Letters to the editor

DOI: 10.1093/cvr/cvt059
Online publish-ahead-of-print 19 March 2013

Triple mode of action of flecainide in catecholaminergic polymorphic ventricular tachycardia

There has been a resurgence of interest in the class IC antiarrhythmic agent flecainide fuelled by recent work identifying the drug as an effective treatment for catecholaminergic polymorphic ventricular tachycardia (CPVT).1-3 CPVT is caused by mutations in the sarcoplastic reticulum (SR) Ca2+-release channel (RyR2), or the associated proteins calsequestrin-2 or triadin, which lead to an increased propensity for spontaneous SR Ca2+ waves during exercise or stress. These in turn induce a transient inward current due to Ca2+ extrusion via the Na/Ca exchanger (NCX), delayed afterdepolarizations (DADs) and triggered action potentials. While it is increasingly accepted that flecainide is an effective treatment for CPVT, a degree of controversy has emerged regarding its mechanism of action.

Watanabe et al. provided the first evidence that, in addition to known inhibitory effects on the Na+ current (I Na), flecainide also acts directly on RyR2 to prevent pro-arrhythmic SR release, thereby providing a dual mode of action.4 Subsequent work demonstrated that flecainide only inhibits RyR2 gating when the channel is in the open state.4 The functional consequence of this effect on RyR2 is that the Ca2+ flux associated with each diastolic Ca2+ spark is reduced, while event frequency increases, such that there is no change in the SR Ca2+ leak, SR Ca2+ content, or systolic Ca2+ release. On the basis of these findings, we proposed a new, primary antiarrhythmic mechanism, whereby the flecainide-induced decrease in the spark mass reduces the probability that Ca2+ sparks will undergo salutary propagation between junctional Ca2+ release sites, which is the basis of pro-arrhythmic Ca2+ waves.4

The importance of flecainide’s action on RyR2 was recently questioned by Priori and colleagues, who reported that flecainide did not inhibit Ca2+ waves in a mouse model of CPVT.2 Instead, the antiarrhythmic effects of flecainide were attributed to inhibition of I Na and a decrease in the probability of DADs triggering action potentials. However, as considered previously,6 diastolic spark frequency was sufficiently high in this study to suggest that the cells were very Ca2+ overloaded. Under Ca2+ overload conditions, we also find that flecainide is much less able prevent Ca2+ waves and effects mediated via I Na inhibition would then dominate.7

In this volume, a study by Sikkel et al.8 also aims at addressing the mechanism by which flecainide influences Ca2+ sparks and waves. In contrast to the findings by the Priori group6 and consistent with our findings,3 the authors report a decrease in Ca2+ wave frequency in normal rat ventricular myocytes after exposure to flecainide. However, as other I Na blockers were equally effective in reducing Ca2+ waves, the authors conclude that RyR2 inhibition is not relevant, and propose a mechanism whereby inhibition of I Na is linked to indirect effects on Ca2+ sparks and waves via NCX. Unfortunately, contrary to the stated conclusions, the experimental conditions used by Sikkel et al. preclude any inferences regarding the role of RyR2 modulation by flecainide for the following reasons:

Sikkel et al. use rapid pacing trains that will increase [Na+] and consequently [Ca2+] to elicit spontaneous Ca2+ sparks and Ca2+ waves in normal rat ventricular myocytes. While rapid pacing trains are a classic paradigm for triggering Ca2+ waves and DADs, studies in the 1980s have already shown that specific I Na blockers, such as tetrodotoxin and lidocaine, can suppress pace train-induced DADs in isolated Purkinje fibres, albeit without clarifying the underlying mechanism.9 The study by Sikkel et al. provides an explanation for the 30-year old results: I Na blockers limit Na+ influx and hence cytosolic Ca2+ loading during rapid pacing trains, and thereby reduce Ca2+ sparks and Ca2+ waves. Since any form of I Na inhibition is expected to reduce Ca2+ waves resulting from the rapid pacing protocol, the experiments were not designed to test the additional contribution of RyR2 inhibition by flecainide. This is also evidenced by the finding by Sikkel et al. that flecainide reduced Ca2+ spark frequency (which is the opposite of the direct effect of flecainide on RyR2 channels1,2), indicating that any direct effect of flecainide on RyR2 was mitigated by the reported reduction in diastolic Ca2+ due to I Na block. It is well established that reduced cytosolic [Ca2+] will reduce the rate of spontaneous RyR2 openings and Ca2+ sparks.5

Previous studies in intact myocytes from CPVT mice and isolated perfused rabbit hearts have shown that class IC agents that also inhibit RyR2 (flecainide and R-propranolone) are significantly more effective at blocking Ca2+ waves and associated arrhythmias than drugs that only inhibit I Na (e.g. lidocaine and procainamide).10,11 Why then did Sikkel et al. not observe a more potent suppression of Ca2+ waves by flecainide compared with other I Na inhibitors that lack RyR2 channel function (i.e. tetrodotoxin, lidocaine)? One important difference is that unlike Sikkel et al., Hwang et al.12 and Lee et al.12 kept the pacing rate constant and used beta-adrenergic stimulation with isoproterenol to induce Ca2+ waves, experimental conditions that reduce the influence of Na+ channel block on cellular Ca2+ loading. Furthermore, Sikkel et al. applied 5 μM flecainide only for 5 min in the experiments comparing different Na+ channel blockers in the voltage clamp studies at −40 mV, the only experiment designed to test the contribution of RyR2 block on Ca2+ sparks and waves. However, as considered previously, flecainide enters myocytes slowly1,14 and it takes up to 30 min to reach maximal effects on Ca2+ waves in intact myocytes.15 Hence, in all previous studies evaluating the role of RyR2 modulation, intact cells were exposed to 6 μM flecainide between 15 and 30 min before the assessment of Ca2+ wave properties.1,4,7,8 Sikkel et al. argue that 30 min exposure had no more effects on Ca2+ wave frequency than 5 min exposure (Supplementary material online, Figure SIII). But those experiments were done in the same myocytes, and did not control for time dependent changes in wave frequency. In contrast to the results by Sikkel et al., we do not find any effect of flecainide on Ca2+ waves after 5 min flecainide exposure,15 indicating that experimental conditions of rapid pacing induced Ca2+ waves are not comparable with our studies.

In permeabilized myocytes, the effect of flecainide on Ca2+ sparks is rapid, consistent with the removal of the sarcolemma as a barrier to diffusion.4 Sikkel et al. argue that effects of flecainide on RyR2 in permeabilized rat myocytes require cytosolic concentrations that are above those normally found within the plasma (i.e. 25 μM).8 However, in a relevant disease model of CPVT myocytes, we find a flecainide IC50 for reducing Ca2+ wave frequency of 7 μM in permeabilized myocytes,11 and of 2 μM in intact myocytes after 30 min incubation.13 Moreover, previous
reports have shown a marked accumulation of flecainide in the ventricular myocardium.1, 16 Taken together, the experimental conditions (rapid pacing induced [Na+] loading and short incubation times) chosen by Sikkel et al. strongly favour the detection of effects of \textit{hNa} inhibition on Ca2+ waves and hence the suppression of DADs, a property of Na+ channel blockers that had been observed several decades ago.10 On the other hand, the experiments by Sikkel et al. were not designed to detect the contribution of RyR2 block by class Ic agents to their antiarrhythmic effects on Ca2+ wave triggered arrhythmia, a contribution which has been confirmed independently by three groups.7, 12, 17 We would caution that the absence of evidence does not constitute evidence for the absence of the therapeutic role of RyR2 modulation by flecainide. Rather, the mechanism of Ca2+ wave suppression by flecainide described by Sikkel et al. is in addition to Ca2+ wave suppression due to flecainide’s direct action on RyR2 channels reported by us and others, and the reduced probability of DADs triggered action potentials described by the Priori group. This triple mode of action likely explains flecainide’s striking clinical efficacy in CPVT patients.

Supplementary material

Supplementary material is available at Cardiovascular Research online.

References

8. Sikkel MB, Collins TP, Rowlands C, Shah M, O’Gara P, Williams AJ et al. Flecainide reduces Ca2+ spark and wave frequency via inhibition of the sarcoplasmic reticulum (SR) Ca2+ release.1 In the context of the authors’ previous publications regarding the mechanism of action of flecainide at the cardiac ryanodine receptor (RyR2),2–4 it appears they have interpreted our study as an attempt to infer that flecainide has no effect on RyR2. We would like to clarify this misinterpretation.

Our work demonstrates that a reduction in Na+ influx into the cardiomyocyte can, via the enhancement of Ca2+ efflux through the Na+/Ca2+ exchanger, reduce [Ca2+]\textsubscript{i} in the vicinity of the RyR2 and thus reduce the frequency of spontaneous SR Ca2+ release events. We demonstrate that this is a class effect of \textit{hNa} blockers, and that flecainide causes no reduction in SR Ca2+ leak when \textit{hNa} is eliminated by altering the holding potential via voltage clamp. This mechanism also appears to be relevant in whole-heart models of arrhythmia induced by increased SR Ca2+ release as evidenced by recent data from Radwanski et al.3

Our data should not be taken as a dismissal of the effects of flecainide at RyR2. We merely conclude that, under our experimental conditions, \textit{hNa} blockade confers a greater reduction in spontaneous SR Ca2+ release than effects at the RyR2. Flecainide has been shown by Steele and co-workers1–5, 16 to act at the RyR2 under certain experimental conditions, and we do not doubt the validity of these results.

Steele et al. suggest that our use of 5 Hz pacing trains to induce Ca2+ waves in normal rat cardiomyocytes may bias our experiments towards finding wave reduction to be mediated by \textit{hNa} block. We used this technique since we have found it to be reproducible over time within a single myocyte, thus allowing paired data collection in a cross-over design. It also negates requirements for additional pharmacology. As highlighted in our original manuscript, the study of Diaz et al.17 revealed that increased [Na+]\textsubscript{i} is one of the reasons for the elevation of Ca2+ wave frequency in stimulated (0.5 Hz) vs. non-stimulated myocytes. This relevance of [Na+]\textsubscript{i}, accumulation (and its prevention by \textit{hNa} blockade) even at low pacing rates is emphasized in our study, since at a stimulation frequency of 0.5 Hz we find a significant reduction in Ca2+ spark frequency following application of TTX. We agree that rapid pacing could cause a greater elevation of [Na+]\textsubscript{i}, which would be more markedly inhibited by \textit{hNa} blockade. However, enhanced significance of the mechanism during rapid pacing does not render it irrelevant considering that, in the clinical setting, many ventricular arrhythmias follow periods of tachycardia.8–10 Use-dependency of \textit{hNa} block, as exhibited by flecainide,1 may be especially useful in this setting. Steele et al. propose a mechanism that predominates under conditions of elevated sympathetic drive but constant heart rate (1 Hz). In vivo, any increase in sympathetic drive leads to