Aquaporin 1, Nox1, and Ask1 mediate oxidant-induced smooth muscle cell hypertrophy

Imad Al Ghouleh1,2, Giovanna Frazziano1,2,3, Andres I. Rodriguez1,2, Gábor Csányi1,2, Salony Maniar4, Claudette M. St Croix4,5, Eric E. Kelley1,2,6, Loreto A. Egaña1,2, Gyun Jee Song2, Alessandro Bisello2, Yong J. Lee2,7, and Patrick J. Pagano1,2*

1Vascular Medicine Institute and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; 2Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; 3R.1. MFD Foundation, Palermo, Italy; 4Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA; 5Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA; 6Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA; and 7Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA

Received 16 November 2011; revised 25 August 2012; accepted 13 September 2012; online publish-ahead-of-print 20 September 2012

Time for primary review: 33 days

Aims
Reactive oxygen species (ROS)-mediated intracellular signalling is well described in the vasculature, yet the precise roles of ROS in paracrine signalling are not known. Studies implicate interstitial ROS hydrogen peroxide (H2O2) in vascular disease, and plasma H2O2 levels in the micromolar range are detectable in animal models and humans with hypertension. Recently, H2O2 was shown to cross biological membranes of non-vascular cells via aquaporin (Aqp) water channels. Previous findings suggest that H2O2 activates NADPH oxidase (Nox) enzymes in vascular cells and apoptosis signal-regulating kinase 1 (Ask1) in non-vascular cells. We hypothesized that extracellular H2O2 induces smooth muscle cell (SMC) hypertrophy by a mechanism involving Aqp1, Nox1, and Ask1.

Methods and results
Treatment of rat aortic SMCs (rASMC) with exogenous H2O2 resulted in a concentration-dependent increase in Nox-derived superoxide (O2·−), determined by L-012 chemiluminescence, cytochrome c and electron paramagnetic resonance. Nox1 was verified as the source of O2·− by siRNA. Aqp1 siRNA attenuated H2O2 cellular entry and H2O2-induced O2·− production. H2O2 treatment increased Ask1 activation and induced rASMC hypertrophy in a Nox1-dependent mechanism. Adenoviral-dominant-negative Ask1 attenuated H2O2-induced rASMC hypertrophy and adenoviral overexpression of Ask1 augmented it.

Conclusion
Our results demonstrate for the first time that extracellular H2O2, at pathophysiological concentrations, stimulates rASMC Nox1-derived O2·−, subsequent Ask1 activation and SMC hypertrophy. The data demonstrate a novel pathway by which H2O2 enters vascular cells via aquaporins and activates Nox, leading to hypertrophy, and provide multiple novel targets for combinatorial therapeutics development targeting hypertrophy and vascular disease.

Keywords
NADPH oxidase • Hydrogen peroxide • Aquaporin • Ask1 • Hypertrophy

1. Introduction
Reactive oxygen species (ROS) and their cellular sources have been the focus of intense study in recent years. ROS mediate cell and tissue oxidative stress and damage, as well as participate in key signalling pathways, leading to vascular remodelling, cell migration, and differentiation.1,2 However, the role of ROS as paracrine modulators of oxidative stress and signalling has largely gone unstudied. Of the various ROS, hydrogen peroxide (H2O2) is most likely the best candidate for effecting paracrine signalling attributed to its stability and relative diffusibility.2 Indeed, previous data from our laboratory indicate H2O2-mediated feed-forward signalling between the vascular adventitia and medial smooth muscle cells (SMCs) resulting in local ROS production and SMC hypertrophy.3,4

Being a relatively stable ROS, H2O2 is thought to partition into and freely cross membranes and thus pervade cells and tissue in a relatively facile manner. This widely accepted notion was recently challenged in a report showing a role for previously defined water channels, aquaporins, in H2O2 diffusion into HEK 293 and HeLa cells.5 Aquaporins are ubiquitously expressed across species from yeast to humans.6

* Corresponding author: Department of Pharmacology and Chemical Biology, and Vascular Medicine Institute and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, Room E1247, 200 Lothrop Street, Pittsburgh, PA 15261 USA. Tel: +1 412 383 6505; fax: +1 412 648 5980, Email: pagano@pitt.edu
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2012. For permissions please email: journals.permissions@oup.com.
It is unknown, however, whether these channels function as conduits for \(\text{H}_2\text{O}_2 \) transport across vascular cells. The NADPH oxidase (Nox) enzyme family is widely recognized as a robust and critical source of the ROS superoxide anion (\(\text{O}_2^- \)) in the vasculature, and as such, is a plausible target of \(\text{H}_2\text{O}_2 \)-mediated feed-forward signalling. However, it is not known whether physiologically relevant concentrations of \(\text{H}_2\text{O}_2 \) (i.e. as low as 5 \(\mu \text{M} \) that are found in animal and human studies of vascular disease) activate Nox isozymes.

Interestingly, the mediators of paracrine \(\text{H}_2\text{O}_2 \)-induced SMC signalling and dysfunction are also still poorly described. It is well accepted that Nox-derived ROS activate p38 MAPK, which is pivotal in SMC hypertrophy.\(^7\) In this study, we postulated that \(\text{H}_2\text{O}_2 \) induces SMC Nox1, which, in turn, activates apoptosis signal-regulating kinase 1 (Ask1), a heretofore described upstream activator of p38 MAPK.\(^8\) Ask1 is a viable but never before studied activator of vascular hypertrophy. In summary, our findings are the first to our knowledge to draw a link between extracellular \(\text{H}_2\text{O}_2 \) entering vascular SMCs via aquaporin 1 (Aqp1) channels and stimulating vascular Nox-derived ROS, which in turn activate Ask1 and hypertrophy. These findings provide multiple novel therapeutic targets aimed at suppressing or abrogating vascular SMC hypertrophy.

2. Methods

Detailed methods are provided in the Supplementary material online.

2.1 Materials

A detailed list of materials used is included in the Supplementary material online.

2.2 Cell culture

Rat aortic smooth muscle cells (rASMC) were purchased from Lonza (Lonza Cologne GmbH, Cologne, Germany). Cells were maintained in DMEM supplemented with 10% FBS and containing 100 U/mL penicillin and 100 \(\mu \text{g} \)/mL streptomycin (Invitrogen). Cells were cultured at 37°C with 5% \(\text{CO}_2 \). Cells between passages 2–9 were used.

2.3 \(\text{O}_2^- \) detection

2.3.1 Electron paramagnetic resonance

Electron paramagnetic resonance (EPR) spin probe CMH (50 \(\mu \text{M} \)) was used to examine \(\text{O}_2^- \) production using a Bruker eScan Table-Top EPR spectrometer (Bruker Biospin, USA). \(1 \times 10^6 \) cells/mL were resuspended in Krebs–HEPES buffer (pH 7.4) treated with Chelex resin and containing 25 \(\mu \text{M} \) deferoxamine to minimize the deleterious effects of contaminating metals. Spectra were obtained after 1, 10, and 20 min at 37°C.

2.3.2 L-012 chemiluminescence

Cells on white clear-bottom 96-well culture plates were stimulated with varying concentrations of \(\text{H}_2\text{O}_2 \) for 10–300 min. The media was replaced with PBS (pH 7.4) supplemented with CaCl\(_2\) (0.9 mM) and MgSO\(_4\) (0.49 mM) and luminol derivative L-012 (400 \(\mu \text{M} \)) was added and chemiluminescence measured in a BioTek Synergy 4 Hybrid Multi-Mode Microplate Reader (BioTek, Winooski, VT, USA) for at least 30 min post-\(\text{H}_2\text{O}_2 \) stimulation times. \(\text{O}_2^- \) production was quantified as relative light units (RLU).

2.3.3 Cytochrome c reduction assay

The cytochrome c assay was conducted as described previously.\(^9\) Briefly, cells were treated with 50 \(\mu \text{M} \) \(\text{H}_2\text{O}_2 \) for 1 h, lysed and 28 000 \(\times \) g membrane fraction prepared. Membrane fractions were mixed with cytochrome c. After 5 min baseline measurement, NADPH was added and \(\text{O}_2^- \) production calculated from the initial linear rate of superoxide dismutase (SOD)-inhibitable cytochrome c reduction (at 550 nm; extinction coefficient 21.1 \(\mu \text{M}^{-1} \text{cm}^{-1} \)).

2.4 Live-cell imaging confocal microscopy of HyPer fluorescence

Cells on coverslip bottomed dishes (MatTek, Ashland, MA, USA) were mounted in a temperature controlled chamber (Tokai Hit, Japan) atop the motorized stage of a Nikon TiE inverted fluorescence microscope with a \(10 \times 60, 1.4 \) NA optic (Nikon, Melville, NY, USA). HyPer was excited by 483 and 513 nm (SpectraX, Lumencor, Beaverton OR, USA) and detected using 525/50 nm bandpass filter (Chroma Technology), C11440–22C camera (Hamamatsu), and NIS Elements software. The ratios (513/438) were calculated for one to three cells per stage position, 10 stage positions per plate per experiment.

2.5 siRNA transfection to suppress Nox1 or Aqp1

Cells were grown to 30–50% confluence on 100 mm, 6-well or 96-well plates and were transfected with scrambled siRNA or three distinct variants of siRNA (5 pmol) against Nox1 or Aqp1 using the transfection reagent Lipofectamine 2000 according to the manufacturer’s protocol. Cells were assayed 48 h later.

2.6 Adenoviral transduction for Ask1 gain- and loss-of-function

Adenoviruses for green fluorescent protein (GFP), transgenic (Tg), or dominant-negative (DN)-Ask1 were added to 50% confluent cells at a multiplicity of infection (MOI) of 10 and incubated for 24 h at 37°C. For experiments in which siRNA was applied, adenoviruses were added 24 h post-siRNA transfection.

2.7 Quantitative PCR

First cDNA was prepared using 1–2 \(\mu \text{g} \) of total RNA (SuperScript™ First-Strand, Invitrogen). Then samples were mixed with primer/probe for Nox1, Nox4, Aqp1, or 18S in 384-well plate (TaqMan® Universal PCR Master Mix, ABI- Applied Biosoysystems, Inc., Foster City, CA, USA) and qPCR performed in a 7900HT Fast Real-Time PCR System (ABI) for 40 cycles. Relative quantification was obtained using the Ct (threshold cycle) method:

\[
\Delta C_t = C_t \text{Nox1}/\text{Nox4}/\text{Aqp1} - C_t\text{18S} \\
\Delta \Delta C_t = C_{\Delta Ct} \text{transfected sample} - C_{\Delta Ct} \text{scrambled siRNA transfected sample}
\]

Relative expression was calculated as \(2^{-\Delta \Delta C_t} \).

2.8 Western blot

Cells were lysed with RIPA buffer and SDS–PAGE performed. Membranes were incubated with total Ask1 (Cell Signaling) or phospho-Ask1 (threonine-845, a kind gift from Dr Hidenori Ichijo, University of Tokyo, Japan) antibodies (1500 dilution). Membranes were probed with goat anti-mouse or goat anti-rabbit secondary antibodies (1:10 000 dilution, Li-Cor Biosciences). Digital imaging was obtained (Odyssey Infra-Red Imaging system, Li-Cor).

2.9 Quantification of cell hypertrophy

Eighty per cent confluent rASMCs were treated with 50 \(\mu \text{M} \) \(\text{H}_2\text{O}_2 \) for 24 h then separated into two equal volumes, one was lysed for protein quantification and the other was lysed for DNA quantification.
and taken as a ratio of control. Areas were then averaged across 10, 50, and 100 μM H2O2 over 24 h at 37°C, and exposed to 10% trichloracetic acid for 10 min. Monolayers were then dissolved in 1 N NaOH for radioactivity measurement.

2.11 Thymidine incorporation
Radiolabelled thymidine incorporation was performed as previously described. Briefly, 70–80% confluent rASMCs were incubated with 1 μCi/mL [3H]† + 50 μM H2O2 for 24 h at 37°C, and exposed to 10% trichloracetic acid for 10 min. Monolayers were then dissolved in 1 N NaOH for radioactivity measurement.

2.12 Cell size measurement
rASMCs were treated as above with 50 μM H2O2 for 24 h at 37°C. Images were captured using a Nikon Eclipse TS100 microscope connected to a Nikon D90 SLR digital camera at an objective lens magnification of ×10. Three to six images were taken per treatment group per experiment. The areas of four individual cells selected at random per image were calculated using Image J (NIH, USA). Areas were then averaged and taken as a ratio of control.

2.13 Statistical analyses
Data are presented as means ± SEM. Data comparisons were performed with Student’s t-test, one- or two-way-ANOVA including Bonferroni post hoc analysis. Differences were deemed statistically significant at \(P < 0.05 \).

3. Results
3.1 H2O2 activates \(\text{O}_2^{\cdot-} \) production in rASMC
Treatment for 1 h with concentrations as low as 5 μM H2O2 significantly stimulated production of \(\text{O}_2^{\cdot-} \) as demonstrated by an increase in L-012 chemiluminescence. The other concentrations of H2O2 used (10, 50, and 100 μM) also resulted in a significant increase in L-012 chemiluminescence, with the maximal signal observed with 50 μM treatment (Figure 1A and B). Treatment with 50 μM H2O2 for 10–300 min revealed a rise in \(\text{O}_2^{\cdot-} \) levels as early as 10 min post-treatment that was sustained for 3 h (data not shown). SOD treatment (300 U/mL) confirmed this signal as \(\text{O}_2^{\cdot-} \)-dependent (Figure 1B). These results were also confirmed by EPR studies using the spin probe CMH, where an increase in CM-radical intensity, indicative of \(\text{O}_2^{\cdot-} \), was seen in response to 50 μM H2O2 when compared with vehicle-treated cells and this was abolished with the addition of 300 U/mL SOD (Figure 1C). Interestingly, treatment of rASMC with 1 μM H2O2 for 1 h did not stimulate \(\text{O}_2^{\cdot-} \) production (cytochrome c assay; Figure S1, Supplementary material online).

3.2 H2O2-induced \(\text{O}_2^{\cdot-} \) in rASMC is Nox1 derived
To identify the source of \(\text{O}_2^{\cdot-} \) produced in response to H2O2, we used a spectrum of pharmacological inhibitors for cellular sources of \(\text{O}_2^{\cdot-} \). Prior to 50 μM H2O2 treatment, cells were incubated for 30 min with mitochondrial complex I inhibitor rotenone (50 μM), nitric oxide synthase (NOS) inhibitor L-NAME (100 μM), xanthine oxidase inhibitor febuxostat (100 nM), cyclooxygenase inhibitor indomethacin (10 μM), or flavoprotein inhibitor diphenylene iodonium (DPI) (5 μM). Figure S2, Supplementary material online, shows that only DPI was effective at significantly inhibiting \(\text{O}_2^{\cdot-} \) production in response to H2O2 (77 ± 14% inhibition). Treatment with 300 U/mL SOD or cell-permeant SOD mimetic Tiron (10 μM) both resulted in complete inhibition of the signal (98 ± 0.2 and 99 ± 0.1% inhibition, respectively; Figure S2, Supplementary material online). No significant inhibition was observed with rotenone, L-NAME, febuxostat, or indomethacin.

The Nox isoforms expressed in rodent aortic vascular SMCs are Nox1 and Nox4 with Nox1 appearing to be the isoform most likely involved in \(\text{O}_2^{\cdot-} \) production. We acknowledge that some reports have suggested that Nox4 could liberate \(\text{O}_2^{\cdot-} \) under certain conditions, but our results, as well as those of others, suggest that Nox1 plays a significant role in \(\text{O}_2^{\cdot-} \) production in these cells.
3.3 Aqp1 is involved in mediating H2O2-induced O2− production by facilitating H2O2 entry into rASMC

qPCR demonstrated that only Aqp1 is expressed in rASMC. Neither Aqp3 nor Aqp8 was expressed (n = 3 independent experiments, data not shown). To investigate the role of Aqp1, three distinct siRNAs for Aqp1 were tested for the efficacy of mRNA knockdown by qPCR in rASMC (Figure S3, Supplementary material online). Two of the three siRNA sequences, oligo 2 and oligo 3, resulted in a significant reduction in Aqp1 mRNA when compared with scrambled siRNA-transfected cells (down to 38 ± 2 and 37 ± 2% from scrambled siRNA-transfected cells, respectively). Oligo 1 did not result in a significant reduction in Aqp1 mRNA. Aqp1 oligo 3 was chosen for use in the remainder of studies in this manuscript. The Aqp1 siRNAs did not appear to have any effect on the cell shape or size when compared with scrambled siRNA controls.

To evaluate whether Aqp1 facilitates H2O2 transport into rASMC, cells were cotransfected with scrambled or Aqp1 siRNA and the highly specific and sensitive genetically encoded intracellular H2O2 fluorescent probe HyPer. Live cell imaging was then conducted prior and post-H2O2 addition. As can be seen in Figure 3A, the addition of H2O2 to rASMC resulted in a rapid three-fold increase in HyPer fluorescence, indicating uptake of H2O2. Aqp1 siRNA blocked this increase in HyPer fluorescence.

Transfection of rASMC with Aqp1 siRNA effectively and significantly reduced H2O2-induced O2− relative to scrambled siRNA-transfected rASMC cells treated with H2O2 (1.07 ± 0.08- vs. 1.34 ± 0.06-fold from vehicle-treated scrambled siRNA-transfected cells, respectively, Figure 3B). We observed no significant difference between levels of O2− in vehicle controls transfected with scrambled siRNA and H2O2-treated rASMCs transfected with Aqp1 siRNA. H2O2 treatment did not affect Aqp1 mRNA levels (Figure S4C, Supplementary material online). Knockdown of Aqp1 mRNA by Aqp1 siRNA had a modest effect (14 ± 0.03% reduction) on Nox1 protein (Figure S6, Supplementary material online).

3.4 H2O2 induces Nox1-dependent phosphorylation of Ask1 in rASMC

Ask1 is activated by phosphorylation at threonine-845. To assess Ask1 activation in rASMC, cells were transfected with scrambled or Nox1 siRNA and treated with H2O2. H2O2 treatment resulted in...
an increase in Ask1 phosphorylation that was reversed by Nox1 siRNA but not by scrambled siRNA (Figure 4A). Cumulative results confirm these findings (Figure 4B). No difference in the ratio of phospho:total Ask1 was observed between untransfected (UT) and scrambled siRNA-transfected cells treated with H2O2. Similarly, no difference was observed in the phospho:total Ask1 ratio between UT vehicle-treated cells and Nox1-siRNA-transfected H2O2-treated cells (Figure 4B). Transfection with scrambled siRNA had no effect on Ask1 phosphorylation in vehicle-treated cells (data not shown). To support these findings, these experiments were repeated in rASMC adenovirally overexpressing Ask1 yielding similar results (Figure S7, Supplementary material online).

3.5 H2O2 treatment results in increased hypertrophy, but not proliferation of rASMC, in a mechanism involving Aqp1, Nox1, and Ask1

Hypertrophy in rASMC transfected with Nox1 or scrambled siRNA was assessed after H2O2 treatment by two independent methods, quantifying the ratio of the protein:DNA content, and FACS analysis. As seen in Figure 5A, H2O2 treatment resulted in a 1.4 ± 0.16-fold increase in hypertrophy in scrambled siRNA-transfected cells compared with scrambled siRNA-transfected vehicle control. Nox1 siRNA inhibited this increase in hypertrophy in response to H2O2 treatment (0.9 ± 0.06-fold from scrambled siRNA vehicle). These findings were confirmed by FACS analysis: H2O2 treatment increased the percentage of enlarged cells by 1.3 ± 0.08-fold compared with vehicle in scrambled siRNA-transfected cells and this increase in response to H2O2 treatment was abolished in Nox1 siRNA transfected cells (0.9 ± 0.02-fold from scrambled siRNA vehicle; Figure 5B and C). No difference was observed between scrambled siRNA-transfected vehicle-treated cells and Nox1-siRNA-transfected H2O2-treated cells. In addition, the quantification of average cell areas in experiments with similar treatment groups further supported these findings (Figure S8, Supplementary material online). Furthermore, Aqp1 siRNA inhibited H2O2-induced rASMC hypertrophy to a similar extent as Nox1 siRNA, as seen by FACS analysis of the percentage of enlarged cells post-H2O2 treatment (fold from scrambled siRNA vehicle: 1.4 ± 0.06
There was a trend towards a smaller percentage of enlarged cells in both H₂O₂- and vehicle-treated Aqp1 siRNA-transfected cells compared with vehicle scrambled siRNA cells, but these were not statistically significant (Figure 5D).

Treatment of cells with H₂O₂ elicited no effect on rASM C proliferation compared with vehicle treatment in scrambled siRNA-transfected cells as measured by radio-labelled thymidine incorporation (Figure 5E). Similarly, H₂O₂ treatment had no effect on proliferation compared with vehicle treatment in Nox1-siRNA-transfected cells. There was a significant inhibition of proliferation by Nox1 siRNA when compared with scrambled siRNA in vehicle-treated cells (78 ± 3 vs. 92 ± 4 × 10³ CPM, respectively).

To test the role of Ask1 on hypertrophy, rASM Cs were transfected with adenovirus expressing dominant negative Ask1 (Ad-DN-Ask1) or GFP (Ad-GFP). As shown in Figure 6A, H₂O₂ caused a 1.35 ± 0.16-fold rise in the protein : DNA ratio compared with vehicle treatment in cells transduced with GFP control adenoviruses. In the presence of Ad-DN-Ask1, this increase was abolished. No difference was detected between vehicle and H₂O₂ treatments in cells transduced with Ad-DN-Ask1. Ask1 overexpression (transgenic Ask1, Ad-Tg-Ask1) in rASM C resulted in an enhanced increase in hypertrophy in response to H₂O₂ compared with Ad-GFP vehicle control, respectively (Figure 6B). No difference was detected under vehicle treatment between Ad-GFP and Ad-Tg-Ask1-transduced cells.

Co-transfection of Nox1 siRNA into Ad-Tg-Ask1-transduced rASM C abolished H₂O₂-induced hypertrophy when compared with H₂O₂-treated scrambled siRNA-transfected Ad-Tg-Ask1-transduced cells (0.78 ± 0.09- vs. 1.91 ± 0.34-fold from scrambled siRNA Ad-Tg-Ask1 vehicle control, respectively; Figure 6C). No significant difference was detected between H₂O₂-treated Nox1 siRNA-transfected Ad-Tg-Ask1 cells and vehicle-treated scrambled siRNA-transfected Ad-Tg-Ask1 cells. Similarly, there was no significant difference under vehicle treatment of Ad-Tg-Ask1 cells between scrambled and Nox1 siRNA transfections.
4. Discussion

Previously our laboratory and others demonstrated that ROS are important autocrine mediators of medial SMC signalling and hypertrophy. Previous findings suggested a paracrine feed-forward ROS signalling mechanism in the vascular wall; however, the signalling pathways involved in this response are not known. The findings of this study elucidate a novel pathway by which ROS effect medial hypertrophy. Previous findings suggested a paracrine feed-forward ROS signalling mechanism in the vascular wall. This difference in localization of O$_2^-$ production, leading to Ask1- and Nox1-derived extracellular O$_2^-$, which can easily cross biological membranes, carries out its action on Ask1 inside the cell is that it initiates a propagated response via H$_2$O$_2$. Extracellular O$_2^-$ dissmut to H$_2$O$_2$ is expected to enter the cell and activate Ask1. It should be noted also that undetectable intracellular O$_2^-$ production in response to exogenous H$_2$O$_2$ cannot be entirely excluded. Studies are ongoing to delineate the precise mechanism by which H$_2$O$_2$ activates Nox1 in these cells.

Interestingly, plasma levels of 3–5 μM H$_2$O$_2$ have been reported in patients with hypertension, with some studies showing plasma levels up to 50 μM. Moreover, studies have suggested that vascular cells produce H$_2$O$_2$, accumulating micromolar levels of the oxidant under stress stimuli, which are likely exacerbated by infiltrating leukocytes in inflammation. Previous studies using exogenous H$_2$O$_2$ typically employed concentrations > 100 μM, and, to our knowledge, none used concentrations lower than 50 μM in vascular SMC. Thus our studies are the first to demonstrate that H$_2$O$_2$ concentrations, increasing from physiological to pathophysiological levels (Figure 1 and Figure S1, Supplementary material online) in the cardiovascular system, are capable of propagating ROS production and hypertrophy.
Our findings indicate that Nox1 is the source of H$_2$O$_2$-stimulated O$_2^{•−}$ in rASMC. Using a broad spectrum of pharmacological inhibitors of cellular oxidases we were able to preliminarily conclude that Nox-like activity was responsible for the SMC O$_2^{•−}$ production since only iodonium compound DPI abolished O$_2^{•−}$ levels. Although previous studies showed that H$_2$O$_2$ stimulates O$_2^{•−}$ production from xanthine oxidase, mitochondria, and uncoupled endothelial NOS in endothelial cells,2,21 our data do not support H$_2$O$_2$-induced O$_2^{•−}$ production from these enzyme classes in SMCs. With this in mind, we interrogated the ability of Nox1 siRNA to inhibit H$_2$O$_2$-stimulated O$_2^{•−}$. Nox1 is the identifying anchoring subunit of Nox1 oxidase, which co-associates with p22phox in SMC caveolae to comprise the catalytic cytochrome portion of the enzyme system. Incidentally, cytosolic subunits p47phox and NOXA1 are also implicated as essential for the active Nox1 oxidase complex in rASMC.1 In preliminary studies, we tested the ability of three distinct oligonucleotides targeting Nox1 for their ability to specifically suppress Nox1 mRNA. Two of the three siRNA were effective, with the greatest inhibition (−70%) rendered by oligonucleotide 2 (oligo 2, Figure S2, Supplementary material online). Nox1 siRNA oligo 2 ablated the four-fold increase in O$_2^{•−}$ in response to H$_2$O$_2$ (in the presence of control siRNA), suggesting for the first time Nox1 as the major effect of H$_2$O$_2$ in SMCs (Figure 2B). Our data are supported by previous data showing that antisense oligonucleotides to p22phox attenuated H$_2$O$_2$-stimulated ROS production in rASMC.19 In that paper, however, the minimum effective concentration of H$_2$O$_2$ was 100 μM and knockdown of p22phox per se was not sufficient to delineate the role of specific Nox isoforms, since p22phox is critical for the activity of isoforms 1-4.

Our data show that suppressing Aqp1 using siRNA attenuated H$_2$O$_2$ entry into the cell as well as H$_2$O$_2$-induced O$_2^{•−}$ production in rASMC. These data reveal for the first time a role for Aqp1 in paracrine vascular ROS signaling and challenge the widely accepted notion that H$_2$O$_2$ gains entry into vascular cells solely by virtue of its permeability across membranes. To date, only three studies addressed the role of aquaporins in mediating H$_2$O$_2$ transport across cellular membranes, and none was in cardiovascular cells.5,6,24 Moreover, those previous studies demonstrate that Aqp3 and Aqp8 contribute to H$_2$O$_2$ transport yet none provide evidence for a role of Aqp1 in H$_2$O$_2$ transport. Those findings distinct from our current findings are likely explained by tissue and species differences in Aqp1 expression and regulation. Indeed, qPCR experiments (data not shown) demonstrated that only Aqp1, and not Aqp3 nor Aqp8, is expressed in rASMC. This is consistent with previous findings by Herrera et al.25 These differences notwithstanding, the data could foster a paradigm shift in our understanding of the means by which H$_2$O$_2$ enters cells and mediates its paracrine effects. At a more basic level, the data appear to provide the first evidence for a role of aquaporins in H$_2$O$_2$ transport across parenchymal cells.

Western blot analysis in the present study showed the activation of Ask1 in response to H$_2$O$_2$ treatment, and siRNA transfection revealed a role for Nox1 in this process. Although Ask1 is activated by a number of stress stimuli including ROS in multiple cell types, its role as a downstream target of Nox enzymes was until now unknown. Ask1 was shown to be activated by high micromolar concentrations of H$_2$O$_2$ in HeLa, HEK293 cells and mouse embryonic fibroblasts.8,13,26 Despite this evidence, only one study in neurons suggests a link between Ask1 activation and Nox enzymes.27 Indeed, the current data support a direct link between Nox1 and Ask1 and demonstrate that activation of Ask1 is downstream of Nox1-derived O$_2^{•−}$ production in H$_2$O$_2$-treated rASMC. Nonetheless, direct activation of Ask1 by exogenous H$_2$O$_2$ cannot be ruled out. What is clear, however, is that knockdown of Nox1 was sufficient to abolish both endogenous and overexpressed Ask1 activation in response to H$_2$O$_2$ (Figure 4 and Supplementary material online, Figure S7). Interestingly, knockdown of Aqp1 in cells overexpressing Ask1 was not enough to block Ask1 phosphorylation in response to H$_2$O$_2$ (Figure S9, Supplementary material online). We attribute this negative result to be due to a technical limitation of an overexpressed Ask1 on the one hand and a less than optimal antibody for endogenous phospho-Ask1 detection on the other hand.

On a functional level, the current study establishes a role for Aqp1, Nox1 and Ask1 in H$_2$O$_2$-induced hypertrophy of rASMC. Using protein to DNA ratio measurements, FACS analysis, average cell area quantification, and a three-pronged approach utilizing Aqp1 or Nox1 siRNA transfection and adenoviral transduction of DN or Tg Ask1, we conclude that H$_2$O$_2$ enters the cells via Aqp1 and induces Nox1 activation, which in turn activates Ask1 leading to SMC hypertrophy. Importantly, by the use of DN Ask1, we have demonstrated the essential role of Ask1 in this pathway. H$_2$O$_2$ has been implicated in the development of SMC hypertrophy and pro-hypertrophic signalling pathways;2,28 however, the precise mechanisms have been elusive. Based on the current findings implicating Ask1 in rASMC hypertrophy, and recent findings from our laboratory implicating medial SMC p38 MAPK activation in response to adventitia-derived H$_2$O$_2$,3 it is reasonable to speculate a signalling cascade involving the p38 MAPK pathway. Indeed, the activation of p38 MAPK downstream of Nox-derived ROS has been demonstrated.7 However, based on the literature, links between Ask1 and p38 MAPK are expected to be complex and currently outside the scope of this study.

Induction of rASMC proliferation by H$_2$O$_2$ was ruled out by assessing radiolabelled thymidine incorporation; that is, H$_2$O$_2$ did not stimulate thymidine incorporation of rASMCs (Figure 5E). Of note is the observation of a significant inhibition of thymidine incorporation by Nox1 siRNA in vehicle-treated cells, which is consistent with previous findings.29 Furthermore, there was no effect on cell count or appearance of cell death in rASMC treated with H$_2$O$_2$ in our studies, consistent with no effect on apoptosis of the concentrations used in this study. This is in line with the literature showing that apoptosis is typically observed at millimolar concentrations of H$_2$O$_2$.19,26,30

In summary, our findings challenge existing dogma on the biological action of H$_2$O$_2$ in the vasculature in a number of ways. Our results demonstrate that circulating or interstitial pathophysiological concentrations of H$_2$O$_2$ may induce paracrine O$_2^{•−}$ production in rASMC. The findings suggest a novel mechanism by which H$_2$O$_2$ enters SMCs via Aqp1 and induces Nox1-derived O$_2^{•−}$ production and SMC hypertrophy. This, combined with the fact that Nox1 siRNA completely blocked the O$_2^{•−}$ signal, Ask1 phosphorylation and SMC hypertrophy and the fact that DN Ask1 blocked SMC hypertrophy, is consistent with a role for Ask1 activation in this pathway. Given the growing evidence that H$_2$O$_2$ acts on vascular cells as both a paracrine and autocrine signalling mediator, our findings have important implications for hypertension- and inflammatory disease-related SMC growth. From a therapeutic standpoint, the data provide key insights into the development of drugs to prevent medial thickening via new multiple targets.
Supplementary material

Supplementary material is available at Cardiovascular Research online.

Acknowledgments

We would like to thank Dr. Hidenori Ichijo for supplying us with the phospho-Ask1 antibody, and Dr. Jae J. Song (Yonsei University College of Medicine, Seoul, Republic of Korea) for GFP control and Ask1 and dominant negative Ask1 adenoviruses. We would also like to thank Drs. Iulia D. Popescu and John F. McDyer (University of Pittsburgh) for their assistance with FACS experiments.

Conflict of interest: none declared.

Funding

This work was supported by the following: P.J.P. receives support from National Institutes of Health (R01HL079207, P01HL103455–01) and is an Established Investigator of the American Heart Association. All Vascular Medicine Institute investigators receive support from the Institute for Transfusion Medicine and the Hemophilia Center of Western Pennsylvania, PA.

References

