Alzheimer’s disease (AD) is characterized by a heterogeneous distribution of pathological changes throughout the brain. Magnetic resonance imaging can be used to investigate the regional distribution of cortical atrophy in AD in vivo. One marker for the disease-specific atrophy is the thickness of the cortical mantle across the brain, obtained with automated 3-D image processing. Here, we present data from 36 subjects (17 controls and 19 patients diagnosed as probable AD) investigated for cortical thickness across the entire brain. We show significant cortical thickness decline in AD in temporal, orbitofrontal and parietal regions, with the most pronounced changes occurring in the allocortical region of the medial temporal lobes, outlining the parahippocampal gyrus, and representing a loss of >1.25 millimeters of cortical thickness. Moreover, focal cortical areas decline with progression of the disease as measured by time from baseline scan as well as the Mini-Mental State Exam. The results demonstrate the ability of this method to detect changes in cortical thickness in AD, across the entire brain, without need of prior anatomical definitions. The regional distribution of changes reported here is consistent with independent findings on the distribution of neuropathological alterations in AD. Using cortical thickness, moreover, we provide a direct quantitative index of atrophy in the disease.

Keywords: Alzheimer’s disease, automated 3-D image analysis, cortical thickness, MRI, neuroinformatics, neuropathology

Introduction

Alzheimer’s disease is characterized by the formation of neurofibrillary plaques and tangles, and neuronal loss across the central nervous system (Small et al., 2002). The histopathological changes show a characteristic sequence, with the entorhinal cortex and the hippocampus being among the first affected regions of the brain, followed by selected regions of the neocortex (Braak and Braak, 1991, 1996; Juottonen et al., 1998). Cognitive decline correlates with cortical atrophy (Mungas et al., 2002), which can be investigated with magnetic resonance imaging (MRI) in vivo.

MRI provides insight into the temporal sequence of AD-related regional atrophy, using region specific as well as global search algorithms. Within region specific protocols, recent effort has focused on using MRI to detect early morphological changes in AD pathology; attention has specifically focused on developing precise segmentation protocols for the early affected temporal lobe structures such as the entorhinal cortex (EC) or the hippocampus (HC) (Van Hoesen, 1995; de Leon et al., 1997; Mori et al., 1997; Krasuski et al., 1998; De Toledo-Morrell et al., 2000).

In comparison, whole brain imaging analysis allows detection of changes throughout the entire cerebral cortex. So far, the methodology of whole brain analysis approaches has been restricted to voxel-based morphometry (VBM) (Ashburner and Friston, 2000), implemented volumetrically (Baron et al., 2001) across the cortex (Thompson, 1989; Thompson et al., 2001), or as deformation analysis in longitudinal datasets (Good et al., 2002). In VBM, the concepts of gray matter density and gray matter concentration are central for the interpretation of the results; however, voxel density at any one point for any one subject is, unlike cortical thickness, meaningless.

Using specific algorithms to analyze cortical thickness across the entire cortex is a complementary method to the established research paradigms, offering a direct quantitative index of cortical atrophy that can be applied to single subjects and to group analysis. Cortical atrophy is reflected in a loss of gray matter which will result in a reduction of cortical thickness. Measuring cortical thickness across the entire cerebrum establishes a marker for the AD-related cortical atrophy.

Materials and Methods

Thirty-six subjects were investigated. MRI scans were acquired from 19 patients with a combined 31 acquisitions (up to three scans per subject). The patients had the clinical diagnosis of probable AD according to the NINCDS-ADRDA (McKhann et al., 1984). For comparison of baseline MRI measures, 17 healthy volunteers with one acquisition each were recruited and subsequently scanned using identical acquisition parameters. Patients were recruited from the Department of Psychiatry, Alzheimer Memorial Center, Dementia Research Section and Memory Clinic, Department of Psychiatry, Ludwig-Maximilian University, Munich, Germany. Further sociodemographic information of the subjects is shown in Table 1. Cognitive impairment in the AD patients was assessed using the Mini Mental State Examination (MMSE) (Folstein et al., 1975). The average MMSE score in the Alzheimer group was 21.2 (10–29). In the control group, the MMSE average score was 29.3 (range 28–30).

Significant medical co-morbidity in the AD patients and controls was excluded by interviews on medical history, physical and neurological examination, psychiatric evaluation, chest X-ray, ECG, EEG, brain MRI and laboratory tests (complete blood count, sedimentation rate, electrolytes, glucose, blood urea nitrogen, creatinine, liver-associated enzymes, cholesterol, HDL, triglycerides, antinuclear antibodies, rheumatoid factor, VDRL, HIV, serum B12, folate, thyroid function tests and urine analysis). None of the AD patients had hypertension or diabetes. All subjects or the holders of their Durable Power of Attorney provided written informed consent for the study. The protocol was approved by the Ethical Review Board of the Faculty of Medicine, Ludwig Maximilian University, Munich, Germany.

MRI examinations were performed on a 1.5 T Siemens Magnetom Vision MRI scanner (Siemens, Erlangen, Germany). All subjects were investigated with a volumetric T1-weighted sagittal oriented MRI sequence ($T_1 = 11.6$ ms, $T_E = 4.9$ ms, resolution $= 0.94 \times 0.94 \times 1.2$ mm). The rectangular field of view (FOV) for the sagittal images was 256 mm (SI) \times 204 mm (AP). Additionally, an axial-oriented fast FLAIR sequence ($T_1 = 9000$ ms, $T_E = 110$ ms, resolution $= 0.94 \times 0.94 \times 6$ mm) was obtained. For the purpose of this study, only the T1-weighted images entered further processing. The native MRI were registered into standardized stereotaxic space using a linear transformation (Collins

Jason P. Lerch1, Jens C. Pruessner1,2, Alex Zijdenbos1, Harald Hampel2, Stefan J. Teipel2 and Alan C. Evans3

1McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, and 2Alzheimer Memorial Center, Dementia Research Section and Memory Clinic, Department of Psychiatry, Ludwig-Maximilian University, Munich, Germany
et al., 1994). Simultaneously, the images were corrected for non-uniformity artifacts (Sled et al., 1998). The registered and corrected volumes were segmented into white matter, gray matter, cerebrospinal fluid and background using an advanced neural net classifier (Zijdenbos et al., 2002). The white and gray matter surface were then fitted using deformable models (MacDonald et al., 2000), resulting in two surfaces with 81,920 polygons each. The surface deformation algorithm works by first fitting the white matter surface, then expanding outward to find the gray matter CSF intersection. One characteristic of this procedure is that each vertex of the white matter surface is closely related to its gray matter surface counterpart; cortical thickness can thus be defined as the distance between these linked vertices. The relevant parts of the processing pipeline are shown schematically in Figure 1.

In order to improve the ability to detect population changes, each subject’s cortical thickness map was blurred using a 20 mm surface based blurring kernel (Chung et al., 2002). Diffusion smoothing, unlike the volumetric blurring used in VBM, follows the curvature of the surface and thus respects anatomical boundaries. Twenty millimeters was chosen as the kernel size in order to maximize statistical power while still minimizing false positives.

Statistical analysis was performed at every vertex, regressing cortical thickness against clinical state, MMSE scores, or time from baseline. Multiple time-points were used where available in order to provide greater stability in the estimation of the fixed effects than a purely cross-sectional model would have allowed. Linear mixed models using the restricted maximum likelihood (REML) estimation method were employed to account for the within subject correlations present due to the repeated acquisitions in the AD cohort (Pinheiro and Bates, 2000). Mixed models extend linear models by incorporating random effects, which can best be regarded as an additional error term. The model used to account for the within subject correlations present due to the repeated acquisitions in the AD cohort (Pinheiro and Bates, 2000) is

\[
Y = X\beta + Zb + \epsilon, \quad i = 1, \ldots, M
\]

where \(\beta \) is the vector of fixed effects, \(b_i \) \(i = 1, \ldots, M \) is the vector of random effects describing a shift in the intercept for each subject (\(M \) taking the value of either 19 or 36, depending on whether only the patients or all subjects were used), \(X_1 \) (of size \(n \times p \)) and \(Z \) (of size \(n \times q \)) are known fixed-effects and random-effects regressor matrices and \(\epsilon \) is the \(n \times 1 \) dimensional within group error vector, where \(n \) takes on values between 1 and 3, describing the number of acquisitions per subject. \(y_i \) is the estimated cortical thickness vector for subject \(i \). Each of the statistical models used age as a covariate, thereby controlling for the main effects of age on the dependent variables; the value of \(p \) is therefore 3. The random-effects matrices \(Z \) included the intercept term; the value of \(q \) is therefore 1. For the regression with the MMSE scores, only the AD subjects were selected in order to avoid confounding of the clinical state with the MMSE analysis.

To illustrate with an example; the matrices for the MMSE analysis would be:

\[
X_1 = \cdots = X_{19} = \begin{bmatrix} 1 & 66.9 & 24 \\ 1 & 67.8 & 20 \\ 1 & 69.5 & 20 \end{bmatrix}, \quad Z_1 = \cdots = Z_{19} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

with the example subject 19 being one subject with three acquisitions taken at age 66.9, 67.8 and 69.5, and having MMSE scores of 24, 20 and 20 at each respective acquisition. The one-dimensional random effects matrix \(Z \) is the intercept for each subject — i.e. a common slope across subjects was assumed, with only the intercepts allowed to vary. For the other analyses (clinical state and time from baseline) the third column of the matrix would change to be a 0 or 1 for control or patient in the clinical state analysis (i.e. ‘treatment’ contrasts were used) or the time, measured in years, of the follow up scan minus the baseline scan (i.e. for subject 19, these would be 0, 0.9 and 2.6). The terms of \(\beta \) would thus be: \(\beta_1 \), the mean intercept; \(\beta_2 \), for the common effect of age; and \(\beta_3 \), the common effect of MMSE/group/time from baseline. The one-dimensional vector \(b_i \) \(i = 1, \ldots, 19 \) (in the case of the MMSE or time since baseline analysis, since only the 19 patients are considered) or \(b_i \) \(i = 1, \ldots, 36 \) (in the case of the clinical state analysis, since all 36 subjects are considered) describes a shift in the intercept for each subject. In the parlance of the computational system used to solve these equations (Pinheiro and Bates, 2000), the function call is \(\text{lme}(y - 1 + age + MMSE, \text{randoms} = 1/ID) \), where \(y \) is the cortical thickness at the vertex in question, \(age \) is the age at the time of each acquisition, \(MMSE \) is the MMSE score at the time of each acquisition, the random effect is the intercept and all subjects are grouped by the subject ID.

The resulting statistical maps were thresholded using the false discovery rate (FDR) theory (Genovese et al., 2002) at a \(q \) value of 0.05 after pooling the \(P \)-values from all regressions run in this analysis.

Table 1

Demographics of the study population

<table>
<thead>
<tr>
<th>No. of subjects</th>
<th>No. of scans</th>
<th>Age (mean ± SD)</th>
<th>MMSE (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>17</td>
<td>17</td>
<td>61.0 ± 9.1</td>
</tr>
<tr>
<td>Patients</td>
<td>19</td>
<td>31</td>
<td>68.8 ± 6.9</td>
</tr>
</tbody>
</table>

Table 2

Results sorted by \(t \)-statistics

<table>
<thead>
<tr>
<th>Location</th>
<th>Talairach coordinates</th>
<th>(t)-statistics</th>
<th>Difference (mm)</th>
<th>% atrophy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHG</td>
<td>27 2 –39 –6.7</td>
<td>−1.25 ± 0.22</td>
<td>22 ± 3.8</td>
<td></td>
</tr>
<tr>
<td>ITG</td>
<td>−47 –55 –16 –5.3</td>
<td>−1.00 ± 0.18</td>
<td>22 ± 4.0</td>
<td></td>
</tr>
<tr>
<td>MFG</td>
<td>−13 31 –21 –4.5</td>
<td>−0.86 ± 0.23</td>
<td>18 ± 4.9</td>
<td></td>
</tr>
<tr>
<td>STG</td>
<td>59 42 14 –4.4</td>
<td>−0.65 ± 0.14</td>
<td>17 ± 2.7</td>
<td></td>
</tr>
<tr>
<td>Post. Cing.</td>
<td>4 –30 37 –4.3</td>
<td>−0.86 ± 0.19</td>
<td>22 ± 5.0</td>
<td></td>
</tr>
<tr>
<td>LGD</td>
<td>−20 –99 0 –4.1</td>
<td>−1.03 ± 0.25</td>
<td>24 ± 5.8</td>
<td></td>
</tr>
<tr>
<td>MTG</td>
<td>63 39 –14 –3.8</td>
<td>−0.95 ± 0.22</td>
<td>20 ± 5.2</td>
<td></td>
</tr>
<tr>
<td>Lt. IFG</td>
<td>−46 36 11 –3.7</td>
<td>−0.76 ± 0.22</td>
<td>22 ± 5.6</td>
<td></td>
</tr>
<tr>
<td>Ant. cing.</td>
<td>−11 50 5 –3.4</td>
<td>−0.95 ± 0.28</td>
<td>19 ± 5.8</td>
<td></td>
</tr>
</tbody>
</table>

Ant. cing., anterior cingulated; ITG, inferior temporal gyrus; LGD, lateral occipital gyrus; Lt. IFG, left inferior frontal gyrus; MFG, middle frontal gyrus; MOG, medial orbital gyrus; MTG, middle temporal gyrus; PHG, parahippocampal gyrus; Post. cing., posterior cingulated; STG, superior temporal gyrus.

Figure 1. An overview of the steps involved in cortical thickness analysis. First, the images are non-uniformity corrected and registered into stereotaxic space. They are then classified (1) and fit with a white matter surface (2). The gray surface is found by expanding out from the white (3). Cortical thickness is measured at every vertex (4), and blurred using a 20 mm surface-based kernel (5).
The interpretation of the maps is therefore that, on average, 5% of the results shown across all regressions are false positives. The figures also show the regression slope, which is the change in millimeters with each unit of measurement (group difference, point of MMSE, or in years).

Cortical thickness methods applied to human magnetic resonance images can be divided into three broad categories. The first measures thickness on a voxel by voxel level, and is illustrated by two papers solving a partial differential equation across the cortex (Jones et al., 2000; Yezzi and Prince, 2003). The second set of methods use advanced versions of the marching cubes algorithm, creating two cortical surfaces with variable tesselation (cf. Zeng et al., 1999; Miller et al., 2000). The last group uses deformable models to create white and grey matter cortices, and includes our work outlined above and that of Fischl and colleagues (Fischl and Dale, 2000; Rosas et al., 2002). One characteristic of using deformable models is that the number of polygons will always be identical across subjects, allowing for the easy creation of a surface coordinate system that can be used to run statistical analyses of cortical thickness at every vertex of the surface.

Our cortical thickness algorithm has been validated by comparison to manual measurements (Kabani et al., 2001). Furthermore, extensive analysis of the precision of our cortical thickness analysis framework was recently performed (Lerch and Evans, 2004). Two tests were run: a study of reliability, where 19 scans of the same subject were processed separately to assess for methodological variability, and a population simulation. In the latter, 50 normal scans were processed. Twenty-five of them had the right superior temporal gyrus (rSTG) artificially thinned by one six-neighbor dilation of the white matter in that region, and that resulted in 93% sensitivity in areas of perfect overlap of the rSTG along with change recovered statistically. In the 19 repeat scans the mean standard deviation across all vertices was 0.27 mm. The population simulation resulted in 93% sensitivity in areas of perfect overlap of the rSTG along with 100% specificity (no single vertex outside of the rSTG was found to be significant between the two groups). This simulation study provides confidence that results shown using the AD data described in this paper are valid.

Results

Group Differences (Normals versus AD)

The results from the analysis clearly show significant differences in cortical thickness between the two groups. The average thickness across the entire cortex was significantly thinner in AD patients (3.1 ± 0.28 mm) compared with controls (3.74 ± 0.32 mm; t = −3.8, P < 0.0007), resulting in an average difference of 0.47 mm after removal of age effect by regression. Furthermore, the resulting maps of atrophy clearly show region specificity of thickness decline in AD. The most significant changes were found in the medial temporal lobes, the anterior and posterior cingulate region, the frontal lobes, the inferior parietal lobes, the orbitofrontal cortex, and the visual association cortex (Figs 2–4, Table 2). Most of these effects were found bilaterally except for the insula region, where only the left hemisphere appeared significant.

In the frontal lobes, the effects were most pronounced in the left anterior cingulate region (0.95 ± 0.28 mm loss in AD), the dorsolateral prefrontal cortex (0.76 ± 0.22 mm loss), and the orbitofrontal cortex (0.86 ± 0.23 mm). The effects in the dorsolateral prefrontal cortex appeared in the vicinity of Brodmann’s area (BA) 45. The effects were stronger in the left than in the right hemisphere. In the parietal lobe, the effects were most pronounced in the posterior cingulate region (0.86 ± 0.19 mm loss in cortical thickness in AD), and the visual association areas (1.0 ± 0.25 mm loss).

The entire medial temporal lobe appeared to be severely affected. The average difference between cortical thickness in AD and in the control group ranged from 0.5 to 1.3 mm, with the strongest differences emerging in the area of the parahippocampal gyrus (PHG). This finding is consistent with the results from recent studies suggesting that the PHG, especially the entorhinal cortex (EC), is affected early in the course of AD (Krasuski et al., 1998; Van Hoesen et al., 2000; Callen et al., 2001). To investigate cortical thickness decline in this area in our subjects more closely, manual segmentation of the structures of the PHG was used to trace the EC in the MRI of all subjects using a recently developed protocol (Pruessner et al., 2002). The labels of the EC from all subjects were then used to create a customized probabilistic map of the EC for the subjects in this study, which was overlaid onto the t-statistics map from the thickness analysis. This allowed an accurate evaluation of the decline in cortical thickness within the EC in our study sample. The result of this procedure is shown in Figure 5, indicating that the most striking difference between the two groups occurred in the anterior portion of the EC in the left hemisphere, with a difference of 1.25 ± 0.22 mm in cortical thickness.
thickness between the two groups. The lateral temporal lobes also showed significant interaction with clinical state, with a peak of 0.8 ± 0.22 mm in the left medial temporal gyrus (BA 21).

In the parietal and occipital lobes, significant differences further appeared in the transition area between parietal and occipital lobes in the area of the visual association cortex (BA 18-19; between 0.4 – 1.0 mm loss of cortical thickness in the AD group). Interestingly, the primary visual cortex (BA 17) appeared to be spared, showing no interaction with group (t = -1.6).

Regression of Cortical Thickness versus MMSE
In order to investigate whether cortical thickness measures vary with disease progression in the AD patients, a regression of cortical thickness against the MMSE score was performed in the AD patients at every vertex of the surface model. Mean cortical thickness was marginally associated with MMSE scores (t = 2.24, P = 0.06). Regionally, however, it was found that lower MMSE scores were associated with significantly thinner cortical thickness in the bilateral PHG, the left superior temporal gyrus, left insula, and left anterior cingulate gyrus (Fig. 6).

Regression of Cortical Thickness versus Progression
Further analysis of the effect of disease progression was performed by regressing cortical thickness against the time difference from baseline in the follow-up scans within the AD cohort. There was a significant correlation between time from baseline and thickness (t = -3.47, P = 0.006) featuring a decline of 0.18 mm per year. Significant regional correlations were found in the anterior temporal lobes including the parahippocampal gyrus, the anterior frontal lobes, and the anterior cingulate (Fig. 7). A post-hoc test was also conducted to ascertain the rate of thinning in cortical areas that featured an initial group difference versus those where the Alzheimer's patients did not have significantly thinner cortex than the normal controls. Both these areas declined significantly with time from baseline; the rate was faster in cortical regions which were also significantly thinner in the patients (0.21 mm per year, t = -4, P = 0.004) than the rest of the cortex (0.16 mm per year, t = -3.4, P = 0.009).

Discussion
We used a fully automated method to measure cortical thickness across the entire brain to investigate differences in a group of AD patients versus age-matched controls. We further investigated the correlation between cortical thickness and MMSE scores as well as time since baseline in the patient population.

Our results clearly show AD related decline in cortical thickness in multiple areas of the brain, many of which have been reported in previous MR studies. Cortical thickness of the medial temporal lobes was most severely reduced in AD patients, and, within the medial temporal lobes, the parahippocampal gyrus was most affected. This is consistent with previous MR and histopathological studies showing that this region of the brain is affected early and profoundly in the course of the disease (Juottonen et al., 1999; Xu et al., 2000). The results from this study extend previous findings by showing that in the left hemisphere, the posterior portions of the PHG also seem to be strongly affected in AD. For the anterior portion of the PHG, in the area of the entorhinal cortex, the most significant differences occurred in the left hemisphere, though the effects were largely bilateral.

Cortical atrophy in AD is not limited to the medial temporal lobe; the remaining limbic system, the lateral temporal lobes, and certain associative visual areas correlate significantly with...
Within the limbic system the orbito-frontal cortex (Van Hoesen et al., 1991) and the anterior and posterior cingulate cortices (Valla et al., 2001; Matsuda et al., 2002) have also been shown to correlate with the disease in ways that support the results of this study. Combined with spared areas of the cortex, such as the motor, sensory and primary visual cortices (BA17) (Buckner et al., 2000; Rizzo et al., 2000; Prvulovic et al., 2002), a pattern of atrophy in AD emerges that is focal to multiple cortical areas while centered on the medial temporal lobes.

The results from the MMSE regression within the AD group indicate that the decline in the PHG is correlated with the MMSE score (Fields et al., 1992). Significant associations between MMSE scores and cortical thickness were found in bilateral medial temporal areas as well as temporal, anterior cingulate, and insular regions of the left hemisphere. The results demonstrate that cortical thickness analysis can be used to link clinical information with decline in particular cortical areas when available. In the case of MMSE scores, the significant findings with cortical atrophy were left hemisphere dominant. Progression as measured by time from baseline in repeated scans showed a more significant effect than the MMSE analysis, indicating continuing atrophy that is not entirely captured by changes in cognitive state as captured by the MMSE. Progressive atrophy was particularly strong in the anterior frontal and temporal lobes as well as the posterior cingulate. Cortical areas which were significantly thinner in the patients thinned at a faster rate than those that were not, though this difference was small and would therefore suggest that the entire cortex is declining with disease progression. The longitudinal aspect of our analysis should be explored in greater detail and compared to non-linear registration methods that have recently been used in the analysis of AD populations and normal aging (Fox et al., 2000; Scabillo et al., 2002, 2003).

AD is commonly subdivided into six stages representing advancing pathology as defined by the progression of neurofibrillary tangles (NFTs) and senile plaques (Braak and Braak, 1991, 1996). The patients used in this study were diagnosed with probable AD according to NINCDS-ARDA criteria and thus believed to be in stage V or VI (Nagy et al., 1999). These two end stages, known as the neocortical stages, feature plaque and NFT involvement in virtually all subdivisions of the cerebral cortex with a particular emphasis on association areas and the medial temporal lobes. NFT presence is strongly correlated with neuronal loss and cortical atrophy (Gomez-Isla et al., 1997; Grignon et al., 1998). Moreover, increased duration of NFT presence is associated with increased atrophy (Grignon et al., 1998). This leads to the hypothesis that, in patients diagnosed with probable AD, cortical areas involved earlier in the disease progression will show greater atrophy than areas involved later (Gomez-Isla et al., 1997). Our results, which reveal greatest MRI detectable atrophy in areas implicated earlier (such as the entorhinal cortex), largely support this hypothesis. The ability to stage AD based on in-vivo imaging should be investigated further. Moreover, some of the findings in this study may be due to the small sample size, since occasional atypical representation of AD (such as the visuo-spatial variant; cf. Cronin-Golomb et al., 1991) may have an undue influence on our results. This analysis should therefore be replicated in a larger sample.

The major difference between previous findings and the results obtained in this study lies in the use of the cortical thickness analysis technique. This strategy has a number of advantages when compared with other MR methods used to investigate AD with MRI. Cortical thickness analysis allows searching for associations between the depth of the cortex and sociodemographic, clinical or psychological variables across the entire surface of the brain. It shares this advantage with other global search algorithms like VBM and deformation field...
analysis. Unlike VBM, however, it is based on the description of the actual thickness of the cortex in millimeters and thus allows meaningful quantitative description of the results (difference in cortical thickness in millimeters). The major disadvantage is that the focus is entirely on the cortex; changes in subcortical structures, white matter or cerebro-spinal fluid will not be picked up.

Finally, cortical thickness analysis is fully automated and thus reaches 100% operator independence. The results are operator-independent and do not rely on the correct interpretation of regional anatomical variations, in contrast to manual segmentation protocols.

Cortical thickness analysis may serve as a surrogate marker for the neuronal loss that accompanies the histopathological changes in the cortex which occur in AD and their temporal ordering. For example, the highly significant findings in the PHG, in the area of the EC, support the view (Juottonen et al., 1999; Xu et al., 2000) about the importance of medial temporal lobe morphometry in the diagnosis of AD. Future studies can compare the relative efficacy of cortical thickness measures with volumetric analyses of the hippocampus (Pruessner et al., 2001).

Continuing work will investigate associations between cortical thickness and other sociodemographic or clinical variables. Owing to its fully automatic implementation, the method can be used to characterize the healthy and pathological ranges of cortical thickness in specific age groups. The development of normative data for specific age and disease groups will allow direct comparison of individual subjects with cortical thickness norms in health and disease. This process has the potential of aiding in the early diagnosis of dementia. Furthermore, unlike commonly used region of interest measures, cortical thickness analysis provides coverage of the complete cerebrum, and could thus be used for differential diagnosis of the various types of dementia as well. Finally, future studies will have to show the value of this new method in monitoring of the progression of dementia across the entire cortex.

Notes

ICBM grant PO1MH052176-11, principal investigator Dr John Mazziotta; CIHR grant MOP-34996. Jason Lerch is funded by a K.M. Hunter/CIHR Doctoral Research Award.

Address correspondence to Alan C. Evans, McConnell Brain Imaging Centre, Montreal Neurological Institute, 3801 University Street, Montreal QC Canada H3A 2B4. Email: alan@bic.mni.mcgill.ca.

References

