Radwan Zaidan and Abdel-Rahman Al Tahan
Division of Neurology, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia

References


Abdominal Lymphadenopathy in Malaria

Abdominal lymphadenopathy is detected most commonly in patients with lymphoma or metastatic disease [1]. However, for a number of benign entities (although uncommon), abdominal lymphadenopathy may be evident on CT scans. We describe a patient with malaria due to Plasmodium vivax in whom retroperitoneal lymphadenopathy was discovered on the initial imaging evaluation and disappeared while the patient was undergoing treatment.

A 16-year-old boy was admitted to the hospital (Punjab, India) because of an 8-day history of high spiking fevers, chills, headaches, arthralgias, and myalgias. At presentation, he was conscious and febrile, and appeared toxic. He was hemodynamically stable. Physical examination revealed marked pallor; however, there was no jaundice, lymphadenopathy, petechiae, or ecchymotic patches on the skin. There was no sternal tenderness. The abdomen was soft and there was splenomegaly of 4 cm and a soft, tender liver that was palpable ~3 cm below the right costal margin. The remainder of the systemic examination findings were within normal limits.

Laboratory evaluation at admission revealed the following values: hemoglobin, 8 g/dL; and WBCs, 8.1 × 10^9/L with no abnormal cells. A peripheral blood smear showed P. vivax. Platelet counts and blood chemistries were normal. A reticulocyte count was 0.4%. Liver function testing revealed a serum bilirubin level of 4 mg/dL (normal, 0.2–1 mg/dL); an aspartate aminotransferase (AST) level of 65 U/L (normal, 0–38 U/L); an alanine aminotransferase (ALT) level of 72 U/L (normal, 0–49 U/L); and an alkaline phosphatase level of 117 U/L (normal, 39–117 U/L). Chest radiography was normal. Blood cultures and Widal’s test were negative. Viral markers (hepatitis B surface antigen [HBsAg], and IgM antibodies to hepatitis A virus and hepatitis C virus) were negative. A urinalysis was unremarkable. Abdominal ultrasonography and a CT scan demonstrated hepatosplenomegaly with a normal liver and multiple enlarged nodes involving the retroperitoneum (figure 1).

The patient was started on therapy with chloroquine, but because the fever pattern remained unchanged for 5 days, his therapy was switched to that with parenteral quinine sulfate on therapy day 5. Serial hematologic evaluations revealed increases in hemoglobin levels, WBC counts, and platelets. Liver enzyme levels returned to normal. The patient recovered fully and was discharged from the hospital. A repeated CT scan after 6 weeks showed complete disappearance of retroperitoneal lymph nodes.

The detection of enlarged abdominal lymph nodes can be the cause of considerable clinical concern as such lymphadenopathy is
common in patients with lymphoma or metastatic disease. Therapeu-
tic decisions should be based on other diagnostic information. These
enlarged lymph nodes are rarely the site of primary disease but are
secondarily involved in virtually all systemic infections and in many
neoplastic diseases. Therefore, the presence of enlarged abdominal
lymph nodes raises a strong suspicion of an underlying metastatic
disease or lymphoma. Surprisingly, however, a number of benign
diseases are associated with detectable lymph nodes. Deutsch et al.
[2] reported benign lymphadenopathy in up to 6% of patients, which
included those with tuberculosis, sarcoidosis, Crohn’s disease,
chronic liver disease, celiac disease, mastocytosis, and AIDS, and
as an increased immune response in intravenous drug users [3].
Lymphadenopathy occurs as benign hyperplasia and proliferation in
response to infection and/or antigenic stimulation. The features of
lymph nodes on ultrasound or CT scan, such as size, number, or
distribution, are important in the evaluation of abdominal lymphade-
nopathy. Larger, numerous, rounded nodes; presence of mass effect;
and absence of echogenic hilum favor malignant diseases [4–6].
However, in contrast to these reports, certain studies show that lymph
node characteristics are of no diagnostic value [2].

To our knowledge, herein we have described the first case of
significant abdominal lymphadenopathy in association with ma-
laria and its regression after treatment.

Ajit Sood and Vandana Midha

Unit of Gastroenterology, Department of Medicine, Dayanand Medical
College and Hospital, Ludhiana, Punjab, India

References
1. Robbins SL, Cotran RS, Kumar V. Lymph nodes and spleen. In: Pathologi-
2. Deutsch SJ, Sandler MA, Alpern MB. Abdominal lymphadenopathy in
3. Quinn MJ, Sheedy PF, Stephens DH, Haltery RR. Computed tomography
of the abdomen in evaluation of patients with fever of unknown origin.
4. Morehouse HT, Thornhill BA. Needs or no needs: CT of adenopathy. CRC
5. Harris RD. Computerized tomography of retroperitoneal lymphadenopathy:
6. Stephens DH, Bullamson B, Sheedy PF, Haltery RR, Miller WE. Computed
tomography of the retroperitoneal space. Radiol Clin North Am 1977;
15:377–90.

EMERGEncy ID NET: An Emergency Department—
Based Emerging Infections Sentinel Network

During the past decade, the Institute of Medicine has emphasized
the threat of emerging infectious diseases to domestic health [1].
In 1994, the Centers for Disease Control and Prevention (CDC)
issued the report entitled “Addressing Emerging Infectious Dis-
ease Threats: A Preventive Strategy for the U.S.” that identified
the goals of expanding infectious diseases research by strengthening
local and state public health programs, creating population-
based epidemiologic research centers, and developing sentinel re-
search networks [2]. Sentinel networks link groups to a central data
receiving and processing center and can be valuable for monitoring
trends, estimating disease burden, identifying emerging problems,
sic emerging infectious diseases to...