In conclusion, we acknowledge the issues Wolkowicz et al. raised in their letter and support the notion that indeed 2-APB-induced arrhythmias can be initiated by mechanisms other than gap junctional uncoupling. However, based on our data we feel that our model, in which stable re-entrant action patterns are observed after longer 2-APB incubation, allows for studies on sustained VF, despite the incomplete knowledge of its initiation. For more specific and mechanistic studies on the origin of arrhythmias genetic interventions based on viral vector technologies seem more appropriate, especially when such interventions are designed to be cell type-specific and inducible. Nevertheless, this does not exclude the possibility that before re-entry initiation there is 2-APB-induced non-re-entrant automaticity in our setup as suggested by Wolkowicz et al., which would strongly increase the chance of re-entry initiation in our cultures.

In our study, we showed a significant decrease in conduction velocity after incubation with 2-APB. Wolkowicz et al. suggested that this decrease might have been caused by the use of electromechanical uncouplers and voltage-sensitive dyes, and that the effect of 2-APB on gap junctional uncoupling was too little to reach a threshold for arrhythmogenesis. However, in the experiments using cardiomyocyte monolayers we did not use electromechanical uncoupling, while the same concentration of voltage-sensitive dye was used in control and 2-APB-treated cultures or in control and 2-APB-treated hearts. Hence, in our setup the specific effects of these pharmacological agents do not seem to provide a plausible explanation for the difference in conduction velocity. Nevertheless, the decrease in gap junctional uncoupling by BDM treatment or the decrease in conduction velocity by di-4-ANEPPS could effectively lower the degree of additional uncoupling needed to reach the arrhythmogenic threshold, which could help explain the tachyarrhythmias found after 2-APB treatment.

Furthermore, we show that in cultures with VF, prolongation of the minimal APD by BayK8644 and BaCl2 decreases the activation frequency and complexity of VF. Wolkowicz et al. however, found strongly increased activation frequencies when combining 2-APB with BayK8644 treatment. The differences in results could be attributable to the fact that different models and protocols were used. For example, in our study cells were first incubated with 2-APB for 20 min, after which they were subjected to optical mapping and BayK8644 treatment. In contrast, Wolkowicz et al. used pre-treatment with BayK8644 and direct analysis of activation frequency after the addition of 2-APB. Possibly, the mechanisms causing high activation frequency after short- or long-term 2-APB treatment are different. Wolkowicz et al. showed that the increased activation frequency is caused by abnormal automaticity, as a result an increase in APD by BayK8644 pre-treatment does not decrease the frequency. We show that after incubation for 20 min with 2-APB there is a predominant re-entrant activation pattern, in which BayK8644 decreases the activation frequency after the addition of 2-APB.

In our study, we showed a significant decrease in conduction velocity after incubation with 2-APB. Wolkowicz et al. suggested that this decrease might have been caused by the use of electromechanical uncouplers and voltage-sensitive dyes, and that the effect of 2-APB on gap junctional uncoupling was too little to reach a threshold for arrhythmogenesis. However, in the experiments using cardiomyocyte monolayers we did not use electromechanical uncoupling, while the same concentration of voltage-sensitive dye was used in control and 2-APB-treated cultures or in control and 2-APB-treated hearts. Hence, in our setup the specific effects of these pharmacological agents do not seem to provide a plausible explanation for the difference in conduction velocity. Nevertheless, the decrease in gap junctional uncoupling by BDM treatment or the decrease in conduction velocity by di-4-ANEPPS could effectively lower the degree of additional uncoupling needed to reach the arrhythmogenic threshold, which could help explain the tachyarrhythmias found after 2-APB treatment.

In conclusion, we acknowledge the issues Wolkowicz et al. raised in their letter and support the notion that indeed 2-APB-induced arrhythmias can be initiated by mechanisms other than gap junctional uncoupling. However, based on our data we feel that our model, in which stable re-entrant action patterns are observed after longer 2-APB incubation, allows for studies on sustained VF, despite the incomplete knowledge of its initiation. For more specific and mechanistic studies on the origin of arrhythmias genetic interventions based on viral vector technologies seem more appropriate, especially when such interventions are designed to be cell type-specific and inducible. Nevertheless, additional research is needed to better understand the mechanisms behind 2-APB-induced arrhythmias, as this might contribute to the development of novel anti-arrhythmic strategies.
focusing on the pro-arrhythmic substrate and its underlying molecular mechanisms.9

References


Brian O. Bingen, Saïd F.A. Askar, Martin J. Schalij, Antoine A.F. de Vries, and Daniel A. Pijnappels*
Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands

*Corresponding author. Phone: +31 715262020; fax: +31 715266809. Email: d.a.pijnappels@lumc.nl