown by western blot analysis (Figure 5C). To investigate the potential ETS1–AR interaction further, we performed co-immunoprecipitation analysis to pull down ETS1–AR complexes in the LNCaP-derived cell lines. Although AR levels are slightly reduced in the C4-2 and C4-2B cells (Figure 2B), we observed an increase in ETS1–AR protein–protein interaction in these two LNCaP castrate-resistant derivatives compared with the parental castrate-sensitive LNCaP line (Figure 5D).

Modulated ETS1 alters sensitivity to AR antagonist in castrate-resistant cells

To examine the effects of ETS1 expression on the castrate-resistant phenotype, we used ETS1 gain-of-function and loss-of-function studies in the LNCaP and C4-2 cell lines, respectively. Cell viability assays analyzed using a Countess Automated Cell Counter (Invitrogen) after cell trypan blue staining were used to assess the effect of Flutamide treatment on LNCaP cells with exogenous ETS1 expression and C4-2 cells with reduced ETS1 expression. Exogenous ETS1 levels were induced by stable transfection with a pcDNA3 expression vector containing the ETS1 open reading frame (Figure 2C, left) and ETS1 levels were reduced by stable expression of shRNA targeting ETS1 (Figure 2C, right). Exogenous...
ETS1 expression promoted proliferation in LNCaP cells in the absence of drug compared with vehicle-only controls (Figure 6A). Treatment of the same cells with 10 nM Flutamide for 72 h (Figure 6A), significantly inhibited proliferation and increased the number of trypan blue-positive (apoptotic) cells. However, in LNCaP cells with elevated ETS1 levels, proliferation was significantly rescued and the fraction of apoptotic cells was reduced after Flutamide treatment, indicating that ETS1 expression conferred a castrate-resistant phenotype to LNCaP cells (Figure 6A). Reduced ETS1 expression in the absence of Flutamide significantly reduced the proliferative capacity of castrate-resistant C4-2 cells and also induced apoptosis compared with vehicle-only controls (Figure 6B). Treatment of C4-2 cells with 10 nM Flutamide (72 h) showed only a small inhibition of proliferation and no evidence of apoptosis was observed (Figure 6B). However when ETS1 levels were reduced in combination with Flutamide treatment, proliferation was significantly reduced over that observed when ETS1 levels only were reduced and a significant fraction of apoptotic cells was observed (Figure 6B). This indicates that loss of ETS1 expression may restore sensitivity to AR antagonist treatment in the castrate-resistant background.

Discussion

For men with newly diagnosed localized prostate cancer, the decision whether to pursue active surveillance or definitive therapy (‘to treat or not to treat’) continues to be a challenge. Therefore, more accurate and reliable predictive biomarkers are urgently needed to be able to distinguish patients with indolent slow-growing tumors who may be more appropriate for active surveillance from patients with potentially lethal tumors, requiring definitive treatment (surgery or radiation therapy). Through the dysregulation of its transcriptional target genes, increased ETS1 activity provides a mechanism, which can promote multiple cancer-associated pathways. This study demonstrates that increased ETS1 expression correlates with prostate tumors of Gleason 7 and above. Gleason 7 tumors represent a critical point in the aggressive phenotype of prostate cancer. Disease-specific survival is 10...
years for Gleason 7 but 16 years for Gleason 6. Mean tumor volume is 5.1 cc’s for Gleason 7 compared with ~2.5 cc’s for Gleason 5 and 6 and there is a 10-fold increase in the risk of positive lymph nodes and/ or seminal vesicles in Gleason 7 patients (45). Further analysis is warranted in a larger cohort of patients with detailed treatment and outcome data to fully investigate if higher ETS1 expression in lower grade tumor samples is indicative of poor outcome and represents a potential biomarker for prostate cancer progression. If this is the case, ETS1 expression levels may help identify those patients with potentially aggressive tumors requiring more stringent therapy from those with slow-growing tumors who would benefit from a ‘watch and wait’ treatment strategy.

Using the LNCaP prostate cancer model, mechanistic insight was gained into the regulatory pathways controlling ETS1 transcriptional activity during prostate cancer progression to the castrate-resistant phenotype. The LNCaP model represents increasingly aggressive prostate cancer and the transition from a castrate-sensitive (LNCaP) to a castrate-resistant phenotype (C4, C4-2 and C4-2B) (33,34). The
A common mechanism increasing the magnitude of transcription promoters. For example, increased post-translational modification is fate. Additionally, the increased expression of a transcription factor is expression can alter critical gene regulatory networks to direct cell processes as they influence the expression of large groups of genes. As critical regulators of many normal and aberrant biological derivatives. Transcription factors, such as ETS1, have been identified as critical regulators of many normal and aberrant biological phenotypes of the castrate-resistant C4-2 and C4-2B LNCaP activity was identified as a possible mechanism promoting the aggressive phenotype of the castrate-resistant C4-2 and C4-2B LNCaP sublines. These studies also demonstrate that modulated ETS1 expression can alter the castrate-resistant phenotype. Although ETS1 expression may decrease as an initial response to hormone deprivation, LNCaP cells are able to adapt to the depleted environment and restore ETS1 expression activity possibly to promote the castrate-resistant phenotype.

Fig. 6. Modulated ETS1 alters sensitivity to AR antagonist in castrate-resistant cells. (A) Cell viability assays comparing the effects of exogenous ETS1 expression on the response to 10 μM Flutamide treatment (+drug) for 72 h in LNCaP prostate cancer cells stably expressing ETS1 (ETS1) or vector control (WT, wild-type). (B) Cell viability assays comparing the effects of reduced ETS1 expression on the response to 10 μM Flutamide treatment (+drug) for 72 h in C4-2 prostate cancer cells stably expressing a short hairpin vector against ETS1 (shETS1) or vector control (WT, wild-type).

Supplementary material

Supplementary Figures 1–4 can be found at http://carcin.oxfordjournals.org/.
Funding
Supported in part by pilot research funding from an American Cancer Society Institutional Research Grant awarded to the Hollings Cancer Center, Medical University of South Carolina.

Acknowledgements
The authors would like to thank Dr Dennis Watson, Dr James Norris and Dr Bradley Schulte (Medical University of South Carolina) for their help and guidance.

Conflict of Interest Statement: None declared.

References

Received September 1, 2011; revised December 30, 2011; accepted January 5, 2012

580