Gender-specific effects of caloric restriction on the balance of vascular nitric oxide and superoxide radical

Shih-Hsuan Chou¹, Yung-Chen Lee¹, Chiu-Feng Huang¹, Yu-Ren Wang¹, Huang-Ping Yu², and Ying-Tung Lau³*

¹Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan, Republic of China; ²Department of Anesthesiology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; and ³Department of Cosmetic Science, Chang Gung Institute of Technology, 261 Wen Hwa 1st Road, Kwei-Shan, Taoyuan, Taiwan, Republic of China

Received 10 July 2009; revised 5 March 2010; accepted 22 March 2010; online publish-ahead-of-print 25 March 2010

Time for primary review: 24 days

Aims
Caloric restriction (CR) and female gender attenuate oxidative damage and improve vascular endothelium-dependent relaxation (EDR). Multiple mechanisms that ameliorate vascular O₂⁻ could enhance the NO⁺/O₂⁻ balance and thus improve EDR. The aim of this study is to compare the effects of short-term (2 weeks) CR and gender on molecular mechanisms involved in NO⁺/O₂⁻ balance and EDR.

Methods and results
Wistar rats (8 weeks old) of both genders were fed ad libitum (control) or were subjected to CR (60% of food intake of controls) for 2 weeks. Plasma levels of NO⁺, insulin, and ghrelin, EDR, vascular NO⁺ and O₂⁻ production, as well as endothelial NO⁺ synthase (eNOS) and NADPH oxidase (Nox) expression were examined and analysed. CR improved EDR and vascular NO⁺ levels and ameliorated NADPH-sensitive O₂⁻ production in male rats more than in females. Both CR and female gender reduced mRNA expression of Nox1 and Nox p22phox (p22phox); however, CR reduced Nox4 and p47phox only in males. Protein expression studies showed that CR enhanced eNOS and reduced Nox4 only in males.

Conclusion
Short-term CR improved the NO⁺/O₂⁻ balance by lowering vascular O₂⁻ production through decreased expression of Nox in males, thus enhancing bioactive NO⁺ levels and EDR. In this regard, CR shifted the state of vascular NO⁺/O₂⁻ balance in males to a state similar to that in females.

Keywords
Caloric restriction • Gender • Endothelial function • Nitric oxide • NADPH oxidase

1. Introduction
Caloric restriction (CR) can prevent or delay ageing-associated diseases and attenuate oxidative damage in various tissues and organs.¹–³ In the vasculature, a major effect of oxidative stress is the reaction between nitric oxide (NO⁺) and excessive superoxide (O₂⁻), which results in a reduction in the bioavailability of NO⁺.⁴ In addition, short-term (1–2 weeks) CR has been shown to improve endothelium-dependent relaxation (EDR) in healthy rats⁵ and obese patients,⁶ suggesting that CR increases bioactive NO⁺ within the vasculature. Recent findings suggest that NADPH oxidases (Nox) are important source of O₂⁻ production, which reduces NO⁺ levels in the vasculature including rat aortas.⁷ These enzymes are membrane bound and generate O₂⁻ by transferring electrons from NADPH to molecular oxygen through a flavin-containing ‘Nox’ catalytic subunit.⁸ Although it has been suggested that CR reduces O₂⁻ production in endothelial cells from aortic tissues of aged rats,⁹ short-term (2 weeks) CR also decreases muscle mitochondrial H₂O₂ production in young rats.¹⁰ However, it is not known whether short-term CR augments vascular bioactive NO⁺ by reducing O₂⁻ production via Nox.

In addition, CR exhibits greater effects on physical growth¹¹ and lifespan¹² in males than in females. On the other hand, there is a greater incidence of cardiovascular disease in men and postmenopausal women when compared with premenopausal women suggesting that oestrogen may provide vascular protective
effects. Oestrogen reportedly exerts some of its cardioprotective effects by enhancing endothelial NO+ synthase (eNOS) activity and NO+ production in vascular walls, resulting in an increase in EDR. However, oestrogen also reduces the production of O\textsubscript{2}− in aortic tissues. Hence, the effects of CR on vascular NO+/O\textsubscript{2}− balance may have multiple mechanisms. Whether the vascular beneficial effects of short-term CR and those related to the female gender (or to oestrogen) employ similar mechanisms in altering NO+/O\textsubscript{2}− balance is yet to be reported.

The aim of this study is to investigate the effects of short-term (2 weeks) CR on vascular EDR and NO+/O\textsubscript{2}− balance in both genders; thus, providing a comparison of CR- and gender-related vascular mechanisms. To compare the effects of CR on both genders, we evaluated physical and biochemical parameters, EDR, vascular NO+ and O\textsubscript{2}− production, as well as Nox expression in male and female rats, with or without CR.

2. Methods

2.1 Animals

All experimental procedures were approved by the Animal Care Review Board of Chang Gung University, Taoyuan, Taiwan. Wistar rats (8 weeks old) were obtained from the National Science Council, Taipei, Taiwan and maintained in the Animal Center of Chang Gung University with a 12:12 h light:dark cycle. They were divided into four groups (n = 24 per group): male (ad libitum), female (ad libitum), male + CR (60% caloric intake of male group), and female + CR (60% caloric intake of female group). That regimen was based on a previous study which reported that both every-other-day and 40% CRs can improve EDR and lifespan in rodents. The food intakes of the control (ad libitum) animals were measured every 2 days and then averaged to determine daily food intake. The CR animals were caged individually and received a 10% restricted diet. The aim of this study is to investigate the effects of short-term (2 weeks) CR on vascular EDR and NO+/O\textsubscript{2}− balance in both genders; thus, providing a comparison of CR- and gender-related vascular mechanisms. To compare the effects of CR on both genders, we evaluated physical and biochemical parameters, EDR, vascular NO+ and O\textsubscript{2}− production, as well as Nox expression in male and female rats, with or without CR.

2.2 Measurement of serum oestrogen and testosterone, plasma insulin, and acylated ghrelin concentrations

At the end of the 2-week experiment, all groups of animals were fasted for 8 h and then sacrificed using sodium pentobarbital (50 mg/kg intraperitoneal). Before thoracic aortas were removed, blood samples were collected by cardiac puncture and incubated with or without EDTA. Serum oestrogen and testosterone, plasma insulin, and acylated ghrelin were measured using enzyme immunoassay kits (see Supplementary material online).

2.3 Vessel reactivity studies

We followed the standard protocols employed in our laboratory (Yen and Lau). Briefly, after equilibration in Krebs solution, aortic rings (2 mm) were exposed to phenylephrine (PE, 10 µmol/L) and acetylcholine (ACH; 30 µM) for functional assessment of endothelial integrity. EDR was evaluated with cumulative concentrations of ACh (10−9–3 × 10−5 mol/L) in aortic rings pre-contracted with PE (1 µmol/L). Endothelium-independent relaxation was determined by analysing the relaxant effects of sodium nitroprusside (SNP, 10−6–10−9 mol/L) in pre-contracted aortic rings. The pre-contracted tension elicited by PE was statistically identical among experimental groups (data not shown).

2.4 Measurement of Nox1 concentration

We measured NO+ content in plasma and in ACh-stimulated aortas using a chemiluminescence-based assay with an NO analyser (NOA280i, Sievers Instruments, USA) as previously described (see Supplementary material online).

2.5 Measurement of NADPH-sensitive superoxide production

Isolated aortas were cut into rings (2 mm) and immediately placed in Krebs–HEPES solution (see Supplementary material online) for 20 min. Superoxide production was measured, using lucigenin-enhanced chemiluminescence, and validated as described previously (see Supplementary material online).

2.6 Quantitative reverse transcriptase–polymerase chain reaction

Total RNA from aortas were extracted using TRIzol reagent (Invitrogen, USA). Total RNA (1 µg) was reverse-transcribed using iScript cDNA synthesis kits (Bio-Rad, USA) in a total volume of 20 µL. cDNA encoding eNOS, Nox1, Nox2, Nox4, gp91, p22phox, and p47phox were amplified using real-time polymerase chain reaction (PCR). Gene-specific primers were designed using Beacon Designer 7.5 software (Premier Biosoft International, USA) (see Supplementary material online, Table S1). Real-time PCR was performed twice using the intercalating dye SYBR Green. Each sample (25 µL) contained 12.5 µL of iQ SYBR Green! SuperMix (Bio-Rad), 0.4 µM of each primer, and 1 of 50 of the RT product. PCR cycles were programmed and recorded using the iQ5 Real-Time PCR detection system (Bio-Rad). The cycle number (CT) was compared with that of β-actin, referred to as ΔCT. The relative gene expression level was expressed as 2−(ΔΔCT), where ΔΔCT equals ΔCT of female minus the ΔCT of the male rats or ΔCT of CR rats minus the ΔCT of the control rats.

2.7 Protein expression of eNOS and Nox4

Protein expression of eNOS and Nox4 in aortic tissues was detected using western blotting. In brief, aortas were homogenized in ice-cold lysis buffer (see Supplementary material online) with protease inhibitors and centrifuged (25 µg for 30 min) at 4°C. Equal amounts of protein underwent polyacrylamide SDS–PAGE (9.5% and 7.5%) and electrophoretically transferred to a nitrocellulose membrane. Those membranes were blocked in milk (5%), incubated overnight (4°C) with anti-eNOS (Santa Cruz, USA), anti-Nox4 (Abcam, USA), and anti-GAPDH (Santa Cruz, USA) primary antibodies, and then incubated with horseradish peroxidase-conjugated immunoglobulin for 1 h at room temperature. After the final wash, immunoreactive bands were detected using enhanced chemiluminescence (Millipore, USA) and exposed to X-ray films. Protein expression levels were quantified using ImageJ densitometry software (National Institutes of Health, USA).

2.8 Statistical analysis

All results are expressed as mean ± SEM values. Differences between genders or between control and CR groups were analysed by Student’s t-test. Interactions between gender and CR were analysed by two-way ANOVA. Simple linear regression was used to determine the correlation
between eNOS and Nox4 expression. All comparisons were computed using SPSS 13.0 (SPSS, Inc., USA). A P-value < 0.05 was considered statistically significant.

3. Results

3.1 Physiological and biochemical profiles of animals

Body weights of females were significantly lower than those of males (P < 0.05, Table 1). In both sexes, 2-week CR resulted in significantly lower gain in body weights compared with control rats (P < 0.05, Table 1). Plasma insulin, acylated ghrelin, and NO* concentrations were determined at the end of the experiments. Insulin was significantly lower, whereas acylated ghrelin and NO* levels were significantly higher in control females than in males (P < 0.05, Table 1). CR lowered the plasma insulin, but increased both ghrelin and NO* significantly in male rats only (P < 0.05, Table 1).

To explore the role of oestrogen further, we injected oestrogen (10 µg/kg body weight) daily to male rats with or without CR for 2 weeks. In various groups, serum oestrogen level was significantly higher in female than in male and OVX groups (see Supplementary material online, Figure S2A). Oestrogen injection in male and OVX groups significantly raised serum oestrogen concentration compared with male and OVX groups (see Supplementary material online, Figure S2A). Serum testosterone level was higher in male groups compared with female groups (see Supplementary material online, Figure S2B). Oestrogen treatment drastically decreased serum testosterone in male rats compared with control male and female groups (see Supplementary material online, Figure S2B). OVX rats exhibited lower plasma NO* concentration compared with sham-operated rats (P < 0.05, see Supplementary material online, Figure S3A). Both CR and oestrogen supplementation significantly elevated the plasma NO* level in OVX rats (P < 0.05, see Supplementary material online, Figure S3A).

3.2 Assessment of vascular reactivity

In PE-induced pre-contracted rings, ACh elicited a dose-dependent relaxation (EDR). Maximal EDR was higher in control females than in males (P < 0.05, Figure 1A), whereas CR significantly enhanced maximal EDR in males but not in females (P < 0.05, Figure 1A). OVX significantly reduced maximal EDR compared with sham-operated rats (P < 0.05, see Supplementary material online, Figure S3B). Both CR and E2 supplementation significantly improved maximal EDR in OVX rats (P < 0.05, see Supplementary material online, Figure S3B). To evaluate endothelium-independent relaxation, pre-contracted aortic rings were treated with SNP and the maximal response was identical in all groups (Figure 1B and see Supplementary material online, Figure S3C).

3.3 Aortic NO* and NADPH-sensitive O2− production

ACh-stimulated NO* production in aortic tissue was higher in control females than in male rats (P < 0.05, Figure 1C) and CR caused a significant increase in ACh-stimulated NO* production in males, but not in females (P < 0.05, Figure 1C). Because aortic O2− production reduces bioavailable NO*, we next determined NADPH-sensitive O2− production and found that control male aortic rings exhibited significantly greater O2− levels than those of females (P < 0.01, Figure 1D). Further, CR significantly reduced NADPH-sensitive O2− production to a greater extent in males than in females (P < 0.01, Figure 1D), indicating that bioactive levels of NO* produced by aortas were greater in females than in males. We found that oestrogen treatment did not significantly alter NO* output, vascular O2− production in males with or without CR (see Supplementary material online, Figure S1A and B). O2− production was higher in OVX rats (see Supplementary material online, Figure S3D) and both CR and E2 supplementation significantly reduced aortic NADPH-sensitive O2− production in OVX rats (P < 0.05, see Supplementary material online, Figure S3D).

To clarify the enzymatic source of aortic O2− production, several pharmacological inhibitors were used. NADPH-sensitive O2− production was suppressed by diphenyleneiodonium (10 µmol/L) and superoxide dismutase (SOD; 300 U/mL); however, it was not significantly altered by oxyypurinol (100 µmol/L), indomethacin (10 µmol/L), Nω-nitro-o-arginine (100 µM), or rotenone (10 µmol/L) (see Supplementary material online, Figure S2).

3.4 Expression of Nox and eNOS

Nox mRNA levels were examined. Aortic Nox1, Nox2, Nox4, p22phox, and p47phox mRNA expression were detected by quantitative reverse transcriptase–PCR after normalizing to the β-actin mRNA expression level. The mRNA expression of aortic Nox1, Nox2, Nox4, p22phox, and p47phox was significantly higher in control males than in females (P < 0.05, Figure 2A–E). In male rats, CR significantly decreased the mRNA expression of all Nox subunits, except that of Nox2 (Figure 2B). While in females, CR only significantly diminished aortic Nox1 and p22phox mRNA expression.

Table 1 Physiological and biochemical parameters of all animal groups after 2 weeks of treatment with and without caloric restriction

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Male + CR</th>
<th>Female</th>
<th>Female + CR</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial body weight (g)</td>
<td>351.1 ± 3.7G</td>
<td>342.9 ± 2.8G</td>
<td>215.0 ± 4.4</td>
<td>210.9 ± 1.4</td>
<td></td>
</tr>
<tr>
<td>Final body weight (g)</td>
<td>373.0 ± 8.3GR</td>
<td>350.4 ± 2.5G</td>
<td>221.5 ± 3.9R</td>
<td>197.1 ± 3.1</td>
<td></td>
</tr>
<tr>
<td>Plasma insulin (µL)</td>
<td>2.52 ± 0.55GR</td>
<td>0.98 ± 0.14</td>
<td>0.66 ± 0.07</td>
<td>0.73 ± 0.14</td>
<td>G × R</td>
</tr>
<tr>
<td>Plasma ghrelin (pg/mL)</td>
<td>172.47 ± 20.56GR</td>
<td>235.62 ± 14.78</td>
<td>309.93 ± 31.20</td>
<td>363.33 ± 53.55</td>
<td>G × R</td>
</tr>
<tr>
<td>Plasma NO (µmol/L)</td>
<td>15.21 ± 0.83GR</td>
<td>18.92 ± 0.63</td>
<td>20.11 ± 0.32</td>
<td>19.46 ± 0.85</td>
<td>G × R</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SEM values (n = 10–12 animals per group). Differences between both genders (G) or between control and caloric restriction (CR; R) groups were analysed by Student’s t-test. Superscript G indicates P < 0.05 compared with respective female group; superscript R indicates P < 0.05 compared with respective CR group. Interactions between gender and CR (G × R, if present, indicates P < 0.05) were analysed by two-way ANOVA.
(P < 0.05, Figure 2A and D). The gender difference in CR response was particularly pronounced in Nox4 (Figure 2C) and p47phox (Figure 2E). Considering that Nox4 is a major component in vascular tissues of Nox,24,25 we determined the protein expression of Nox4 and eNOS. Control females exhibited higher aortic eNOS expression than males (P < 0.05, Figure 3A), whereas Nox4 protein expression was significantly higher in males (P < 0.05, Figure 3B). CR significantly increased aortic eNOS and decreased Nox4 expression in males only (Figure 3A and B). We further found that oestrogen treatment did not significantly alter eNOS and Nox4 expression in males with or without CR (see Supplementary material online, Figure S1C and D).

3.5 Correlational study of NO\(^{\cdot}/O_{2}^{\cdot-}\) balance

We have determined vascular ACh-induced EDR (Figure 1A), NO\(^{\cdot}\) production (Figure 1C), eNOS expression (Figure 3A), vascular O\(^{2-}\) production (Figure 1D), and Nox4 (Figure 3B) from the same animal. Variation in both NO\(^{\cdot}\) and O\(^{2-}\) levels thus provided an opportunity to investigate the biochemical and functional correlations characterizing the state of NO\(^{\cdot}/O_{2}^{\cdot-}\) balance of that animal. Linear regression analysis was used to examine the relation between eNOS and Nox4 expression in all animals. In male rats, the relationship (R\(^2\) = 0.52, P < 0.05) showed a significant negative correlation (Figure 4A), but the correlation was not significant in females (Figure 4B). Moreover, CR caused a shift from a low NO\(^{\cdot}/O_{2}^{\cdot-}\) status (open circle) due to high O\(^{2-}\) production and low maximal ACh-induced EDR (bioactive NO\(^{\cdot}\)) in control males to a higher NO\(^{\cdot}/O_{2}^{\cdot-}\) status (solid circle), closer to that in control females (triangles) (Figure 4C).

4. Discussion

This study investigates the gender-specific impact of short-term CR on the balance of vascular NO\(^{\cdot}\) and O\(^{2-}\) production in young rats. To our knowledge, this work provides the first evidence that CR results in a reduction of vascular O\(^{2-}\) production through decreased
expression of Nox to a greater extent in male rats than in females. This reduction causes CR-treated rats to maintain more vascular bioactive NO$^+$ and exhibit greater EDR.

4.1 Gender differences in NO$^+$/O_2^- balance in control rats

Oestrogen is known to produce gender dimorphism in cardioprotective actions by enhancing eNOS activity and NO$^+$ production in the vascular wall, resulting in enhanced EDR.$^{26–28}$ This difference may also be due to less vascular production of O_2^- in females29 with lower NADPH-sensitive O_2^- production of various arteries in an oestrogen-dependent manner,30 and is consistent with the observation that more NADPH-sensitive O_2^- is produced in ovariectomized animals.31 Here, the aortas of control female rats exhibited greater EDR (Figure 1A and B), higher bioactive NO$^+$ in aortic tissues and plasma (Table 1 and Figure 1C), and less NADPH-sensitive O_2^- production than males (Figure 1D). In an exploration of the role of oestrogen in NO$^+$/O_2^- balance, we employed oestrogen treatment to male rats for 2 weeks and found that oestrogen treatment did not significantly alter vascular NO$^+$ output, O_2^- production, eNOS, and Nox4 expression (see Supplementary material online, Figure S1A–D). However, oestrogen greatly decreased serum testosterone in male rats with or without CR compared with control (see Supplementary material online, Figure S2B). Testosterone deficiency in males is associated with elevated levels of total cholesterol, low-density lipoprotein, enhanced production of proinflammatory cytokines, increased thickness of the arterial wall, and endothelial dysfunction.32 The observed drop of serum testosterone level may thus offset the beneficial effects of oestrogen in our model. Nevertheless, in an oestrogen deficiency model, OVX caused an increase in vascular O_2^- production and impaired EDR (see Supplementary material online, Figure S3A–D).
Oestrogen supplementation improved the OVX-induced alterations (see Supplementary material online, Figure S3B–D). Furthermore, the nitrite level in plasma has been suggested to reflect eNOS activity in mammals including rats. Our data showed that plasma and acetylcholine-stimulated aortic NO\(^+\) levels, as well as eNOS expression, were higher in control female than in male rats (Table 1). In addition, the E\(_2\) supplement elevated plasma NO\(^+\) concentration in OVX rats (see Supplementary material online, Figure S3A). Taken together, these results suggest that oestrogen is at least partially responsible for gender dimorphism in the NO\(^+\)/O\(_2\)\(^{•−}\) balance.

In vasculature, Nox generates O\(_2\)\(^{•−}\) by transferring an electron from NADPH to molecular oxygen via the Nox catalytic subunit, and Nox1, Nox2, and Nox4-containing isoforms are important for O\(_2\)\(^{•−}\) generation. Female cerebrovascular Nox activity has exhibited...
lower Nox1 and Nox4 expression than in males. In support of that observation, our data showed that Nox1, Nox2, Nox4, p22phox, and p47phox in aortic tissue were expressed at lower levels in control females than in males (Figure 2A–E). Also, a negative correlation exists between eNOS and Nox4 protein expression in males (Figure 4A), suggesting that Nox4 may be partly responsible for gender dimorphism in NO+/O2− balance.

The level of O2− within vasculature is not regulated by Nox alone, and anti-oxidant enzymes, such as SOD, are also involved. In porcine femoral arteries, the expression of CuZnSOD and MnSOD is lower in males than in females; however, the levels of all SOD isoforms in the basilar arteries did not differ between genders. Thus, the role of SOD in gender-specific O2− production is not clear. Other factors are also contributors to this gender difference. Here, we found that plasma acylated ghrelin content in females was higher than in males, consistent with previous investigations in humans. In addition, ghrelin can increase NO− production and reduce O2− production in vasculature; thus, it may affect the NO+/O2− balance in a gender-specific manner.

4.2 Gender-specific effects of NO+/O2− balance in CR rats

Several studies in male rats have demonstrated that ageing impairs vascular NO+ production and lifelong CR prevents age-induced endothelial dysfunction. CR causes significant improvement of NO-mediated dilation of resistance arteries from the skeletal muscle of aged rats. Short-term (1 week) CR also increases EDR, NO+ production, and eNOS expression in aortic tissue of healthy male Fischer 344 rats. In support, we found that CR for 2 weeks enhanced EDR, plasma and ACh-stimulated NO+ production (Figure 1A and Table 1) and eNOS expression (Figure 3A) in aortas of male rats but not in females; given that control females already exhibited >90% of maximal relaxation (Figure 1A).

Bioavailability of NO+ can be enhanced by diminishing O2− production in vascular tissues, and CR can reduce reactive oxygen species in a wide range of species and tissues. Here, CR significantly reduced aortic NADPH-sensitive O2− production in young rats in a gender-dependent manner (by 47% in males, 21% in females) (Figure 1D). Furthermore, CR decreased aortic mRNA expression of Nox1, Nox4, p22phox, and p47phox in males, but only Nox1 and p22phox mRNA expression in females (Figure 2), suggesting that Nox4 and p47phox could be the molecular entities responsible for the observed gender difference. Several lines of evidence support this notion. First, females and CR rats both have exhibited lower oxidative damage in heart tissue compared with respective males and control rats. Secondly, Nox4 is considered to be the main source of O2− in endothelial cells and vascular smooth muscle cells, suggesting that Nox4-derived O2− could effectively antagonize the effect of NO−. Further, the expression of Nox4 is significantly higher than Nox1 in aortic tissue. Thirdly, although both p22phox and p47phox are essential for the Nox activity in vascular tissues, Nox1, Nox2, and Nox4 are all needed to form a functional complex; moreover, depletion of p47phox has caused enhanced endothelium-derived O2− production. Our findings that CR affected neither Nox4 nor p47phox expression in females suggest that they could be the major targets of CR in males.

CR also alters the expression and activities of anti-oxidant enzymes. Long-term CR has increased glutathione peroxidase and catalase expression but did not alter SOD activities in aged aortic tissue; also, it has prevented age-dependent decline in glutathione synthesis in aortic tissue. We have employed relatively short-term (6 weeks) CR on young rats and did not observe significant effects on anti-oxidant enzymes (unpublished results). Instead, the suppression of Nox by CR and the differential expression of Nox subunits, at least in part, explains our finding that CR reduced O2− production more in males than in females. Interestingly, resveratrol, a CR mimic, binds to oestrogen receptors in vitro and attenuates hepatic injury after trauma-haemorrhage via oestrogen receptor signalling. Furthermore, resveratrol not only mimics the transcriptional profile of CR mice in various organs, but also enhances vascular bioavailable NO+ levels by decreasing O2− production. Our correlation results showed that CR appears to shift the state of the vascular balance of NO+/O2− in male rats to the state in female rats (Figure 4C).

A simple mechanism to shift NO+/O2− balance from male to female status would be to alter the levels of sex steroids. However, CR did not change the serum levels of either oestrogen or testosterone (see Supplementary material online). Here, the mRNA expression of oestrogen receptors in both genders is not altered by CR (data not shown). Thus, oestrogen and/or oestrogen receptors were not the major factors for the observed beneficial effects of CR in males. Although the underlying mechanism for the effects of CR on males remains unclear, the gender-specific alterations of ghrelin and insulin (Table 1) suggest a interesting lead, because previous study has indicated that 1-week CR improves EDR in males and is attributable to an increased plasma ghrelin level, decreased insulin concentration, and unchanged glucose concentration. Unaltered glucose level in CR has also been documented in human studies. Here, CR only elicited enhanced EDR and ghrelin with reduced insulin in young male rats (Figure 5).

In summary, greater EDR in female than male rats was associated with both increased NO+ production via eNOS and lower vascular...
O$_2^-$ production via Nox. Moreover, male rats subjected to short-term CR exhibited a favourable NO$^+$O$_2^-$ balance by lowering vascular O$_2^-$ production through a decreased expression of Nox, thus enhancing bioactive NO$^+$. The CR-induced attenuations of both arms of the vascular NO$^+$O$_2^-$ balance resulted in more pronounced benefits in male than female rats.

Supplementary material
Supplementary material is available at Cardiovascular Research online.

Acknowledgements
We are grateful to Professor Min-Chi Chen for her assistance of statistics.

Conflict of interest: none declared.

Funding
This work was supported by National Science Council [NSC92-2314-B-182-075 to Y.T.L., NSC93-2314-B-182A-194 to H.P.Y.], Molecular Medicine Research Center, Chang Gung University [EMRPD180101 to Y.T.L.], and Chang Gung Memorial Hospital [CMRPF170101 to Y.T.L. CMRP33002 to H.P.Y.].

References

