Editorial

How can overexpression of Na\(^+\)/Ca\(^{2+}\)-exchanger compensate the negative inotropic effects of downregulated SERCA?

G. Isenberg*

Department of Physiology, Martin-Luther-University, Halle, Germany

Received 1 November 2000; accepted 1 November 2000

See article by Terracciano et al. [2] (pages 38–47) in this issue.

1. Importance of the Na\(^+\)/Ca\(^{2+}\)-exchanger for the Ca\(^{2+}\) distribution in the failing human heart

The failing human ventricle suffers from two major problems: (1) During diastole, relaxation is retarded and remains eventually incomplete. (2) During systole, the force-frequency relation is blunted, i.e. an increase from 60 to 120 beats-per-min does not increase the contractile force as it is typical in non-failing tissue. Both problems have been linked to reduced expression and function of sarcoplasmic reticulum (SR) Ca\(^{2+}\) ATPase (SERCA) proteins. Studies in isolated human ventricular trabeculae [1] have shown that incomplete Ca\(^{2+}\) reuptake by SERCA can cause (1) a diastolic accumulation of Ca\(^{2+}\) ions in the cytosol which impairs diastolic relaxation, and (2) a reduction of releasable SR Ca\(^{2+}\) with the consequence of a reduced systolic Ca\(^{2+}\) activation of force and a blunted force-frequency relation. Since failing human myocardium was shown to overexpress the Na\(^+\)/Ca\(^{2+}\)-exchanger (mRNA and protein [1]), enhanced Ca\(^{2+}\) efflux by Na\(^+\)/Ca\(^{2+}\)-exchange has been suggested to partially compensate impaired diastolic Ca\(^{2+}\) removal. The paper of Terracciano et al. ([2] in this issue) confirms this view. In addition, it introduces a new idea: the enhanced expression and function of the Na\(^+\)/Ca\(^{2+}\)-exchanger may facilitate Ca\(^{2+}\) reuptake by SERCA and thereby compensate for the impaired SR Ca\(^{2+}\) load.

2. Transgenic mice with overexpressed Na\(^+\)/Ca\(^{2+}\)-exchanger as a model

Terracciano et al. [2,3] compared protein concentrations and functions between ventricular myocytes from transgenic mice (TR) that overexpress the Na\(^+\)/Ca\(^{2+}\)-exchanger and non-transgenic (non-TR) wild-type littermates. They find that the protein levels of the Na\(^+\)/Ca\(^{2+}\)-exchanger are approximately 2.4-fold elevated [3,4] whilst the concentration of Ca\(^{2+}\) handling proteins such as SERCA, calsequestrin and phospholambam were not different. With this background, the authors can evaluate the consequences of the overexpression of a single protein species for the Ca\(^{2+}\) fluxes mediated by Na\(^+\)/Ca\(^{2+}\)-exchange.

3. The balance of Ca\(^{2+}\) fluxes

Terraciano et al. [2] evaluated the Ca\(^{2+}\) fluxes from experiments that measured time-dependent changes (d/dt) of the concentration of Ca\(^{2+}\) ionized in the cytosol ([Ca\(^{2+}\)\(_c\)]) by means of the fluorescence indicator Indo-1. There are several fluxes that increase and decrease [Ca\(^{2+}\)\(_c\)] during the contractile cycle (from [5]):

\[
\frac{d}{dt}[Ca^{2+}]_c = J_{\text{ret}} + I_{\text{Ca,L}} + J_{\text{inf}} + J_{\text{Lig}} - J_{\text{SERCA}} - J_{\text{eff}} - J_{\text{Lig}} \quad (1)
\]

The SR Ca\(^{2+}\) release flux (J\(_{\text{ret}}\)) contributes most (ca. 80%) of the Ca\(^{2+}\) when the transient rises to its peak, it is complemented by Ca\(^{2+}\) influx through L-type channels (I\(_{\text{Ca,L}}\)) and via Na\(^+\)/Ca\(^{2+}\)-exchange operating in Ca\(^{2+}\) influx mode (J\(_{\text{inf}}\)). [Ca\(^{2+}\)\(_c\)] is decreased (negative sign) by SR Ca\(^{2+}\) re-uptake (J\(_{\text{SERCA}}\)) and by Ca\(^{2+}\) efflux via Na\(^+\)/Ca\(^{2+}\)-exchange (J\(_{\text{eff}}\)). Last not least, ionized Ca\(^{2+}\) binds to (-J\(_{\text{Lig}}\)) and unbinds from (+J\(_{\text{Lig}}\)) numerous ligands such as troponin C. When the cellular Ca\(^{2+}\) load is steady,
i.e. when the frequency is constant and no pharmacological interventions are done, the sum of the positive and negative fluxes has to be in balance.

4. Na\(^+\)/Ca\(^{2+}\)-exchange provides both Ca\(^{2+}\) efflux and Ca\(^{2+}\) influx

Our conventional understanding of how the Na\(^+\)/Ca\(^{2+}\)-exchanger contributes to the Ca\(^{2+}\) transient is dominated by the interpretation of the positive inotropy caused by cardioactive glycosides [6]. According to the “Na\(^+\)-lag hypothesis” [7] ouabain inhibits the Na\(^+\)/K\(^+\)-ATPase, the increase in the cytosolic sodium concentration [Na\(^+\)], reduces J\(_{\text{SERCA}}\), and a correspondingly larger part of Ca\(^{2+}\) ions is sequestered by J\(_{\text{SERCA}}\). Amplitude and direction of Ca\(^{2+}\) flux via Na\(^+\)/Ca\(^{2+}\)-exchange are determined by the difference (V\(_{m}\) - E\(_{j}\)). V\(_{m}\) is the membrane potential, and for the reversal potential for the exchanger one can write (e.g. [5])

\[
E_j = 3 E_{Na} - 2 E_{Ca} = 3 \cdot 61 \text{ mV} \cdot \log([Na^+]_i/[Na^+]_o) - 2 \cdot 30.5 \text{ mV} \\
\cdot \log([Ca^{2+}]_i/[Ca^{2+}]_o) \tag{2}
\]

At start of the action potential (AP), [Ca\(^{2+}\)]\(_i\) is low, E\(_j\) is with approximately 26 mV [3] negative to V\(_{m}\) (+30 mV), and the Na\(^+\)/Ca\(^{2+}\)-exchanger operates in the Ca\(^{2+}\) influx mode. When the Ca\(^{2+}\) transient peaks, E\(_j\) increases beyond V\(_{m}\) and the exchanger changes into the Ca\(^{2+}\) efflux mode (J\(_{\text{SERCA}}\), positive in Fig. 2). During the following time, direction and amplitude of the Ca\(^{2+}\) influx depend on both fall of [Ca\(^{2+}\)]\(_i\), (more negative E\(_j\)) and AP repolarization (V\(_{m}\)), usually the amplitude fades away but the direction does remains in the Ca\(^{2+}\) efflux mode (Fig. 2). Increments in [Na\(^+\)], e.g. due to ouabain shift E\(_j\) to more negative potentials, and the reduced driving force attenuates J\(_{\text{SERCA}}\) with the result that more Ca\(^{2+}\) is sequestered by J\(_{\text{SERCA}}\) (compare [8]).

5. The Ca\(^{2+}\) transients in myocytes from transgenic mice

Terracciano et al. compare the Ca\(^{2+}\) transients between field-stimulated TR and non-TR myocytes. The results suggest (see Fig. 1 in [2]):

1. The Ca\(^{2+}\) transients peak earlier (time to peak, TTP, 100 instead of 146 ms) and last shorter in TR than in non-TR myocytes (234 instead of 332 ms for TTP+T50=time to 50% decay). The faster time course is expected in a cell where J\(_{\text{SERCA}}\) is enhanced whilst the other Ca\(^{2+}\) fluxes are non-modified.
2. The amplitude of the Ca\(^{2+}\) transients is not significantly different between TR (126 nM) and non-TR myocytes (133 nM). Result (2) is somewhat unexpected; augmented J\(_{\text{SERCA}}\) (overexpression) should have reduced the peak Ca\(^{2+}\) by earlier cutting off its rising phase (the Ca\(^{2+}\) transient peaks when \(I_{Ca} + I_{rel} + I_{inf} = J_{\text{SERCA}} + J_{\text{SERCA}}\)). By competition with J\(_{\text{SERCA}}\), augmented J\(_{\text{SERCA}}\) should have diminished the SR Ca\(^{2+}\) load, as a consequence a smaller J\(_{\text{rel}}\) should have caused a smaller peak [Ca\(^{2+}\)].

3. The Ca\(^{2+}\) transients of TR and non-TR myocytes superimpose after TTP and TTP+T50 of TR myocytes has been prolonged by inhibiting J\(_{\text{SERCA}}\) of TR myocytes by 200 \(\mu\)M thapsigargin.

6. In myocytes from transgenic mice, SR Ca\(^{2+}\) load is augmented

As an explanation for the constant amplitude of the Ca transient in TR and non-TR myocytes, Terracciano et al. [2] suggest that overexpression of Na\(^+\)/Ca\(^{2+}\)-exchanger facilitates the SR Ca\(^{2+}\) load. The idea was tested by experiments in Ca\(^{2+}\)- and Na\(^+\)-free extracellular solution where the Na\(^+\)/Ca\(^{2+}\)-exchanger does not operate. With J\(_{\text{SERCA}}\) = 0, the decay of the Ca\(^{2+}\) transient can quantify J\(_{\text{SERCA}}\). The amplitudes of the caffeine induced Ca\(^{2+}\) transients were 1556 nM in TR and 880 nM in non-TR myocytes, suggesting that the TR had a larger SR Ca\(^{2+}\) content than non-TR myocytes. J\(_{\text{SERCA}}\) and J\(_{\text{SERCA}}\) cannot be directly extracted from the Ca\(^{2+}\) transient (since the decay rate depends also on J\(_{\text{SERCA}}\) that varies with [Ca\(^{2+}\)], [9]). Instead, the authors estimate J\(_{\text{SERCA}}\) and J\(_{\text{SERCA}}\) and plot them as a function of pCa. Their fit with sigmoidal functions yields the following flux parameter: in non-TR myocytes, SERCA operates with a K\(_{m}\) of 0.4 \(\mu\)M and a V\(_{max}\) of 99 \(\mu\)M/s, the Na\(^+\)/Ca\(^{2+}\)-exchanger with a K\(_{m}\) 0.4 \(\mu\)M and a V\(_{max}\) of 21 \(\mu\)M/s. In TR myocytes J\(_{\text{SERCA}}\) has identical values, however, the Na\(^+\)/Ca\(^{2+}\)-exchanger shows a more than doubled V\(_{max}\) = 53 \(\mu\)M/s at unchanged K\(_{m}\) = 0.4 \(\mu\)M.

In an independent set of voltage-clamp experiments [2], the authors measure the flux of releasable SR Ca\(^{2+}\) (J\(_{rel}\)) as current J\(_{rel}\) (influx of 3 Na\(^+\) ions in exchange of 1 Ca\(^{2+}\) ion). Following the suggestions of the Eisner Laboratory [10], J\(_{rel}\) was activated by rapid application of 10 mM caffeine for 12 s. In continuous presence of caffeine, the SR release channels do not close and J\(_{\text{SERCA}}\) is ineffective, hence, all released Ca\(^{2+}\) ions are extruded via J\(_{\text{rel}}\). The authors estimate from the rates that the flux J\(_{\text{rel}}\) is 1.7-fold larger in TR than in non-TR myocytes. The time integral of the caffeine-induced inward current I\(_{\text{rel}}\) reflects the amount of the caffeine-releasable SR Ca\(^{2+}\) [9]. The authors estimate that the SR of TR is loaded with significantly (32%) more Ca\(^{2+}\) than the SR of non-TR myocytes, and that this difference disappears after SERCA inhibition by thapsigargin.
7. Problems in quantification of the Ca\(^{2+}\) flux

Different to the caffeine-induced Ca\(^{2+}\) transients, Ca\(^{2+}\) transients induced by action potentials (field stimulation) were of low amplitude (approximately 130 nM, Fig. 1 [2]). The low amplitude and the long duration (234 and 332 ms, in non-TR and TR myocytes, respectively) of the Ca\(^{2+}\) transients are in conflict with the duration of contraction that was 128 (TR) and 164 ms (non-TR) as well as with the literature on Ca\(^{2+}\) transients where the myocytes were loaded with the acid form of Indo-1 instead of the acetoxymethylester (AM). An example for isolated mice ventricular myocytes is shown in Fig. 1: [Ca\(^{2+}\)]\(_c\) starts from diastolic 100 nM, rises after a 10 ms delay, peaks to 1100 nM 36 ms after start of the clamp step, and completely relaxes within 200 ms. Thus, the 4 Hz stimulation does not induce a diastolic Ca\(^{2+}\) accumulation or incomplete relaxation. Similar fast and large Ca\(^{2+}\) transients have been measured from mouse trabeculae loaded with the acid form of Indo-1 [11] We interpret that the low amplitude and the slow kinetics of the Ca transients in Fig. 1 [2] were caused by Indo-1 that has been loaded as AM into the cell, i.e. the Na\(^+\),Ca\(^{2+}\)-exchanger must operate in Ca influx nearly all time (see Fig. 2A and B). To solve this dilemma, one may assume that \(E_x\) is not controlled by the global concentration [Ca\(^{2+}\)]\(_c\), (measured by the photomultiplier from the whole cell) but by the local concentrations [3] in the approximately 15 nm narrow subsarcolemmal space (index SL, synonymous “fuzzy space” [12,13]). In this very small volume, augmented \(J_{x,\text{eff}}\) could reduce [Ca\(^{2+}\)]\(_{\text{SL}}\) at a rate faster and to concentrations lower than those indicated by [Ca\(^{2+}\)]\(_c\). If [Ca\(^{2+}\)]\(_{\text{SL}}\) would be as low as e.g. 60 nM, the Na\(^+\),Ca\(^{2+}\)-exchanger would operate in Ca\(^{2+}\) influx mode most of the time (Fig. 2C). However, in order to reduce [Ca\(^{2+}\)]\(_{\text{SL}}\) below [Ca\(^{2+}\)]\(_c\), there must be a net Ca\(^{2+}\) efflux from the cell, i.e. the Na\(^+\),Ca\(^{2+}\)-exchanger must operate in Ca\(^{2+}\) efflux mode and could not operate as \(J_{x,\text{inf}}\) feeding \(J_{\text{SR}}\). Thus, without an additional Ca\(^{2+}\) efflux mechanism (plasmalemmal Ca\(^{2+}\) ATPase?) the above explanation seems to be unlikely.

8. Mechanisms by which overexpressed Na\(^+\)/Ca\(^{2+}\)-exchanger could augment SR Ca\(^{2+}\) filling

How can a Ca\(^{2+}\) efflux increase the SR Ca\(^{2+}\) load by 30% when it operates at a faster rate in TR than in non-TR myocytes?

8.1. Faster decay of [Ca\(^{2+}\)]\(_c\)

The authors have shown that augmented \(J_{x,\text{eff}}\) can speed up the time course of the Ca\(^{2+}\) transients. They argue that the faster decay of [Ca\(^{2+}\)]\(_c\) would shift \(E_x\) earlier in time to the positive values at which Na\(^+\),Ca\(^{2+}\)-exchange would operate as \(J_{x,\text{inf}}\), feeding \(J_{\text{SERCA}}\) and thereby Ca\(^{2+}\) loading the SR [2,3]. Teracciano et al. [3] had measured that the reversal potential \(E_x\) was not different in TR and non-TR myocytes, [Na\(^+\)]\(_c\) was 9.6 and 9.6 mM, [Ca\(^{2+}\)]\(_c\) was 159 and 135 nM and \(E_x\) was −27 and −24 mV, respectively, and model calculations suggest that the Na\(^+\)/Ca\(^{2+}\)-exchanger would operate in Ca\(^{2+}\) efflux nearly all time (see Fig. 2A and B). To solve this dilemma, one may assume that \(E_x\) is not controlled by the global concentration [Ca\(^{2+}\)]\(_c\), (measured by the photomultiplier from the whole cell) but by the local concentrations [3] in the approximately 15 nm narrow subsarcolemmal space (index SL, synonymous “fuzzy space” [12,13]). In this very small volume, augmented \(J_{x,\text{eff}}\) could reduce [Ca\(^{2+}\)]\(_{\text{SL}}\) at a rate faster and to concentrations lower than those indicated by [Ca\(^{2+}\)]\(_c\). If [Ca\(^{2+}\)]\(_{\text{SL}}\) would be as low as e.g. 60 nM, the Na\(^+\),Ca\(^{2+}\)-exchanger would operate in Ca\(^{2+}\) influx mode most of the time (Fig. 2C). However, in order to reduce [Ca\(^{2+}\)]\(_{\text{SL}}\) below [Ca\(^{2+}\)]\(_c\), there must be a net Ca\(^{2+}\) efflux from the cell, i.e. the Na\(^+\),Ca\(^{2+}\)-exchanger must operate in Ca\(^{2+}\) efflux mode and could not operate as \(J_{x,\text{inf}}\) feeding \(J_{\text{SR}}\). Thus, without an additional Ca\(^{2+}\) efflux mechanism (plasmalemmal Ca\(^{2+}\) ATPase?) the above explanation seems to be unlikely.
Fig. 2. Modelled Ca$^{2+}$ flux via Na$^{+}$/Ca$^{2+}$-exchange in dependence on [Ca$^{2+}$], [Na$^{+}$], and membrane potential V_m. The calculations used the equation

$$I_c = \text{const} \cdot \left([\text{Na}^+] \cdot \text{exp}(0.5/\beta V_m) - [\text{Ca}^+] \cdot \text{exp}(-0.5/\beta V_m) \right).$$

$\beta =$ RT/F is 39 mV, [Na$^+$] is 9.6 mM [3]. V_m (light grey, right ordinate) and [Ca$^{2+}$] (dark line, left ordinate) are data from Fig. 1. Traces at the top: non-calibrated I_c, Ca$^{2+}$ influx positive. Note: this model does not incorporate effect of I_c on other Ca$^{2+}$ fluxes or on SR Ca$^{2+}$ loading. A: Ca$^{2+}$ transients due to 80 ms clamp steps, data from Fig. 1. After a spiky Ca$^{2+}$ influx, the Na$^{+}$/Ca$^{2+}$-exchanger operates in Ca$^{2+}$ efflux. The dotted line (top) suggest that cellular Ca$^{2+}$ load would progressively fall when I_{calc} were absent. B: Action potential (AP) induced Ca$^{2+}$ transients (bottom) are fast and of large amplitude (own unpublished experiments). AP repolarization at high [Ca$^{2+}$], induces large Ca$^{2+}$ efflux that decays with diastolic fall of [Ca$^{2+}$], to a steady value. Cellular Ca$^{2+}$ load would fall (dotted line). C: In the small volume of the fuzzy space [Ca$^{2+}$]$_{SL}$ (dotted line) could fall faster and to lower concentrations than global [Ca$^{2+}$] (solid line), turning Na$^{+}$/Ca$^{2+}$-exchange into Ca$^{2+}$ influx mode. Diastolic Ca$^{2+}$ influx, however, is based on the unlikely assumption that [Ca$^{2+}$]$_{SL}$ would stay below [Ca$^{2+}$]. D: Long APs keep V_m positive to E_c, thereby promoting Ca$^{2+}$ influx and cellular Ca$^{2+}$ load.
8.2. Faster accumulation of $[\text{Na}^+]_{\text{SL}}$

J_{inf} should increase $[\text{Na}^+]_{\text{SL}}$ along a time course that is faster in TR than in non-TR myocytes, and E_c could reach potentials where $\text{Na}^+/\text{Ca}^{2+}$-exchange would run as J_{inf} at earlier times. However, the effect should be transient since J_{inf} (and Na^+/K^+-ATPase operating in parallel) would restore $[\text{Na}^+]_{\text{SL}}$ more rapidly in TR than in non-TR myocytes. As discussed above for Ca^{2+} accumulation, faster Na^+ accumulation could change the time course of the decay in activator Ca^{2+}. To net cellular Ca^{2+} load, however, $[\text{Na}^+]_{\text{c}}$ should accumulate independent of the $\text{Na}^+/\text{Ca}^{2+}$-exchanger, for example due to inhibition of the Na^+/K^+-ATPase with ouabain [8].

8.3. Longer action potential (AP)

The inward current generated by Ca^{2+} influx prolongs the plateau of the AP. Even at low $[\text{Ca}^{2+}]_{\text{c}}$, the $\text{Na}^+/\text{Ca}^{2+}$-exchanger can operate in the Ca^{2+} influx mode when the membrane potential is positive to E_c (see Fig. 2D). Unfortunately, the authors do not provide information whether the AP in TR is longer than non-TR myocytes.

In summary, we are still waiting for the definite answer which mechanism is facilitating the filling of the SR Ca^{2+} stores in TR myocytes with increased activity of $\text{Na}^+/\text{Ca}^{2+}$-exchange.

9. The overexpressed $\text{Na}^+/\text{Ca}^{2+}$-exchanger can compensate for suppressed SERCA activity

In TR cells (elevated J_v), inhibition of J_{SERCA} with thapsigargin prolongs the duration of the Ca^{2+} transient and the duration of the twitch. The authors plot these values as a function of exposure time to thapsigargin and compare them with those from non-TR myocytes (no thapsigargin). The comparison indicates that Ca^{2+}-transients and twitches in TR myocytes (2.4-fold increased $\text{Na}^+/\text{Ca}^{2+}$-exchange activity) correspond to those from non-TR controls where SERCA activity is inhibited by 28%. The authors extrapolate to the failing heart: a 28% reduced SERCA function can be compensated by a 2.4-fold increase in $\text{Na}^+/\text{Ca}^{2+}$-exchange activity.

10. From the transgenic mice back to the failing human heart

Human heart failure has been classified in three groups of increased severity [1]. When compared with non-failing hearts, the reduction of SERCA protein was significant in group III (48% reduction) but not in groups II or I (42 and 27% reduction). $\text{Na}^+/\text{Ca}^{2+}$-exchanger protein was unchanged in group III but increased by 80% in group I, this overexpression correlated inversely with the impaired diastolic relaxation [1]. Speculating that reduction of SERCA in failing human hearts of group I could become significant when more data could have been analyzed, the interpretation of the group I failure in human hearts would be in analogy to the first conclusion of Terraciano et al. [2], i.e. the increase in $\text{Na}^+/\text{Ca}^{2+}$-exchange activity (2.4-fold) can compensate the disturbed Ca^{2+} redistribution caused by a modest (28%) inhibition SERCA.

The second major conclusion of Terraciano et al. [2] was that the increased activity of $\text{Na}^+/\text{Ca}^{2+}$-exchange increases via J_{inf} the SR Ca^{2+} load and thereby the amount activator Ca^{2+}. I am not yet ready to accept this conclusion in general terms, or to extrapolate it to the failing human heart. For example, the amplitudes of the physiological systolic Ca^{2+} transients of TR, TR thapsigargin-treated and non-TR myocytes were not significantly different (Fig. 1 [2]). Further, experiments on trabeculae from failing human hearts indicated a reduced SR Ca^{2+} load, as if the overexpressed $\text{Na}^+/\text{Ca}^{2+}$-exchanger had increased the activity of J_{eff} and not of J_{inf} [1]. Obviously, quantification of $J_{\text{SERCA}}, J_{\text{inf}}$ and J_{eff} from Ca^{2+} transients in mice or human preparations is a difficult task that needs knowledge not only of $[\text{Ca}^{2+}]_{\text{c}}$, but also of the cytosolic Ca^{2+} buffering power, the volume fraction of the SR etc., numbers whose extrapolation from rat ventricular myocytes is questionable. In addition to the changed expression of SERCA and $\text{Na}^+/\text{Ca}^{2+}$-exchanger proteins, additional influences such as cell hypertrophy, metabolism etc. are likely to be involved in development of cardiac failure. In the transgenic mouse model, Terraciano et al. [2–4] have analysed the isolated effects of two key proteins, and obtained results that are necessary and important for the further understanding of the complex interactions during development of cardiac failure.

Acknowledgements

I thank J. Borschke for experimental support and Drs. D. Eisner and J. Holtz for critical discussions.

References

[3] Terraciano CMN, De Souza AI, Philipson KD, MacLeod KT. $\text{Na}^+/\text{Ca}^{2+}$-exchange and sarcoplasmic reticular Ca^{2+} regulation in ventricular myocytes from transgenic mice overexpressing the $\text{Na}^+/\text{Ca}^{2+}$ exchanger. J Physiol 1998;512:651–667.
[4] Nicoll DA, Longoni S, Philipson KD. Molecular cloning and