Epidemiology and Management of Infections after Lung Transplantation

Rudolf Speich¹ and Wim van der Bij²

¹Department of Internal Medicine, University Hospital, Zurich, Switzerland; and ²Department of Pulmonology, University Hospital, Groningen, The Netherlands

Lung transplantation has become an accepted treatment for end-stage pulmonary parenchymal and vascular diseases. Infections still are the most common cause of early and late morbidity and mortality in lung transplant recipients. Bacterial infections comprise approximately half of all infectious complications. Cytomegalovirus (CMV) infections and disease have become less frequent, because of prophylaxis with ganciclovir. Because CMV is also involved in the pathogenesis of obliterative bronchiolitis, the frequency of this infection may also reduce the occurrence of this main obstacle to successful lung transplantation. Invasive fungal infections remain a problem, but they have also decreased in frequency because of better control of risk factors such as CMV disease and preemptive antifungal therapy. Nonherpes respiratory viral infections have emerged as a serious problem. Their severity may be reduced by treatment with ribavirin. Meticulous postoperative surveillance, however, is still crucial for the management of lung transplant patients with respect to early detection and treatment of rejection and infection.

Lung transplantation has become a successful treatment option for end-stage diseases of the lungs and the pulmonary circulation [1, 2]. According to the registry of the International Society for Heart and Lung Transplantation, 1-, 2-, and 5-year survival rates of 74%, 65%, and 47%, respectively, can be achieved [3]. This success is mainly due to careful selection of patients, improved surgical techniques, and organ preservation, as well as sophisticated postoperative management. The most important complications in survivors of the perioperative period of lung transplantation are infections and episodes of acute rejection. The main obstacle to long-term success of lung transplantation, however, remains chronic rejection, which occurs in up to two-thirds of patients [4]. It is characterized histologically by obliterative bronchiolitis and a variable degree of pulmonary vascular involvement. In addition to the number of previous acute rejection episodes and the incidence of persistent rejection after treatment of acute rejection episodes [4], cytomegalovirus (CMV) infection and disease [5] are the most relevant risk factors for the development of obliterative bronchiolitis. Thus, strategies for prophylaxis, as well as early diagnosis and treatment of CMV disease, may be crucial for further improvement of the results of lung transplantation.

Infectious complications are the most common cause of morbidity and mortality at all time points after lung transplantation [6–11] and occur twice as frequently as in heart transplant recipients [7, 9]. At least two-thirds of the infections involve the respiratory tract [8–10]. Infectious complications cause at least half of the deaths after lung transplantation, and more than one-third of these fatal outcomes occur in patients with underlying obliterative bronchiolitis [12]. Possible reasons for this very high incidence of infectious complications are listed in table 1 and include an allograft exposed continuously to the environment, impaired mucociliary clearance, bronchial anastomotic problems, and remaining native lung complications after single-lung transplantation. The most important predisposing con-
Table 1. Conditions predisposing for infections after lung transplantation.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Predisposing Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung allograft is continuously exposed to the external environment</td>
<td>Denervation of allograft:</td>
</tr>
<tr>
<td></td>
<td>Diminished cough reflex</td>
</tr>
<tr>
<td></td>
<td>Abnormal mucociliary clearance</td>
</tr>
<tr>
<td></td>
<td>Reactive hyperresponsiveness</td>
</tr>
<tr>
<td></td>
<td>Interrupted lymphatic drainage (especially during first weeks)</td>
</tr>
<tr>
<td></td>
<td>Anastomosis site:</td>
</tr>
<tr>
<td></td>
<td>May enhance colonization</td>
</tr>
<tr>
<td></td>
<td>Airway dehiscence and mediastinitis</td>
</tr>
<tr>
<td></td>
<td>Bronchial stenosis and postobstructive infection</td>
</tr>
<tr>
<td></td>
<td>Acute rejection episodes:</td>
</tr>
<tr>
<td></td>
<td>Require enhanced immunosuppression</td>
</tr>
<tr>
<td></td>
<td>Inflammatory response at port of entry of infections</td>
</tr>
<tr>
<td></td>
<td>Donor lung may transmit infections:</td>
</tr>
<tr>
<td></td>
<td>From prolonged mechanical ventilation</td>
</tr>
<tr>
<td></td>
<td>From previous inactive infections (tuberculosis, Candida and Aspergillus species, Histoplasmosis, Coccimycosis)</td>
</tr>
<tr>
<td></td>
<td>Native lung after single-lung transplantation:</td>
</tr>
<tr>
<td></td>
<td>Occult pretransplant infection (tuberculosis, Aspergillus species, Pneumocystis carinii, etc., especially after immunosuppression before transplantation)</td>
</tr>
<tr>
<td></td>
<td>Posttransplant infections in destroyed lung</td>
</tr>
<tr>
<td></td>
<td>Sinus infection in cystic fibrosis and ciliary dysfunction syndromes</td>
</tr>
<tr>
<td></td>
<td>Bronchiolitis obliterans:</td>
</tr>
<tr>
<td></td>
<td>Enhanced immunosuppression</td>
</tr>
<tr>
<td></td>
<td>Impaired clearance</td>
</tr>
<tr>
<td></td>
<td>Bronchiectasis</td>
</tr>
</tbody>
</table>

dition, however, is obliterative bronchiolitis. These patients usually are profoundly immunosuppressed, and their lung function and mucus clearance are often markedly impaired. Therefore, the most common cause of death in patients suffering from obliterative bronchiolitis is infections [4].

EPIDEMIOLOGY AND PREVENTION

Bacterial pneumonias are the most frequent infectious complications after lung transplantation. The reported incidences of bacterial pneumonia range from 35% to 66% [8, 10, 13, 14]. A significant number of the early episodes of bacterial pneumonia are caused by microorganisms cultivated from the donor lungs, as discussed below. Because their incidence during the first 2 postoperative weeks has decreased markedly because of antibiotic prophylaxis, most bacterial pneumonias occur in the intermediate and late postoperative period [13]. The overall cumulative incidence during the first year after transplant is ~70%, and it remains high beyond the first year (30%–40%). Nearly three-quarters of all bacterial pneumonias are caused by **Pseudomonas** species and Entrobacteriaceae [6, 7, 9, 13], and the remainder primarily by **Staphylococcus aureus**, **Enterococcus** species, and **Hemophilus influenzae**.

Infections by **Mycobacterium tuberculosis** are occasionally reported [15–18]. They may be due to reactivation [15], occult disease in the remaining native lung after single-lung transplantation [19], or transmission by the transplant [16–18]. One single case of nosocomial tuberculosis in a lung transplant recipient has been described [15]. Atypical mycobacteria are rarely found after lung transplantation [20, 21]. They usually present as indolent disease and respond well to treatment. One case of a fatal infection with **Mycobacterium chelonae** in a patient with severe obliterative bronchiolitis has been reported [21].

The second most common infectious complication after lung transplantation is CMV disease. The reported incidence in larger series ranges between 53% and 75% [22–25]. Thus, the occurrence of CMV infection and disease is much higher in lung transplant patients than in other solid-organ recipients. The rate of CMV pneumonitis is high not only in the D+/R− patients (90%–100%) but—in contrast to other solid-organ transplantations—also in the D±/R+ patients, in whom the incidence of severe disease is ~60%. Fatal cases are not rare. Thus, an effective prophylaxis of this disastrous complication is highly warranted (see article by van der Bij and Speich [26], in this issue).

Herpes simplex virus (HSV) infections after lung transplantation are of special concern [10, 27, 28]. The incidence of HSV infections is up to 18% [27, 28]. Most infections are clinically
significant [27]. Severe HSV pneumonia occurs in ~10% of patients without prophylaxis. The fatality rate is 20% [10, 28]. Most infections are due to reactivation and may occur as early as 5–10 days after transplantation. Single cases of primoinfection are described after renal transplantation. Prophylaxis with acyclovir reduces the incidence of HSV infections in immunosuppressed patients [29], and valacyclovir may even be superior. Thus, lung transplant recipients should receive 1 of these drugs for ~3 months postoperatively (A-II), if not already being treated with ganciclovir.

The incidence of Epstein-Barr virus (EBV)–related posttransplant lymphoproliferative disorders after lung transplantation varies greatly and ranges from 2% to 33% [11, 30–32]. In most cases, the disease originates in the lung allograft [30, 31]. Nonetheless, restriction fragment–length polymorphism analysis has shown that the neoplastic cells usually arise from the recipient’s lymphocytes [33]. The risk for the development of posttransplant lymphoproliferative disorders is higher in EBV-negative lung transplant recipients [30], patients transplanted for cystic fibrosis [31], and recipients of lungs from donor with human leukocyte antigen status A2 and DR7 [32]. For further details, see article by Preikasaitis and Keay [34], in this issue.

The role of other viruses is not yet clear but may be relevant. Some centers have found a high incidence of nonherpes respiratory viruses [27, 35]. The attack rate, however, is <5% in most series. Rhinovirus infection sometimes causes mild upper respiratory tract disease in pediatric lung transplant recipients [36], but most cases are asymptomatic [27]. No permanent loss of respiratory function has been seen [27, 36]. Parainfluenza virus infections with significant pulmonary involvement and promotion of obliterative bronchiolitis have been described [27, 35, 36]. There is only 1 report of a severe influenza virus pneumonia in a pediatric lung transplant recipient who was treated with amantadine and recovered, but later developed obliterative bronchiolitis [37]. Respiratory syncytial virus infections in lung transplant recipients are often asymptomatic [27, 38]. They may cause, however, mild respiratory illness particularly in the pediatric patients [35, 36]. Ground-glass opacities are seen in almost 70% of the patients [39]. Cases with severe pneumonia and recovery in about one-third of them after treatment with aerosolized ribavirin have been reported [35, 40–42]. Obliterative bronchiolitis develops in about half of the survivors [9, 39, 42]. Infection with adenovirus poses a serious problem in the pediatric lung transplant recipients [36]. The attack rate is almost 50%, and at least half of the patients die in respiratory failure because of diffuse alveolar damage induced by the virus [36]. Obliterative bronchiolitis develops uniformly in the survivors. Occasional cases of adults with adenovirus infections are documented [27, 42–44]. In most of them, the clinical course was fatal [38, 42–44]. The 4 survivors all developed obliterative bronchiolitis [27, 42]. Cases of donor-transmitted adenoviral infections have been described [36]. In conclusion, nonherpes viral respiratory infection may be serious in lung transplant recipients, causing respiratory failure and obliterative bronchiolitis in the survivors. With respect to the various case reports and in analogy to the promising results in bone marrow transplant recipients [45, 46], we recommend treatment with ribavirin, either oral, iv, or aerosolized, in cases with significant nonherpes viral respiratory tract infections (B-III).

Fungal infections still are common in lung transplant recipients. Colonization with Aspergillus species occurs in 22%–85% of lung transplant recipients at some time after transplantation [47–54]. There is no difference in frequency of postoperative colonization between patients with cystic fibrosis, who often harbor Aspergillus species in their airways before transplantation, and the recipients without cystic fibrosis [50, 51, 55]. Invasive aspergillosis occurs in 13%–26% of the colonized lung transplant recipients and is uniformly fatal [53, 54]. Some patients develop invasive disease without prior colonization [48]. The risk of invasive aspergillosis peaks within the first 6 postoperative months, but at least one-third of the cases occur later [48]. Invasive aspergillosis may arise in the native lung after single-lung transplantation, either immediately after transplant because of preexistent disease in pretransplant immunosuppressed recipients [19] or in patients with destroyed native lungs (emphysema, lymphangioleiomyomatosis) [8, 19, 51, 56–58]. Native lung pneumonectomy is advisable in the latter (B-III) [56]. Patients suffering from obliterative bronchiolitis are also predisposed to the occurrence of invasive aspergillosis [12, 51]. A semi-invasive form of aspergillosis involving the anastomosis site and the large airways is quite common in lung transplant recipients [47, 49, 54, 59]. Treatment with either amphotericin B or itraconazole is successful in most cases. Colonization with Aspergillus species and previous CMV disease are significant risk factors for the development of invasive aspergillosis [48, 54]. Both conditions portend a relative risk of 11 for invasive disease [48, 54]. Preemptive therapy of colonized patients with oral itraconazole is highly recommended (A-II) and may completely prevent the development of invasive disease [49]. Semi-invasive tracheobronchial aspergillosis may develop despite treatment and can be cured by increasing the itraconazole dosage up to 400 mg b.i.d., with the goal of serum levels >1000 µg/L [49]. In 2 studies comparing a historical control group with patients treated with inhaled amphotericin B up to 20 mg t.i.d., the cumulative incidence of infections with Aspergillus species could be reduced significantly [60]. Whereas one report did not specify the rate of infection and disease, the second group found a decrease in the incidence of invasive aspergillosis from 15% (2/13 patients) to 0 (52 patients; P = .038). Thus, primary prophylaxis with inhaled amphotericin B may be considered in lung transplant recipients (B-II).

Most invasive infections with Candida species occur during
the first postoperative month, and most of them are transmitted via the donor organ (see below). The most common presentations are candidemia [61], necrotizing bronchial anastomotic infection [62], mediastinitis [14], and aortic anastomotic infection and disruption after heart-lung transplantation [63].

The incidence of *Pneumocystis carinii* pneumonia varies greatly between centers [6, 7, 64, 65]. A prevalence of up to 88% has been described in patients not receiving prophylaxis [64]. About two-thirds of the episodes are detected in asymptomatic patients by routine bronchoscopy and bronchoalveolar lavage. The organisms may stem from the recipient in cases with pretransplant immunosuppression. Prophylaxis with co-trimoxazole is nearly 100% effective [9, 11, 65] and therefore highly recommended (A-I). Inhaled pentamidine may be an alternative in patients not tolerating sulfa drugs (B-III). About one-third of the infections with *P. carinii* may occur after the first postoperative year [65]. Therefore, life-long prophylaxis is recommended by many centers (B-II), or, if discontinued, prophylaxis should be reinstalled in any patient receiving augmented immunosuppression (B-II).

Toxoplasma gondii pneumonitis has been described exclusively in heart-lung recipients [66]. There was 1 case of reactivation and 1 of primoinfection; both were diagnosed serologically, but not biopsy-proven. So far, no cases have been reported in recipients of lung transplants.

DIAGNOSTIC CONSIDERATIONS

Lung transplant recipients with fever or any organ dysfunction should undergo aggressive diagnostic work-up [2]. Blood cultures should be obtained routinely (A-II), because up to 25% of patients suffer from bloodstream infections during the early or late postoperative course [61]. *S. aureus, Pseudomonas aeruginosa,* and *Candida* species are the most common bloodstream isolates. In patients with respiratory symptoms or signs, bronchoscopy, bronchoalveolar lavage, and transbronchial lung biopsy should be performed immediately (A-II). Its diagnostic yield is almost 70% [67]. Inspection of the airways may reveal anastomotic problems or tracheobronchial aspergillosis. Bronchoalveolar lavage is very sensitive for most pathogens. Transbronchial biopsy is the only means to diagnose acute rejection and CMV pneumonitis [68–70]. Its sensitivity and specificity is almost 100%. Computed tomography may be helpful in the differential diagnosis of bilateral infiltrative lung diseases and detect mediastinal, bronchial, or vascular complications [71].

Most centers now perform routine surveillance bronchoscopies after lung transplantation [68–70] (B-II). Besides the early detection of asymptomatic significant acute rejection episodes or CMV pneumonitis in about 20%–30% of procedures, it allows the early identification of cases colonized by *Aspergillus*. Regular examination of peripheral blood for CMV by pp65 antigen detection or PCR has become routine in almost all centers (A-II).

LUNG TRANSPLANT DONOR

Almost all donor lungs harbor microorganisms at the time of organ procurement [72]. In ~40% of the recipients, these organisms can subsequently be isolated, and in ~20% of them, bronchopneumonia develops as a result of the respective organisms [73]. Deaths in lung transplant recipients because of donor-transmitted bacterial pneumonia have been described [72]. Thus, the bacteriological examination of bronchial washings of the donor lung is a prerequisite for the management of subsequent invasive infection in the transplant recipients (A-II). Even the growth of normal oral flora in the donor is considered to be a risk factor for early bacterial pneumonia in the recipient [14]. We recommend that antibiotic coverage in lung transplant recipients should be initiated with a broad-spectrum agent (A-II) and modified on the basis of cultures obtained from the donor lungs (A-II) [77], except in recipients with cystic fibrosis, who should be treated with an antimicrobial combination therapy tailored according to the pretransplant sputum cultures for about 2 weeks (A-III), as discussed below. In 1 series, this approach reduced the incidence of early postoperative bacterial pneumonia from 33% in a historical control group to 13% (*P = .005*) [13, 14].

Fiber-optic bronchoscopy with microbiologic sampling should be performed routinely in the lung donor [74] (A-III). The finding of a positive Gram stain, purulent secretions, or minor infiltrates on the chest X-ray is no obstacle for accepting the lungs for transplantation [75, 76] (B-II), and the results of transplantation utilizing these marginal donor organs have shown to be comparable to those using ideal transplants [77, 78]. Using these lungs for single-lung transplantation in recipients with pulmonary hypertension, however, is not advisable, because any postoperative allograft dysfunction may result in profound hypoxemia due to ventilation-perfusion mismatch, which is much more pronounced than in single-lung transplants for other diseases [79] (D-III). Significant pneumonia and gross aspiration are generally considered to be a reason for exclusion [78] (E-III). There is experimental evidence that antibiotic treatment of donors with bacterial contamination prevents pneumonia in canine lung recipients [80]. Thus, antimicrobial treatment of human donors may decrease the risk of early bacterial pneumonia [78] (B-III).

Heavy growth of *Candida* species in the donor bronchus is a significant obstacle for accepting the organs for transplantation. The sequelae are mediastinitis, sepsis, or involvement of the great vessels leading to mycotic aneurysms and consecutive rupture. In 1 series, 3 of 4 recipients of lung transplants with heavy growth of *Candida* species developed mediastinitis,
which was uniformly fatal [14]. Thus, such donor organs should possibly be discarded (D-II). If they are nevertheless used, antifungal treatment with amphotericin should be instituted immediately (B-III) [14].

Unused donor lungs in cases of single-lung transplantation should undergo pathologic analysis (A-II) [81, 82], because they may show important unexpected findings such as pneumonia, emphysema, or pulmonary emboli. Moreover, the history of the donor is important to detect rare donor-related complications such as bone marrow or brain embolism.

RECIPIENT

Low-dose pretransplant corticosteroid treatment in the recipient has now proved to be acceptable, or even beneficial, and allows transplantation in patients who cannot be completely weaned from such therapy [83] (A-II); however, it has to be taken into account that in the case of single-lung transplantation the remaining native lung may harbor serious opportunistic infections such as invasive aspergillosis or P. carinii pneumonia [19, 58]. Thus, it is of the utmost importance to examine the excised recipient’s lungs pathologically as quickly and thoroughly as possible (A-III), including microbiological analysis. If there is an invasive infection present, the transplant physician should be alerted, especially in the case of single lung transplantation, because the remaining native lung may harbor the same infection. The presence of an aspergilloma in the potential lung transplant recipient is often considered to be a contraindication for lung transplantation because of the danger of serious intraoperative bleeding. There are, however, no sound data on this issue, especially not in the setting of modern surgical techniques (D-III).

Computed tomography of the thorax should be performed routinely (A-III). It may help to detect mediastinal problems and intrapulmonary alterations such as abscesses or aspergillosas and other relevant findings with respect to transplant surgery. Computed tomography of the paranasal sinuses is recommended in patients with cystic fibrosis in order to detect invasive infections and potentially to plan pre- or posttransplant sinus surgery (A-III).

NATIVE LUNG

Several centers now report complications arising from the remaining native lung after single-lung transplantation, such as severe overinflation, perfusion mismatch, pneumothorax, and bacterial and fungal pneumonia. The incidence varies between 20% and 50% [8, 12, 19, 57, 84]. Morbidity and mortality are considerable, and many patients need additional surgery. Invasive aspergillosis of the native lungs is the most feared complication and often requires pneumonectomy [85]. The native lung in patients immunosuppressed during the pretransplant period, such as in cases of idiopathic pulmonary fibrosis, may harbor infectious agents such as M. tuberculosis, P. carinii, and Aspergillus fumigatus, which lead to serious exacerbations after transplantation.

CYSTIC FIBROSIS

As a consequence of the infectious nature of the pulmonary disease, the procedure of choice in patients with cystic fibrosis is double-lung transplantation [86]. Some centers still perform heart-lung transplantation in these patients with comparable results. Single-lung transplantation is considered not to be feasible; however, a few patients having undergone this procedure with concomitant contralateral pneumonectomy have been reported [87]. It is surprising that, despite the common presence of airway pathogens (P. aeruginosa, S. aureus, Aspergillus species) before transplantation, there is no evidence that patients with cystic fibrosis are at greater risk of infectious complications because of these organisms after lung transplantation than are other patients [51, 55, 88].

It has been shown from macrorestriction fragment pattern similarity that there is no change in the P. aeruginosa population in the airways of lung transplant recipients before and after transplantation [89]. Thus, it is assumed that the chronic drainage of P. aeruginosa into the lung allografts is caused by the bacterial reservoir in the paranasal sinuses and the trachea. The value of pre- or posttransplant sinus surgery in patients with cystic fibrosis, however, has not yet been established, but this procedure has been advocated by some centers [90–94] (B-III). It may reduce posttransplant bacterial infectious complications as has been shown in nontransplanted patients with cystic fibrosis [95].

Some centers consider the presence of a respiratory pathogen such as P. aeruginosa resistant to all antibiotics or other multiply resistant bacteria including Burkholderia cepacia, Stenotrophomonas maltophilia, or Alcaligenes xylosoxidans a contraindication to lung transplantation; however, this idea is not based on solid evidence [86]. Synergy testing of antimicrobial pairs in checkerboard dilutions of clinically achievable drug concentrations may inhibit most of the multiply resistant strains [96]. Patients colonized with B. cepacia are of special concern in 2 ways: first, most series demonstrate an increased posttransplant morbidity and mortality because of overwhelming pneumonia or sepsis caused by this organism [94]. Second, transmission between patients of B. cepacia is well documented [97], and this may adversely influence the center-specific epidemiological situation from a microbiological point of view. It seems, however, that there are different strains of B. cepacia regarding its aggressiveness and transmissibility. Thus, the decision to accept
patients with cystic fibrosis colonized by *B. cepacia* depends on the center-specific situation [98].

Infection with nontuberculous mycobacteria occurs in some patients with cystic fibrosis. This seems not to be a contraindication for lung transplantation (B-III), because in most reported cases these organisms can no more be isolated postoperatively [55].

References

Infections after Lung Transplantation • CID 2001;33 (Suppl 1) • S63

