steroids and underwent emergency intuba-
tion. On day 4, he started having fevers
(temperature, 38.6°C) and required in-
creased ventilatory support. Chest radiog-
raph revealed bilateral pulmonary infiltr-
ates. The patient developed progressive
respiratory distress and died on day 8.
Cultures of sputum and blood samples
grew Acinetobacter baumannii.

Case 2. A man aged 71 years pre-
sented with 5 days of facial swelling after
beginning treatment with ARBs 12 days
earlier. At presentation, he began treat-
ment with corticosteroids, but he required
intubation on day 6. Chest radiograph re-
vealed bilateral pulmonary infiltrates. The
patient died on day 10. Cultures of sput-
um and blood samples were positive for
A. baumannii.

Case 3. A man aged 53 years pre-
ented with 1 day of tongue swelling. He
had been receiving ARBs for an unknown
duration. At presentation, he began treat-
ment with corticosteroids and underwent
emergency intubation. He developed fe-
ers (temperature, 39.0°C) and worsening
respiratory distress on day 8. Chest radio-
graph showed right middle-lobe pulmo-

nary infiltrates, and 2 cultures of blood
samples grew Escherichia coli. His treat-
ment course was complicated by empy-
ema. The patient subsequently underwent
extubation and was discharged home on
day 18.

These 3 cases were included in our ret-
rospective study of all adult inpatients
(age, ≥18 years) over 3 years (April 2004
through March 2007) who were hospital-
ized with the discharge diagnosis of an-
gioedema. Medical records were reviewed
retrospectively, and information was col-
clected on each patient’s clinical presenta-
tion, underlying comorbid condition(s),
medication(s), microbiology reports, and
hospital course. All cases of pneumonia
involving patients after episodes of an-
gioedema were included as cases. Ninety-
five episodes of angioedema were encoun-
tered, including 63 (66.3%) due to ACEI
and/or ARBs, 22 (23.2%) due to other
medications, and 10 (10.5%) that were id-
iopathic. Among the ACEI/ARB group, 8
(12.7%) were patients undergoing dialysis,
and 3 (37.5%) of the 8 developed gram-
negative pneumonia with bacteremia (i.e.,
the 3 cases described above), whereas none
of the other 55 patients developed pneu-
monia.

These cases illustrate the unique asso-
ciation of severe gram-negative pneu-
monia in patients undergoing dialysis with
angioedema. Underlying host factors, cor-
ticosteroid use, and development of re-
spiratory colonization with gram-negative
bacteria likely contributed to rapidly pro-
gressive pneumonia and bacteremia. In 2
cases, the patient died of multidrug-resis-
tant Acinetobacter infection. Patients un-
dergoing dialysis are known to have im-
paired chemotaxis, phagocytosis, and ac-
celerated apoptosis of granulocytes [1,
2]. The well-known impairment of neu-
rophil function seen with corticosteroid
treatment may have also contributed to an
increased risk of infectious complications.
In a study examining the microbiology of
pneumonia in patients undergoing dialy-
sis, gram-negative bacilli were present in
55% of patients with community-acquired
pneumonia and in 65% of patients with nos-
ocomial pneumonia [3]. Although larger
multicenter studies are needed to con-
firm this observation, physicians car-
ing for patients with angioedema who are
undergoing dialysis should be aware of
this potentially fatal complication.

Acknowledgments

Potential conflicts of interest. L.B.J. has
served on the speaker’s bureau for Pfizer. M.S.: no
conflicts.

Mamta Sharma and Leonard B. Johnson
St. John Hospital and Medical Center and Wayne
State University School of Medicine,
Detroit, Michigan

References

1. Vanholder R, Ringoir S. Infectious morbidity
 and defects of phagocytic function in end stage
2. Silin Y, Foley RN, Collins AJ. Clinical epide-
 miology of pneumonia in hemodialysis pa-
 tients: the USRDS waves 1, 3, and 4 study. Kid-
 ney Int 2006;70:1135–41
den of infections in patients with end-stage re-
nal disease requiring long-term dialysis. Clin

Presented in part: 45th Annual Meeting of the Infectious
diseases Society of America, San Diego, California, October
2007 (abstract 1050).

Reprints or correspondence: Dr. Mamta Sharma, 19251 Mack
Ave., Ste. 340, Grose Pointe Woods, MI 48236 (mamta.
sharma@stjohn.org).

Clinical Infectious Diseases 2008;47:1494–5
© 2008 by the Infectious Diseases Society of America. All
rights reserved. 1058-4838/2008/4711-0024$15.00
DOI: 10.1086/583108

Abacavir and Cardiovascular Risk in HIV-Infected Patients:
Does T Lymphocyte Hyperactivation Exert a Pathogenic Role?

To the Editor—The association between abacavir exposure and cardiovascular dis-
eease in HIV-infected patients is intensely debated. The Data Collection on Adverse
Events of Anti-HIV Drugs Study Group recently described an increased risk of my-
ocardial infarction in patients with current or recent abacavir exposure [1], whereas
repository data from GlaxoSmithKline clinical trials failed to find any association
[2]. While clinicians are forced to await confirmatory research that uses cardio-
vascular disease as an end point, plausible biological mechanisms of abacavir-driven
cardiovascular damage must be thor-
oughly investigated. If abacavir increases cardiovascular risk, this might be driven
by adverse antiretroviral or immunologic
effects that hasten preexisting arterial
inflammation.

Because of the association between lym-
phocyte hyperactivation and cardiovas-
cular disease [3] and the major role of T
cell hyperactivation in HIV infection and
AIDS, we investigated T cell immuno-
phenotype and proinflammatory cytokine
kinetics in a group of 12 HIV-infected pa-
tients who were receiving abacavir-con-
taining regimens at baseline, 3 months,
and 6 months of therapy. We observed a
significant increase in activated
CD38+CD8+ cell count and percentage
and a reduction in CD95+CD4+ and CD8+
Table 1. Clinical and immunophenotypic characteristics of 12 HIV-positive patients who were receiving abacavir-containing HAART.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Baseline</th>
<th>3 Months of therapy</th>
<th>6 Months of therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean years (range)</td>
<td>50 (33–67)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Current smoking, proportion of patients</td>
<td>3/12</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Sex, M:F</td>
<td>9:3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>CD4+ cell count, cells/μL</td>
<td>312 (91–1650)</td>
<td>348 (132–1664)</td>
<td>476 (234–1908)</td>
</tr>
<tr>
<td>CD4+ cell percentage</td>
<td>25 (7–55)</td>
<td>24 (11–52)</td>
<td>26 (21–53)</td>
</tr>
<tr>
<td>HIV RNA level, log10 copies/mL</td>
<td>1.77 (1.77–4.30)</td>
<td>1.77 (1.77–2.40)</td>
<td>1.77 (1.77–3.90)</td>
</tr>
<tr>
<td>CD38+CD8+ cell percentage</td>
<td>1 (0–47)</td>
<td>1 (1–4)</td>
<td>2 (1–5)</td>
</tr>
<tr>
<td>CD38+CD8+ cell count</td>
<td>23 (0–42)</td>
<td>23 (10–69)</td>
<td>33 (12–46)</td>
</tr>
<tr>
<td>CD95+CD4+ percentage</td>
<td>2 (1–9)</td>
<td>1 (0–4)</td>
<td>1 (1–2)</td>
</tr>
<tr>
<td>CD95+CD8+ percentage</td>
<td>1 (0–42)</td>
<td>21 (0–42)</td>
<td>19 (12–36)</td>
</tr>
<tr>
<td>CD95+CD8+ cell count</td>
<td>33 (12–130)</td>
<td>33 (12–46)</td>
<td>33 (12–46)</td>
</tr>
<tr>
<td>Total cholesterol level, mg/dL</td>
<td>225 (154–301)</td>
<td>246 (159–339)</td>
<td>241 (186–366)</td>
</tr>
<tr>
<td>Low density lipoprotein cholesterol level, mg/dL</td>
<td>133 (76–401)</td>
<td>50 (82–505)</td>
<td>53 (32–74)</td>
</tr>
<tr>
<td>Triglyceride level, mg/dL</td>
<td>136 (90–571)</td>
<td>169 (36–923)</td>
<td>227 (132–1137)</td>
</tr>
<tr>
<td>Homocysteine level, mg/dL</td>
<td>12.0 (4.6–23.5)</td>
<td>ND</td>
<td>11.0 (3.4–17.4)</td>
</tr>
<tr>
<td>IMT, mm</td>
<td>ND</td>
<td>0.99 (0.79–1.49)</td>
<td>ND</td>
</tr>
<tr>
<td>Right carotid</td>
<td>ND</td>
<td>ND</td>
<td>0.99 (0.82–1.61)</td>
</tr>
<tr>
<td>Left carotid</td>
<td>ND</td>
<td>ND</td>
<td>0.96 (0.83–1.24)</td>
</tr>
<tr>
<td>Right femoral</td>
<td>ND</td>
<td>1.01 (0.92–1.75)</td>
<td>ND</td>
</tr>
<tr>
<td>Left femoral</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

NOTE. Data are median value (range), unless otherwise indicated. IMT, intima-media thickness; NA, not applicable; ND, not determined.

a $P<.05$ for comparison with all other time points.

b $P=.01$ for comparison with all other time points.

c $P<.01$ for comparison with all other time points.

d vs. baseline.

By suggesting that T lymphocyte hyperactivation is relevant to the pathogenesis of abacavir-related cardiovascular disease, these data, although preliminary, support a thorough assessment of possible immunologic biomarkers of abacavir-related cardiovascular damage.

Acknowledgments

Potential conflicts of interest. All authors: no conflicts.

Giulia Marchetti, Maddalena Casana, Camilla Tincati, Giusi M. Bellistrì, and Antonella d’Arminio Monforte

Department of Medicine, Surgery and Dentistry, Clinic of Infectious Diseases, San Paolo Hospital, University of Milan, Milan, Italy

References