more fundamental question: what is the rationale for treating elite suppressors with cART in the first place? We know that many of these patients are probably infected with fully replication-competent human immunodeficiency virus (HIV)–1 isolates [2, 3]. Furthermore, a comparison of proviral and plasma HIV clones suggests that viral evolution has occurred in these patients, meaning that the virus has to be replicating at low levels [4]. Although the majority of elite suppressors maintain stable CD4+ T cell counts, CD4+ T cell depletion has been reported in some elite suppressors [5–8], all of whom have had marked levels of immune activation. Immune activation has been shown to be a better correlate of HIV progression than viremia in some studies [9, 10], and in fact, Kaposi sarcoma has been reported in an elite suppressor with relatively high levels of immune activation [7]. In our study, we showed that treatment of an elite suppressor with highly active antiretroviral therapy (HAART) resulted in a marked decline in immune activation even though there was not a significant increase in CD4+ T cell count [8]. Thus, one could argue that treatment with HAART will inhibit the low-level viral replication that is probably responsible for the immune activation in elite suppressors.

More patients will have to be studied before we can determine whether this strategy generally results in immune reconstitution, but how do we define success in cases in which CD4+ T cell counts do not rebound? Elite suppressors have viral loads of <50 copies/mL at baseline, so using commercial viral load assays with cutoff values of 50 copies/mL will be of little help, and it is obviously challenging to monitor these largely asymptomatic patients for other signs of clinical improvement. The CD4+ T cell count in our patient stabilized during HAART [8]; this probably should be the minimum criterion used in these cases. Finally, one could ask whether it makes sense to treat all elite suppressors with HAART. Studies have shown that, although these patients have higher levels of immune activation than uninfected subjects [6, 7], the majority maintain stable CD4+ T cell counts for long periods of time [8, 11, 12]. Studies comparing large cohorts of elite suppressors and patients who are receiving HAART will be needed to determine whether subtle differences in morbidity and mortality exist; ultimately, this will guide the decision-making process. However, it should be noted that, although many elite suppressors have been clinically stable for >20 years without therapy, nobody has been taking HAART for that long; thus, the long-term consequences of this treatment remain unknown.

Acknowledgments

Financial support. National Institutes of Health (R01 AI065960 to C.O.W. and R01 AI080328 to J.N.B.).

Potential conflicts of interest. All authors: no conflicts.

Ahmad R. Sedaghat,1,a Darius A. Rastegar,1 Karen A. O’Connell,1 Jason B. Dincono,2 Claus O. Wilke,2 and Joel N. Blankson1

1Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and 2Section of Integrative Biology, Center for Computational Biology and Bioinformatics, and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas

References

© 2010 by the Infectious Diseases Society of America. All rights reserved. 1059-4808/2010/5010-0017/$15.00 DOI: 10.1086/652285

Evaluation of Parvovirus B19 Infection in Children with Malignant or Hematological Disorders

To the Editor—The potential benefit of diagnostic screening for parvovirus B19 (B19) DNA by polymerase chain reaction (PCR) was recently shown in children with acute lymphoblastic leukemia (ALL), because only 5% of the patients who had
positive PCR results were suspected of harboring B19 infection on the basis of clinical assessments [1]. Yet, retrospective review showed that the B19-associated cytopenias significantly prolonged periods of unwanted interruption of chemotherapy, necessitated more blood transfusions, and compelled more bone marrow examinations. Our purpose here was to extend those findings by studying children with other malignancies or hematological disorders.

During a period of 5.5 years, examinations of bone marrow for proven or suspected malignant disorders were supplemented with screening for parvovirus B19 DNA with a qualitative PCR. Positive samples were then analyzed with the quantitative PCR [1]. Informed consent to participate in the study was obtained from the children or their guardians. The study was approved by the ethical committee at Karolinska Institutet (Stockholm, Sweden).

A total of 229 bone marrow samples from 123 children who underwent bone marrow examinations were collected. Overall, 9 (7%) of 123 patients were positive for B19 DNA, and 8 of those 9 had test results positive for B19 DNA at the time of diagnosis of the underlying disease. No additional underlying immunodeficiency or previous blood transfusion was recorded. Consecutive samples were available from 4 of the B19 DNA–positive patients (2–7 samples per patient), and the outcomes were recorded for 5–32 months.

B19 DNA was, in one instance, persistently detected for 24 months after diagnosis of the underlying disorder, all but 2 of the B19 DNA–positive patients experienced multiple episodes of fever and severe long-standing cytopenias that required multiple blood transfusions (range, 5–60 transfusions).

Except for studies involving children with ALL, little information is available on the influence and persistence of B19 infection among children with malignancies [1–6]. In the present study, 7% of children with malignant or hematological disorders were found to be B19 DNA positive and this infection likely contributed to some of the severe cytopenic periods observed. Viral load was detected in high titers, and some children had prolonged periods of detectable B19 DNA. Owing to the multiplicity of these underlying diagnoses, no statistical comparison was possible for B19-infected versus uninfected individuals, as was done in our previous study involving children with ALL [4]. However, that study served as the basis for our contention that screening with PCR for B19 DNA in bone marrow samples is clinically important for all hematological disorders, not only for early detection and treatment of the infection but also for limiting the effects of associated complications. Future studies will hopefully clarify the clinical relevance of viral load levels in different patient categories, at which levels to initiate antiviral treatment, and whether analyses of serum samples is as sensitive as analysis of bone marrow samples. Considering the notable number of B19 DNA–positive children in our relatively small but significant study, we suggest that quantitative PCR testing is a useful differential diagnostic tool in these patient categories.

Acknowledgments

Financial support. The Stockholm City Council/Karolinska Institutet, Swedish Children’s Cancer Foundation, and the Tobias Foundation.

Potential conflicts of interest. All authors: no conflicts.

Oseeltamivir Dosing in Children Undergoing Hemodialysis

To the Editor—With the advent of the new influenza A (H1N1) virus, the need for antiviral treatment has increased, especially in vulnerable patients, such as patients undergoing dialysis [1]. For adult patients, Robson et al [2] have provided a guideline for dosing of oseltamivir, whereas for children undergoing dialysis, such data are lacking.

On the basis of data from Robson et al [2], we formulated a dosing schedule for...