Status of P2Y12 treatment must be considered in evaluation of myocardial ischaemia/reperfusion injury

We noted with interest the recent publication by the ESC Working Group on pre-clinical assessment of novel cardioprotective therapies. Because of the nearly three decades of experimental work which has not yet yielded a single intervention that has been demonstrated to diminish the amount of infarcting myocardium following ischaemia/reperfusion in patients, it is necessary to critically examine the available data to determine where there might be roadblocks. Lecour et al. have analysed many possible confounders that might be responsible for the failure to extrapolate observations in the animal laboratory to the cardiac catheterization suite. They are to be congratulated for this succinct summary. However, we are disappointed that they have overlooked a particularly compelling explanation for the failures. Patients with acute myocardial infarction are treated with numerous pharmacological agents before the actual percutaneous coronary intervention that will open the coronary artery. One of these agents is clopidogrel, a platelet P2Y12 receptor antagonist, which for this past decade has been administered before submitting the new intervention to costly clinical trials.

References

Michael V. Cohen1,2,3 and James M. Downey4
1Department of Physiology and Cell Biology and Medicine, University of South Alabama College of Medicine, Mobile, AL, USA
2Department of Physiology, Emeritus, University of South Alabama College of Medicine, Mobile, AL, USA
3Corresponding author. Tel: +1 251 460 6182; fax: +1 251 460 6646. Email: mcohen@southalabama.edu

Platelet inhibitors influence cardioprotection: importance in preclinical study design: reply

We would like to thank Professors Cohen and Downey for highlighting platelet inhibitors, in particular platelet P2Y12 receptor antagonists, as an important confounder to take into consideration in pre-clinical studies designed to study novel cardioprotective strategies against ischaemia/reperfusion injury. As already mentioned in our recent publication from the ESC working group, both clinical and animal studies give evidence that platelet inhibitors reduce myocardial infarct size by mechanisms that may involve nitric oxide or adenosine.1–3 Over the past few years, Cohen and Downey have published strong and convincing evidence suggesting that additional protection cannot be afforded with pharmacological and/or mechanical protective strategies sharing the same pro-survival signalling pathways as the P2Y12 antagonist (see review3). Therefore, we fully share their point of view that the effect of co-medication with P2Y12 antagonists or with any other medications frequently given to ischaemic heart disease patients (e.g. aspirin, statins, ACE inhibitors, beta-blockers, etc.) on cardioprotective therapies needs to be tested in pre-clinical settings prior to translation to clinical cardioprotection as also recently reviewed in detail by Ferdinandy et al.4

References

Letters to the Editor

Sandra Lecour1, Rainer Schulz2, Péter Ferdinandy3,4 and Derek J. Hausenloy5,6,7,8,9
1Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and MRC Inter-University Cape Heart Group, University of Cape Town, Cape Town, South Africa
2Institute of Physiology, Justus-Liebig University, Giessen, Germany
3Clinical Pharmacology, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
4Pharmahungary Group, Szeged, Hungary
5The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
6The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
7National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
8Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore
9Corresponding author. Email: d.jhausenloy@ucl.ac.uk

doi:10.1093/cvr/cvv051
Published online 27 February 2015

Platelet inhibitors influence cardioprotection: importance in preclinical study design: reply

We would like to thank Professors Cohen and Downey for highlighting platelet inhibitors, in particular platelet P2Y12 receptor antagonists, as an important confounder to take into consideration in pre-clinical studies designed to study novel cardioprotective strategies against ischaemia/reperfusion injury. As already mentioned in our recent publication from the ESC working group, both clinical and animal studies give evidence that platelet inhibitors reduce myocardial infarct size by mechanisms that may involve nitric oxide or adenosine.1–3 Over the past few years, Cohen and Downey have published strong and convincing evidence suggesting that additional protection cannot be afforded with pharmacological and/or mechanical protective strategies sharing the same pro-survival signalling pathways as the P2Y12 antagonist (see review3). Therefore, we fully share their point of view that the effect of co-medication with P2Y12 antagonists or with any other medications frequently given to ischaemic heart disease patients (e.g. aspirin, statins, ACE inhibitors, beta-blockers, etc.) on cardioprotective therapies needs to be tested in pre-clinical settings prior to translation to clinical cardioprotection as also recently reviewed in detail by Ferdinandy et al.4

References

Sandra Lecour1, Rainer Schulz2, Péter Ferdinandy3,4 and Derek J. Hausenloy5,6,7,8,9
1Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and MRC Inter-University Cape Heart Group, University of Cape Town, Cape Town, South Africa
2Institute of Physiology, Justus-Liebig University, Giessen, Germany
3Clinical Pharmacology, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
4Pharmahungary Group, Szeged, Hungary
5The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
6The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
7National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
8Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore
9Corresponding author. Email: d.jhausenloy@ucl.ac.uk