Regulation of CBP and Tip60 coordinates histone acetylation at local and global levels during Ras-induced transformation

Sara Sánchez-Molina1,3, Conchi Estarás1,4, José Luis Oliva2, Naiara Akizu5,4, Elena Asensio-Juan1, José María Rojas2 and Marian A. Martínez-Balbás1,6

1Department of Genomic Regulation, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Baldirí i Reixac 15–21, Parc Científic de Barcelona, E-08028 Barcelona, Spain and 2Unidad de Biología Celular, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
3Present address: Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundació Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
4Present address: University of California, San Diego, La Jolla, CA 92039-0665, USA
5Present address: Department of Neurosciences and Pediatrics, University of California, San Diego, La Jolla, CA 92039-0665, USA
6To whom correspondence should be addressed. Tel: +34 934034961; Fax: +34 934034979; Email: mbmbcs@ibmb.csic.es

Cell transformation is clearly linked to epigenetic changes. However, the role of the histone-modifying enzymes in this process is still poorly understood. In this study, we investigated the contribution of the histone acetyltransferase (HAT) enzymes to Ras-mediated transformation. Our results demonstrated that Tip60 facilitates histone acetylation of bulk chromatin in Ras-transformed cells. As a consequence, global H4 acetylation (H4K8ac and H4K12ac) increases in Ras-transformed cells, rendering a more decompacted chromatin than in parental cells. Furthermore, low levels of CREB-binding protein (CBP) lead to hypoacetylation of retinoblastoma 1 (Rbl1) and cyclin-dependent kinase inhibitor 1B (Cdkn1b or p27Kip1) tumour suppressor genes promoters to facilitate Ras-mediated transformation. In agreement with these data, overexpression of Cbp counteracts Ras transforming capability in a HAT-dependent manner. Altogether our results indicate that CBP and Tip60 coordinate histone acetylation at both local and global levels to facilitate Ras-induced transformation.

Introduction

The transformation of a normal cell into a cancer cell is associated with a disruption of cellular controls that regulate cell division and/or cell death. At present, many of the genetic changes associated with this process are known. In addition to these genetic changes, increasing evidence suggests that epigenetic alterations are essential in establishing the transformed phenotype (1–3). The initial indications of the epigenetic link to cancer came from studies of gene expression and DNA methylation (for review see ref. 4). For example, several tumour suppressors are silenced in human cancers by DNA methylation and aberrant changes in specific histone modifications have been described (2). These modifications often target regulatory regions of proto-oncogenes or tumour suppressor genes (2). In addition to changes in the specific promoters, changes in global levels of individual histone modifications are also associated with cancer cells (5,6). Specifically, alteration in H3K9me3, H4K16ac, H4K20me3, H3K56ac and H3K9ac levels are related to tumourigenesis (6–8). In accordance with that, changes in the expression levels, mutations and translocations of histone acetyltransferases (HATs) and histone deacetylases (HDACs) have been linked to different types of cancer (1–3,9).

All these data remark the important contribution of epigenetic processes to cancer biology.

The RAS oncogene is mutated in an elevated proportion (30%) of human tumors (10). In particular RAS mutations at codons 12, 13 or 61 significantly downgrade its GTPase ability, which are thus rendered constitutively active and able to transform mammalian cells. These mutations activate the Raf-MEK-ERK, Ral GDS-Ral and PI3K-AKT pathways, which ultimately modulate different cellular functions (11,12). In vitro, Ras-transformed cells fail to activate many checkpoint controls: they lack contact inhibition and the requirement for mitogens and anchorage in order to proliferate (13). These characteristics are similar to those that contribute to the loss of controls that takes place in Ras-induced tumours. Different epigenetic changes have been linked to Ras-mediated transformation; in particular, alteration of histone acetylation patterns have been reported (8,14); moreover, activation of oncogenic Ras leads to increased DNA methyltransferase activity (15) and induces degradation of CREB-binding protein (CBP) in NIH3T3 cells (8,16). Although changes on histone modifications have been correlated to Ras-mediated oncogenic processes, the particular contribution of the histone-modifying enzymes to cell transformation is still poorly understood. In this study, we address this issue by studying the contribution of HAT enzymes to Ras-mediated transformation. Our results indicate that Tip60 facilitates histone acetylation of bulk chromatin in Ras-transformed cells rendering a more accessible chromatin than in parental cells. Meanwhile, low levels of CBP lead to hypoacetylation of pRb and p27Kip1 tumour suppressor gene promoter, contributing to Ras-mediated transformation. Altogether our results indicate that CBP and Tip60 coordinate histone acetylation at both local and global levels to facilitate Ras-induced transformation.

Materials and methods

Cell culture

NIH3T3 fibroblasts were maintained in Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad, CA) supplemented with 10% calf serum (Invitrogen) or starved with 0.5% calf serum for 18 h as indicated. Stable transfections using pCEFL-KZ-AU5-H-Ras (V12) and pCEFL-KZ-AU5-N-Ras (V12) (17) vectors were done using the calcium phosphate precipitation technique. Transient transfections were performed using Lipofectamin reagent (Invitrogen).

DNA constructs and antibodies

The plasmids pCEFL-KZ-AU5, pCEFL-KZ-AU5-H-Ras (V12), pCEFL-KZ-AU5-N-Ras (V12) and pCEFL-KZ-AU5-H-Ras (V12) (17,18) vectors have been described previously (17,18). pCDNA3-HA-CBP and pCDNA3-HA-CBPAHAH have been described elsewhere (19). pCDNA3-p27Kip1 was kindly provided by Dr O.Bachs. pCDNA3-Tip60-HA was a gift of Dr D.Trouche. Used antibodies are described in Supplementary Table 1, available at Carcinogenesis Online.

Indirect immunofluorescence

Cells on cover slips were fixed in paraformaldehyde, permeabilized with methanol and incubated with antibodies as described previously (20,21).

Reverse transcription quantitative real-time PCR

Total cellular RNA was obtained with Ultraspec RNA Isolation System (Biotecx). Complementary DNA was generated using Omniscript Reverse Transcription kit (Qiagen) and 2 µg of extracted RNA. Differences in the DNA content were determined by real-time PCR using the ABI 7700 Sequence Detection System and SYBR Green Master Mix protocol (Applied Biosystems). PCR reactions were carried out triplicate in 20 µl with 2 µl from 1/5 reverse transcription dilution and 0.25 µM of specific primers at 95°C for 10 min, followed by 40 15-s cycles at 95°C and 1 min at 60°C. The primer oligonucleotide sequences are described in Supplementary Tables 2 and 3, available at Carcinogenesis Online.

Abbreviations: CBP, CREB-binding protein; ChIP, chromatin immunoprecipitation; HAT, histone acetyltransferase; HDAC, histone deacetylase; mRNA, messenger RNA; siRNA, small-interfering RNA.

© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
All PCR products were –50hp to increase the efficiency of real-time reactions. Relative expression was calculated using the standard curve method. A standard curve was made for each gene of interest and the housekeeping by plotting in a base-10 semi-logarithmic graph the number of cycles at which the fluorescence crossed the threshold (Ct) against increasing amounts of DNA template. The relative quantification for the gene of interest is normalized to that of tubulin in the same sample and then the normalized numbers are compared between samples to get a fold change in expression.

Fluorescence-activated cell sorting staining and analysis
Fluorescence-activated cell sorting analysis was performed as described elsewhere (22). Basically, cells transfected with the plasmid/s of interest and pCDNA3-GFP were harvested following trypsinization, washed twice in phosphate buffered saline and resuspended in 1 ml of Dulbecco’s modified Eagle’s medium. Non-permeabilized cells were stained during 30 min with 5 μg/ml Hoechst 33342 and DNA content of GFP population was analyzed by flow cytometry with a Becton Dickinson FACSscan according to the manufacturers’ procedure.

Analysis of chromatin condensation with micrococcal nuclease
The protocol is described in Supplementary Materials and Methods, available at Carcinogenesis Online.

HAT/histone deacetylase assays
In vitro acetylation/deacetylation assay was performed as described elsewhere (23,24).

Foci formation assay
Foci formation assays were performed as described elsewhere (18).

RNA interference by small-interfering RNA
Target sequences for small-interfering RNAs (siRNAs) are as follows. Tip60: 5′-GCAGGAGGUGGGUGGU-3′; control: 5′-CAUGUCAUUGUGUCACAU-3′ (BioNova). The siRNAs were transfected using JetPei KPolyplys (Polyplus).

Cell extract preparation and immunoblotting
Total cell extracts were prepared in IP buffer (50 mM pH8, 150 mM NaCl, 5 mM EDTA and 0.5% NP-40 vol/vol) as described previously (25). Histones were extracted by treatment of the whole cells with 0.25 M HCl at 4°C under rotation. After centrifugation at 12,000 g for 10 min at 4°C, the histones were dialyzed against 0.1 M acetic acid twice and against H2O three times. The antibodies used are described in Supplementary Table 1, available at Carcinogenesis Online. Immunoblotting was performed with standard procedures and visualized by means of an enhanced chemiluminescence kit (Amersham).

Chromatin immunoprecipitation analysis: quantitative real-time PCR and chromatin immunoprecipitation quantification
Chromatin immunoprecipitation (ChIP) assays were performed as described elsewhere (26). A detailed protocol is described in Supplementary Materials and Methods, available at Carcinogenesis Online.

Results
Global HAT activity increases in Ras-transformed cells
It has been described previously that chromatin from Ras-transformed cell lines is more accessible than chromatin from normal cells (27). This feature should correlate with epigenetic changes, in particular, with new acetylation/deacetylation equilibrium. In order to gain further insight into this possibility, we determined the global HAT and histone deacetylase (HDAC) activities in control and Ras-transformed NIH3T3 cells by in vitro assays. We used as a transformation model the well-established NIH3T3 cell line stably transfected with HRas mutated at position 12 (RasV12), which makes Ras proteins constitutively active (16). Although originally NIH3T3 are immortal, they become transformed after constitutive activation of the HRas oncogene (ref. 16) and Supplementary Figure 1, available at Carcinogenesis Online. Figure 1A shows that global HAT activity in Ras-transformed cells was higher than in control cells, whereas HDAC activity did not change. These results suggest that the equilibrium between HATs and HDACs is globally moved toward higher acetylation.

Global histone H4 acetylation increases in Ras-transformed cells
Next, we analyzed whether the observed changes on HAT activity affect the acetylation status of bulk chromatin of Ras-transformed cells. To this end, histones from NIH3T3 parental and Ras-transformed cells were purified and H3 acetylation (H3ac; K9 and K14 positions) and H4 acetylation (H4ac; K5, K8, K12 and K16 residues) were analyzed by immunoblot and immunostaining. Figure 1B and C shows that the level of H3ac remains unchanged during cell transformation, but H4ac increases (2-fold, P = 0.04) in transformed cells. To gain further insight into this epigenetic change, we next tried to determine which positions on histone H4 change their acetylation status. We used immunoblot analysis to determine the acetylation levels of K5, 8, 12 and 16 of histone H4 (Figure 1B and C). A significant increase in K8ac (2.4-fold, P < 0.009) and in K12ac (1.8-fold, P < 0.04) was detected in Ras-transformed cells relative to the NIH3T3 parental cells. In agreement with previous maintenance of H3ac, H3K9ac also remains constant (Supplementary Figure 2A, available at Carcinogenesis Online). The H3ac, H4ac and H4K12ac status was also analyzed by immunostaining and the results were found to be consistent with those observed above (Figure 1D). We then analyzed another active, H3K4me3, and repressive, H3K27me3, histone marks in control and Ras-transformed cells. Supplementary Figure 2B and C, available at Carcinogenesis Online, shows that, in contrast to the global increase of H4ac, the levels of these methylation marks did not vary from control to Ras-transformed cells.

Tip60 hyperacetylates histone H4 in Ras-transformed cells
To try to identify the enzymes responsible for the observed changes on H4ac, we analyzed the levels of some HAT and HDAC enzymes in control and Ras-transformed cells by immunoblot assays. Although the level of analyzed HDACs remained constant (Figure 2A), in agreement with the results observed for global HDAC activity, some HAT enzymes underwent a strong regulation during the transformation process. We found clear differences for CBP, which was described previously to be degraded in Ras-transformed cell lines (8,16), as well as for Tip60, whose levels increased (1.7-fold) upon Ras activation (Figure 2A). Then, we investigated whether these regulation contribute to Ras-mediated transformation. Given that global HAT activity is moved toward higher acetylation and we have observed increased protein levels for Tip60, we sought to determine whether Tip60 is responsible for the H4ac global increase observed in Ras-transformed cells (Figure 1B and C). To do that, we analyzed the Tip60 HAT activity in control and in Ras-transformed cells. In agreement with our previous observations, the HAT activity associated to Tip60 was higher in Ras-transformed cells than in parental cells (Figure 2B). In order to confirm the role of Tip60 in the observed H4ac increase, Tip60 was depleted using specific siRNA (Tip60 siRNA; Supplementary Figure 3, available at Carcinogenesis Online) and the histone H4ac was analyzed in both cell lines by immunoblot. After Tip60 knockdown, H4ac levels were restored in Ras-transformed cells (Figure 2C), pointing to an important role of this enzyme in the global acetylation increase observed upon Ras transformation.

Tip60 promotes global chromatin decompaction
Next, we aim to investigate the consequences of global acetylation increase mediated by Tip60 in Ras-transformed cell biology. It has been demonstrated that nucleosomal organization of Ras-transformed fibroblasts is more decondensed than that of normal parental fibroblasts and it is indispensable for cell transformation (27). On the other hand, histone hyperacetylation correlates with gene activation and contributes to a more accessible chromatin state (28). Thus, Tip60 could be responsible to render Ras-transformed chromatin in a more decondensed state. In order to test this hypothesis, NIH3T3 cells were transfected with either the empty vector or Tip60-HA expressing plasmid and the chromatin condensation status was analyzed by micrococcal nuclease enzyme accessibility. Results in Figure 2D showed
that Tip60 overexpression led to a more accessible chromatin, similar to that described for Ras-transformed cells. These data suggest that Tip60-mediated global acetylation could be responsible for an open chromatin state of transformed cells mediated by histone H4ac.

Histone acetylation at pRb and p27Kip1 tumor suppressor gene promoters

Our results show a Tip60-mediated global increase of H4ac upon Ras-induced transformation. However, this result does not imply that H4ac increases at all particular gene locations. Moreover, others and we have observed that CBP decreases after Ras transformation (8,16) (Figure 2A), suggesting that CBP could contribute to Ras-transformed cell biology in a different manner than Tip60. Many signals from the environment are thought to induce gene transcription by activating intracellular biochemical pathways that control the ability of transcription factors to recruit CBP to specific promoters. Thus, CBP could regulate histone acetylation at local level in response to Ras pathway activation; in particular, it could modulate acetylation of tumor suppressor and/or proto-oncogenes involved in Ras transformation.

It has been previously proposed that Ras activation induces down-regulation of the p27Kip1 (30–32) and increases the cyclin-dependent kinase inhibitor 1A (Cdkn1a or p21Cip1) levels (30,33). On the other hand, the principal function of Ras in G1–S phase progression is to inactivate the tumor suppressor pRb and relieve cells from its growth inhibitory actions (30,34,35). Then, we sought to test whether CBP could regulate histone acetylation at these tumor suppressor genes involved in Ras transformation. In order to do that, we first analyzed the expression of pRb, p27Kip1 and p21Cip1 upon Ras transformation.
Histone acetylation and Ras transformation

Given that we have described a decrease of CBP in Ras-transformed cells, we also included this gene in our analysis together with the oncogene cell division cycle 6 (Cdc6) and interleukin 2 (II2), which are used as positive and negative controls, respectively. As it has been shown previously (33), high Ras-induced activation caused upregulation of p21Cip1 (4-fold increase, P = 0.0006; Figure 3A). However, pRb and p27Kip1 expression decreased (2.1-fold, P = 0.0009; 2.0-fold, P = 0.0009; Figure 3A), suggesting that they are Ras targets at the transcriptional level. In agreement with the messenger RNA (mRNA) levels, the pRb and p27Kip1 protein levels also decreased in Ras-transformed cells compared with the parental NIH3T3 cell line (Supplementary Figure 4, available at Carcinogenesis Online).

Next, we tested the potential contribution of histone acetylation to the expression of these tumor suppressor genes. To do that, we analyzed the H3ac and H4ac status at their promoters in Ras-transformed and parental cells by ChIP assays. We found that H3 and H4 acetylated signals decreased at p27Kip1 and pRb promoters (Figure 3B and C). As expected, p21Cip1 promoter acetylation increased, whereas Cbp and Cdc6 promoters did not show any significant change (Figure 3B and C). Given that transcriptional activity correlates with trimethylation of H3HK4 (H3K4me3) at promoters, we sought to analyze whether the histone acetylation decrease observed at pRb and p27Kip1 promoters also correlated with a loss of H3K4me3. Although a large increase of H3K4me3 was observed at p21Cip1 promoter in Ras-transformed cells, the opposite was found at pRb and p27Kip1 promoters that displayed a clear decrease in H3K4me3 signals (Figure 3D).

CBP targets pRb and p27Kip1 tumor suppressor gene promoters

The observed decrease in histone acetylation at pRb and p27Kip1 promoters might be linked to the low levels of CBP detected in Ras-transformed cells. To test this hypothesis, we analyzed whether CBP targets p27Kip1 and pRb promoters in both Ras-transformed and parental cells by ChIP assays. Results in Figure 3E showed that CBP directly targeted p27Kip1 and pRb. On the other hand, CBP recruitment was partially lost at p27Kip1 and pRb promoters in transformed cells correlating with low expression and histone hypoacetylation of these tumor suppressor gene promoters. Different results were observed at Fox (c-fos) promoter, whose CBP level remained constant, indicating that CBP redistribution is specific for some target promoters. Additionally, the negative control Neurogenin2 (Ngn2) does not show any kind of enrichment for CBP.

As we observed an increase on p21Cip1 promoter acetylation and on the levels of Tip60 enzyme in Ras-transformed cells, we sought to investigate whether Tip60 contributes to p21Cip1 regulation in these cells. In order to do that, we first depleted Tip60 on Ras-transformed cells by using the Tip60 siRNA and the HAT activity associated to the immunopellet was determined by in vitro HAT assay. CBP targets p27Kip1 and pRb promoters in both Ras-transformed and parental cells by ChIP assays. Results in Figure 3E showed that CBP directly targeted p27Kip1 and pRb. On the other hand, CBP recruitment was partially lost at p27Kip1 and pRb promoters in transformed cells correlating with low expression and histone hypoacetylation of these tumor suppressor gene promoters. Different results were observed at Fox (c-fos) promoter, whose CBP level remained constant, indicating that CBP redistribution is specific for some target promoters. Additionally, the negative control Neurogenin2 (Ngn2) does not show any kind of enrichment for CBP.
S. Sánchez-Molina et al.

Online, suggested that Tip60 was not involved in p21Cip1 transcriptional control in response to Ras activation. Second, we overexpressed Tip60 on parental NIH3T3 cells and the activity of p21Cip1 promoter was analyzed by quantitative real-time PCR. The results showed no changes on p21Cip1 expression (Supplementary Figure 5B, upper panel, available at Carcinogenesis Online). To discard the possibility that Ras signal could be involved in Tip60-mediated p21Cip1 regulation, we repeated this experiment using HRas-transformed cells instead of control NIH3T3 cells. The results indicated again that p21Cip1 expression was not affected by Tip60 (Supplementary Figure 5B and C, available at Carcinogenesis Online), indicating possible indirect regulation upon the siTip60 interference. Altogether, our results indicated that Tip60 was not involved in p21Cip1 transcription regulation in NIH3T3 cells in response to Ras activation and strengthen the idea of a global Tip60 role on chromatin.

Both PI3K and Ral-GDS pathways contribute to CBP degradation

After Ras signaling pathway activation, there are three major routes that contribute to transmit Ras signal into the nucleus: Raf-MEK-ERK, Ral-GDS-Ral and PI3K-AKT pathways. Specific point mutations at the effector domain of Ras can reduce the interaction with Raf-1 (E37G and Y40C mutations) with Ral-GDS (T35S and Y40C mutations), or other cellular contexts, we included this gene in the analysis. In this case, a slight decrease of mRNA was observed after Tip60 depletion (Supplementary Figure 5A, available at Carcinogenesis Online); however, no changes upon Tip60 overexpression were observed in mRNA levels or Tip60 Cdc6 promoter recruitment (Supplementary Figure 5B and C, available at Carcinogenesis Online), indicating possible indirect regulation upon the siTip60 interference. Altogether, our results indicated that Tip60 was not involved in p21Cip1 transcription regulation in NIH3T3 cells in response to Ras activation and strengthen the idea of a global Tip60 role on chromatin.
Histone acetylation and Ras transformation

We sought to determine which of the three major pathways are required to Ras-mediated CBP degradation. To this end, NIH3T3 cells were stably transfected with the hyperactive form, HRasV12, or their effector dominant mutants, HRasV12C40, HRasV12G37, HRasV12S35 that only activate PI3K, Raf-GDS and Raf-1, respectively (18,36), and CBP protein levels were analyzed by immunoblot. Overexpression of HRas V12S35 led to close normal CBP levels; however, NIH3T3 clones of HRasV12G37 and HRas V12C40 showed lower CBP protein levels than the control cells (Figure 4B). These results suggest that both Ras-GDS-Raf A and PI3K effector pathways contribute to transmit the Ras signal into CBP coactivator. We have confirmed these results using the chemical PI3K inhibitor (Ly 294-002); after 20 h of incubation with Ly 294-002, the levels of CBP were restored for HRasV12 cells and increased in control cells (Figure 4B). These results are in agreement and complementary to the observations from Liu and colleagues (8), where CBP is degraded after activation of PI3K pathway. Additionally, in the case of NRasV12 transformation, we proposed Raf-MEK-ERK pathway as the major contribution to CBP degradation (Supplementary Figure 6A, available at Carcinogenesis Online). These results were confirmed with the recovery of CBP protein levels after the incubation of cells with the Raf/ERK inhibitor PD98059 (Supplementary Figure 6B, available at Carcinogenesis Online).

CBP overexpression counteracts Ras-induced transformation of NIH3T3 fibroblasts

To understand how CBP loss of function could contribute to Ras-induced cellular transformation, we tested the ability of CBP to affect Ras-induced cellular proliferation. To do that, we overexpressed CBP protein together with GFP into HRasV12-transformed NIH3T3 cells and analyzed the distribution of the cell cycle phases of green positive cells. We found that Cbp overexpression leads to a statistically significant delay of the G1-S transition of the cell cycle. The CBP-induced G1 retention was 40–60% of the G1 delay due to p27kip1 over-expression. This effect was specific for CBP, as GFP did not induce such an arrest (Figure 5A and B). Similar results were obtained when we used cells transformed with oncogenic NRasV12 (Supplementary Figure 6C, available at Carcinogenesis Online).

Overall, our data suggest that low levels of CBP could contribute to Ras transformation, modulating histone acetylation at local level, in particular, at p27kip1 and pRb tumor suppressor promoters. In that case, CBP should behave itself as a tumor suppressor gene. To test this hypothesis, we analyzed the ability of Cbp overexpression to counteract Ras transforming foci formation in NIH3T3 fibroblasts. To this end, we overexpressed Cbp together with HRasV12 and the induced transforming foci were screened after cell staining (Figure 5C and D). We found that Cbp overexpression significantly protected the NIH3T3 fibroblasts from Ras transformation, giving a sharp reduction of the transforming activity (close to 30% versus the 100% of HRasV12 alone, see Figure 5D). As we have previously observed for the cell cycle analysis (Supplementary Figure 6C, available at Carcinogenesis Online), similar results were obtained when NRasV12 was used (Supplementary Figure 6D, available at Carcinogenesis Online).

Our data supported the idea that CBP and Tip60 HATs enzymes coordinate their actions to facilitate Ras transformation. Thus, we sought to test whether Tip60 also contributes to NIH3T3 cellular transformation as CBP does. To do that, we depleted Tip60 with Tip60 siRNA; 24 h later we overexpressed HRasV12 and analyzed the induced transforming foci. Unfortunately, although the interference of Tip60 allows experimental analysis of the cells after 72 h, the depletion had strong effects on cellular proliferation on both NIH3T3 and HRasV12-transfected cells at longer incubation time, making impossible to quantify its effects on the Ras-induced foci. The results in Supplementary Figure 7, available at Carcinogenesis Online, indicated that (i) a decrease of Tip60 levels blocked proliferation of NIH3T3 cells; (ii) this growth arrest also took place upon transfection of HRasV12 oncogene, and (iii) the combination of Cbp overexpression and Tip60 siRNA led to a complete blockade of cellular proliferation of HRasV12-transfected cells. The fact that Tip60 is required for cell growth makes it difficult to conclude that Tip60 plays a direct role facilitating transformation; however, it explains its contribution to Ras-mediated transformation.

Accurate CBP HAT activity is required to counteract Ras-induced transformation

To test whether CBP HAT activity might be important to counteract Ras-mediated transformation, we repeated the focus formation assay with a mutant of CBP that lacks HAT activity, Cbp (Figure 4A). We found that CbpHAT mutants did not induce G1 arrest to the same degree than Cbp wild type (Figure 5A and B and Supplementary Figure 6C, available at Carcinogenesis Online), suggesting that the antiproliferative effects induced by CBP were indeed mediated in part through its HAT activity. Accordingly, with these results, incubation of HRasV12-transformed NIH3T3 cells with trichostatin A, a potent inhibitor of HDAC enzymes, leads to a partial reversion of the Ras-transformed morphology (Supplementary Figure 8, available at Carcinogenesis Online). Although trichostatin A inhibitors are not specific enough to justify the CBP effect on Ras-induced transformation, this result indicates that the balance of HAT and HDAC is
very important to protect the cell from cellular transformation. Taken together, all these results suggest a major role for CBP coactivator in cellular protection from Ras oncogenic-induced transformation through its HAT function.

Discussion

It is well established that epigenetic alterations are linked to cell transformation and to development of several types of human tumors (3). However, the exact contribution of histone-modifying enzymes to cell transformation is not completely understood. In this study, we demonstrated that the HAT enzymes Tip60 and CBP are regulated during Ras-mediated transformation, contributing to transformation at different levels.

We observed a general increase of cellular HAT activity in Ras-transformed cells compared with parental cells (Figure 1A). In particular, we showed increased expression and HAT activity of Tip60 that is responsible for the observed global H4 hyperacetylation (Figure 2B and C). Interestingly, we did not detect any contribution of Tip60 facilitating p21\(^{Cip1}\) activation during transformation, different than it has been shown in other cellular contexts, particularly those where DNA damage response has been activated (37–43). Nevertheless, other examples in the literature are in agreement with our results showing that other enzymes different that Tip60 must be responsible for p21\(^{Cip1}\) promoter acetylation (44,45). How Tip60-mediated global H4 hyperacetylation could affect cell transformation biology? Our results indicate that Tip60 promotes chromatin decompaction and accessibility to micrococcal nuclease enzyme (Figure 2D). These data are in concordance with previous observations showing that nucleosomal organization of c-Ha-Ras oncogene transformed fibroblasts is more decondensed than that of normal parental fibroblasts (27). Several groups have also reported a global increase in phosphorylation of histone H3 at serine 10 in transformed cells (29,46,47) that may also be related to a more open chromatin conformation (46) and it is indispensable for cell transformation (29). More recently, Liu and colleagues have shown that Ras-PI3K signaling downregulates H3K56ac, which is associated to alteration on proliferation and cell migration of tumor cells (8); interestingly, they showed that Ras-PI3K-AKT pathway specifically targets H3K56ac via CBP/p300 degradation mediated by MDM2 ubiquitin ligase (8). Our results are in good agreement with these findings and suggest an important contribution of global state of chromatin during transformation. It establishes a link between Ras signaling pathway and the epigenetic program. Specifically, we found that oncogenic HRas reduces CBP levels throughout Ral GDS-Ral A and PI3K-AKT.

Fig. 5. Cbp overexpression inhibits Ras-induced transformation. (A) HRasV12 cells were transfected with pCDNA3-GFP and pCDNA3-HA-CBP, pCDNA3-HA-CBPAHat or pCDNA3-p27\(^{Kip1}\) (1 μg of each plasmid). Thirty-six hours after transfection, cells were harvested and stained with Hoechst. The DNA content of the GFP population was analyzed by flow cytometry. (B) Quantification of G\(_1\) cells from data in (A). The histogram shows % cells in G\(_1\) relative to the G\(_1\) retention induced by p27\(^{Kip1}\). The data correspond to the average and standard deviation of the results from four biological independent experiments. (C) NIH3T3 fibroblasts were cotransfected with 25 ng of pCEFL-KZ-AU5-HRasV12 and with 4 μg of the corresponding pCDNA3, pCDNA3-HA-CBPAHat or pCDNA3-HA-CBP. Negative controls were cotransfected with both empty vectors (pCEFL-KZ-AU5 and pCDNA3). After 14 days, the dishes were stained with Giemsa to score the transformed foci. All plasmid DNAs produced similar numbers of marker selectable colonies. (D) Focus formation was then quantified and expressed as a percentage of each HRasV12-induced focus formation. Histograms correspond to the average and standard deviation of three separate assays performed in triplicate.
Histone acetylation and Ras transformation

Acknowledgements

Published with permission of Drs M.Esteller, D.Huertas and O.Bachs for reagents; and Dr B.Amati and Dr D.Trouche for Tip60 reagents; and Dr B.Piña for help with the real-time analysis and quantification; Dr X.de Valls, E. for cytoskeleton dynamics. Asensio-Juan, E. transferase activity. Valls, E. JMJD3 HDM co-activate the neural developmental program. Valls, E. for microarrays. Blanco-García, N. for subcellular localization of the proteins, which determines the effectors that could be recruited, and their different molecular and biological outputs (48).

In addition to the Tip60 increase, others and we have reported a decrease in CBP HAT enzyme levels in Ras-transformed cells (8,16) (Figure 2A). In the present work, we addressed the contribution of CBP degradation during cell transformation. We demonstrated that CBP directly targets and acetylates p27kip1 and pRb tumor suppressor promoters, keeping them in an active state in the control cells (Figure 3E). Upon Ras transformation, these genes are dramatically repressed and they become hypoacetylated, suggesting that CBP is required to activate these tumor suppressor promoters. To confirm the importance of CBP counteracting Ras transformation, we have demonstrated that overexpression of Cbp, but not a mutant lacking HAT activity, leads to partially block of cell cycle progression and Ras-mediated colony formation (Figure 5B and D).

Interestingly, we have not observed global changes on acetylation of lysine residues, which are modified by CBP in another cellular context, including H3K9, H3K14, H4K16 and H4K5 (data not shown). A possible explanation of this result is that CBP HAT activity is regulated by different factors (49,50), such as post translational modifications (51,52), viral oncoproteins (49,53), specific transcription factors recruitment (54–55) or cell type-specific factors (50). All these factors might explain why low CBP levels affect only some specific promoters in Ras-transformed NIH3T3 cells. Another plausible explanation is that other HATs could compensate the observed reduction of CBP enzyme. In any case, these results are in agreement to previous studies showing that depletion of CBP only affects some histone residues at specific promoters (58).

Taken together, our results demonstrate that Tip60 and CBP are targeted by the oncogenic Ras pathway. Both enzymes contribute to the oncogenic activity at different and complementary levels: (i) modulation of the chromatin accessibility at global level and (ii) regulation of transcription of tumor suppressors. Understanding the mechanisms underlying Ras-mediated transformation may serve as tumor development prevention.

Supplementary material

Supplementary Materials and Methods, Table 1, and Figures 1–8 can be found at http://carcin.oxfordjournals.org/

Funding

The Spanish Ministry of Education and Science (BFU2006-01493, BFU2009-11527, CSD2006-00049, BFU-2012–34261); Fundació La Marató de TV3 (090210); Fondation Jérôme Lejeune to MAMB; the Spanish Ministry of Education and Science, Fondo de Investigaciones Sanitarias-Intrasalud PI09/0562 (SAPF2006-04247); Red Temática de Investigación Cooperativa en Cáncer from the Instituto de Salud Carlos III (RD06/0020/0003 and RD12/0036/0021 to J.M.R.); I3P fellowship (I3P-BPD2005) to N.A.; a FPU fellowship to C.E.; and a Generalitat de Catalunya predoctoral fellowship to S.S.-M.

Acknowledgements

We would like to thank Dr J.Ferrer for help with the ChIP assays; Dr M.Casado and Dr B.Piña for help with the real-time analysis and quantification; Dr X.de la Cruz for critical reading of the paper; R.Fueyo and M.A.Garcia for technical and intellectual support; Dr B.Amati and Dr D.Trouche for Tip60 reagents; Drs M.Esteller, D.Huertas and O.Bachs for reagents.

Conflict of Interest Statement: None declared.

Histone acetylation and Ras transformation

pathways; however, the NRasV12 elicited CBP degradation is absolutely depending of the Raf-MEK-ERK pathway. These differences between both isoforms of Ras proteins could be due to the specific subcellular localization of the proteins, which determines the effectors that could be recruited, and their different molecular and biological outputs (48).

In addition to the Tip60 increase, others and we have reported a decrease in CBP HAT enzyme levels in Ras-transformed cells (8,16) (Figure 2A). In the present work, we addressed the contribution of CBP degradation during cell transformation. We demonstrated that CBP directly targets and acetylates p27kip1 and pRb tumor suppressor promoters, keeping them in an active state in the control cells (Figure 3E). Upon Ras transformation, these genes are dramatically repressed and they become hypoacetylated, suggesting that CBP is required to activate these tumor suppressor promoters. To confirm the importance of CBP counteracting Ras transformation, we have demonstrated that overexpression of Cbp, but not a mutant lacking HAT activity, leads to partially block of cell cycle progression and Ras-mediated colony formation (Figure 5B and D).

Interestingly, we have not observed global changes on acetylation of lysine residues, which are modified by CBP in another cellular context, including H3K9, H3K14, H4K16 and H4K5 (data not shown). A possible explanation of this result is that CBP HAT activity is regulated by different factors (49,50), such as post translational modifications (51,52), viral oncoproteins (49,53), specific transcription factors recruitment (54–55) or cell type-specific factors (50). All these factors might explain why low CBP levels affect only some specific promoters in Ras-transformed NIH3T3 cells. Another plausible explanation is that other HATs could compensate the observed reduction of CBP enzyme. In any case, these results are in agreement to previous studies showing that depletion of CBP only affects some histone residues at specific promoters (58).

Taken together, our results demonstrate that Tip60 and CBP are targeted by the oncogenic Ras pathway. Both enzymes contribute to the oncogenic activity at different and complementary levels: (i) modulation of the chromatin accessibility at global level and (ii) regulation of transcription of tumor suppressors. Understanding the mechanisms underlying Ras-mediated transformation may serve as tumor development prevention.

Supplementary material

Supplementary Materials and Methods, Table 1, and Figures 1–8 can be found at http://carcin.oxfordjournals.org/

Funding

The Spanish Ministry of Education and Science (BFU2006-01493, BFU2009-11527, CSD2006-00049, BFU-2012–34261); Fundació La Marató de TV3 (090210); Fondation Jérôme Lejeune to MAMB; the Spanish Ministry of Education and Science, Fondo de Investigaciones Sanitarias-Intrasalud PI09/0562 (SAPF2006-04247); Red Temática de Investigación Cooperativa en Cáncer from the Instituto de Salud Carlos III (RD06/0020/0003 and RD12/0036/0021 to J.M.R.); I3P fellowship (I3P-BPD2005) to N.A.; a FPU fellowship to C.E.; and a Generalitat de Catalunya predoctoral fellowship to S.S.-M.

Acknowledgements

We would like to thank Dr J.Ferrer for help with the ChIP assays; Dr M.Casado and Dr B.Piña for help with the real-time analysis and quantification; Dr X.de la Cruz for critical reading of the paper; R.Fueyo and M.A.Garcia for technical and intellectual support; Dr B.Amati and Dr D.Trouche for Tip60 reagents; Drs M.Esteller, D.Huertas and O.Bachs for reagents.

Conflict of Interest Statement: None declared.

Histone acetylation and Ras transformation

Acknowledgements

Published with permission of Drs M.Esteller, D.Huertas and O.Bachs for reagents; and Dr B.Amati and Dr D.Trouche for Tip60 reagents; and Dr B.Piña for help with the real-time analysis and quantification; Dr X.de la Cruz for critical reading of the paper; R.Fueyo and M.A.Garcia for technical and intellectual support; Dr B.Amati and Dr D.Trouche for Tip60 reagents; Drs M.Esteller, D.Huertas and O.Bachs for reagents.

Conflict of Interest Statement: None declared.

Received October 17, 2013; revised April 30, 2014; accepted May 16, 2014