Chronic Norovirus Infection after Kidney Transplantation: Molecular Evidence for Immune-Driven Viral Evolution

Robert Schorn, Marina Höhne, Astrid Meerbach, Walter Bossart, Rudolf P. Wüthrich, Eckart Schreier, Nicolas J. Müller, and Thomas Fehr

Divisions of *Infectious Diseases and Hospital Epidemiology, University Hospital, and Institute of Medical Virology, University of Zürich, Zürich, Switzerland; and Robert Koch Institut, Berlin, Germany*

Background. Norovirus infection is the most common cause of acute self-limiting gastroenteritis. Only 3 cases of chronic norovirus infection in adult solid organ transplant recipients have been reported thus far.

Methods. This case series describes 9 consecutive kidney allograft recipients with chronic norovirus infection with persistent virus shedding and intermittent diarrhea for a duration of 97–898 days. The follow-up includes clinical course, type of immunosuppression, and polymerase chain reaction for norovirus. Detailed molecular analyses of virus isolates from stool specimens over time were performed.

Results. The intensity of immunosuppression correlated with the diarrheal symptoms but not with viral shedding. Molecular analysis of virus strains from each patient revealed infection with different variants of GII.4 strains in 7 of 9 patients. Another 2 patients were infected with either the GII.7 or GII.17 strain. No molecular evidence for nosocomial transmission in our outpatient clinic was found. Capsid sequence alignments from follow-up specimens of 4 patients showed accumulation of mutations over time, resulting in amino acid changes predominantly in the P2 and P1–2 region. Up to 25 amino acids mutations were accumulated over a 683-day period in the patient with an 898-day shedding history.

Conclusion. Norovirus infection may persist in adult renal allograft recipients with or without clinical symptoms. No evidence for nosocomial transmission in adult renal allograft recipients was found in our study. Molecular analysis suggests continuous viral evolution in immunocompromised patients who are unable to clear this infection.

Noroviruses represent the most common cause of acute gastroenteritis in adults and older children worldwide. They belong to the family of the Caliciviridae, genus Norovirus. The first description was an outbreak in Norwalk reported in 1968, and the virus was named Norwalk virus thereafter. A wide range of genetically distant norovirus strains are organized into 5 genogroups and further classified into at least 27 genetic clusters or genotypes [1]. They are small (30 nm), single-stranded RNA viruses with a simple structure containing 1 major (VP1, capsid) and 1 minor (VP2) protein and no envelope. The genogroups GI, GII, and GIV include human pathogens, and the genotype II.4 has predominated in outbreaks, which were associated with epochal emergence of GII.4 variants [2–4].

The major route of transmission is fecal-oral when the patient is most symptomatic, but there is evidence of pre- and postsymptomatic transmission as well as occasional airborne transmission due to aerosolized viruses during vigorous emesis [5]. Noroviruses are extremely contagious and highly resistant to inactivation by freezing, heating, and exposure to detergent-based cleaners. The incubation period is short (24–48 h). The typical clinical presentation is an abrupt illness with vomiting and diarrhea, headache, or constitutional symptoms. Fever is present in one-half of patients. Symptoms generally last 24–60 h and are self-limited, but severe disease has been reported in elderly and immunocompromised patients.

Norovirus shedding in stool assessed by immune electron microscopy or antigen-capture enzyme-linked
immunosorbent assay is rarely detected beyond 72 h after the onset of illness, but a prolonged shedding may be detected by using polymerase chain reaction (PCR) [6, 7]. It has been reported that levels of viral load in genogroup II infections is higher than in genogroup I [8]. In immunocompetent patients after experimental human infection virus, shedding up to 56 days has been described [9]. Siebenga et al [10] reported prolonged illness and viral shedding (21–182 days) in hospitalized patients. Chronic norovirus infection has been reported in pediatric intestinal transplant recipients and in a child with cartilage hair hypoplasia after bone marrow transplantation [11–13]. Ludwig et al [14] found a prolonged shedding over a maximum of 433 days in pediatric patients with cancer. Among adult solid organ transplant recipients, chronic excretion has only been reported in 1 patient undergoing heart transplant [15] and very recently in 2 renal transplant recipients [16]. Here, we describe a series of 9 consecutive cases of chronic norovirus infection in renal allograft recipients. To assess a potential nosocomial transmission and viral evolution over time, we performed a detailed molecular analysis, which excluded transmission in the outpatient clinic but revealed increasing accumulation of mutations in the capsid gene over time.

PATIENTS AND METHODS

Patient screening and assessment. Renal transplant recipients presenting with prolonged or severe diarrhea were evaluated for infectious and noninfectious causes. In addition to routine assessment for bacterial or viral infection with stool cultures (for detection of Campylobacter, Salmonella, Shigella, and for patients with severe symptoms, protozoa), specific testing for Clostridium difficile toxin, and plasma PCR for cytomegalovirus, we performed PCR for norovirus from stool specimens. From November 2006 through November 2008, 78 patients were screened, and 13 (16.7%) were found to have positive PCR results for norovirus. If norovirus was detected, 2 additional PCR examinations were performed in the following 3 months, even if the patient had resolved all symptoms. Chronic norovirus infection was defined as 3 positive stool specimens during a follow-up of at least 3 months. Nine patients with viral shedding >3 months were found. In our 9 patients, over all 60

![Figure 1](image)

Figure 1. Correlation of immunosuppressive treatment with clinical symptoms and viral shedding. All patients received calcineurin inhibitor–based immunosuppression. Chronic norovirus shedding was observed over 97–898 days. The occurrence of clinical symptoms but not C-reactive protein levels and viral shedding correlated with the intensity of immunosuppression. F, female; M, male; P1–P9, patients 1–9. The number after sex indicates the patient’s age.
samples were analyzed (mean, 6.67 samples tested per patient). Figure 1 shows sample numbers in chronological sequence for each patient. Clinical symptoms, immunosuppression dose, and C-reactive protein levels were recorded at every visit. Furthermore, 7 of our 9 patients underwent colonoscopy and gastroscopy. In case of persistent norovirus infection during the first 3 months after initial diagnosis, PCR for norovirus was regularly performed every 3 months thereafter and was only stopped after 2 consecutive negative results. Duration of shedding was defined by the dates of first positive and first negative PCR results. Family members were not tested.

PCR and molecular analysis. Analysis of stool specimens for the presence of norovirus was performed at the Institute of Medical Virology, University of Zürich, Switzerland. Stool specimens were diluted 10-fold with phosphate-buffered saline, were frozen over night at −20°C, and after thawing, were centrifuged in a table top centrifuge at 1000 g for 15 min. On the basis of threshold cycle values of the real time PCR, we divided positive specimens into groups with very high, high, and average/low virus concentration. Diagnostic PCR for norovirus genogroup I and II were performed as described by Höhne and Schreier [17].

To analyze the polymerase genotype, a 297-basepair fragment of region A [18] was amplified from the first available stool sample of all 9 patients and sequenced directly as described elsewhere [19]. The accumulation of mutations in the capsid gene was analyzed in follow-up samples obtained from 4 patients (patients 3, 4, 5, and 7). Therefore, the entire ORF2 gene region was reverse transcribed and amplified in the first round reverse transcription PCR using SuperScript III One-Step RT-PCR System with Platinum Taq High Fidelity, according to the manufacturer’s instructions (Invitrogen), with primers NV107a (sense, 5′-AGCCAATGTTCAGATGGATG-3′) and NV100 (antisense, 5′-GCAAAGAAAGCCTCCAGCCAT-3′). The 1-step reverse transcription PCR was performed at 55°C for 5 min, 45°C for 55 min, and 94°C for 2 min, and finally, a 5 min elongation at 68°C. For the nested PCR, primers NV271 (sense, 5′-ATGAAGATGGCGTCGAATGA-3′) and NV288 (antisense, 5′-TAAAGACGCGGCTCGGCCC-3′) and Platinum Pfx DNA polymerase (Invitrogen) were used. Amplicons were purified from agarose gels with use of the MinElute Gel Extraction Kit (Qiagen), or from solution with use of ExoSap-It (GE Healthcare). Purified amplicons were sequenced directly using the BigDye terminator cycle sequencing kit and an ABI 3130xi Genetic Analyzer (Applied Biosystems). Sequences were aligned to prototype sequences drawn from GenBank with use of CLUSTAL W, version 1.6, and phylogenetic trees were produced using the neighbor joining and DNADIST program of the Phylogeny Interference Package (PHYLIP), version 3.57c.

<table>
<thead>
<tr>
<th>Table 1. Patient Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Age, median years (range)</td>
</tr>
<tr>
<td>Renal disease</td>
</tr>
<tr>
<td>Glomerulonephritis</td>
</tr>
<tr>
<td>Hypoplasia / Aplasia</td>
</tr>
<tr>
<td>Others</td>
</tr>
<tr>
<td>Duration of dialysis, median months (range)</td>
</tr>
<tr>
<td>Hemodialysis</td>
</tr>
<tr>
<td>Peritoneal dialysis</td>
</tr>
<tr>
<td>Transplantation</td>
</tr>
<tr>
<td>Prior transplantations, median no (range)</td>
</tr>
<tr>
<td>Living donor kidney</td>
</tr>
<tr>
<td>Deceased donor kidney</td>
</tr>
<tr>
<td>Induction therapy</td>
</tr>
<tr>
<td>Rejections, median no (range)</td>
</tr>
<tr>
<td>Rejection treatment</td>
</tr>
<tr>
<td>Prednisone</td>
</tr>
<tr>
<td>ATG/OKT3</td>
</tr>
<tr>
<td>Immunoabsorption</td>
</tr>
<tr>
<td>Initial immunosuppression</td>
</tr>
<tr>
<td>Dual immunosuppression</td>
</tr>
<tr>
<td>With CyA</td>
</tr>
<tr>
<td>With tacrolimus</td>
</tr>
<tr>
<td>Triple immunosuppression</td>
</tr>
<tr>
<td>With CyA</td>
</tr>
<tr>
<td>With tacrolimus</td>
</tr>
<tr>
<td>Antimetabolite</td>
</tr>
<tr>
<td>Mycophenolate mofetil</td>
</tr>
<tr>
<td>Mycophenolic acid</td>
</tr>
<tr>
<td>Azathioprine</td>
</tr>
<tr>
<td>Prednisone</td>
</tr>
<tr>
<td>Norovirus infection</td>
</tr>
<tr>
<td>Start after last transplantation, median months (range)</td>
</tr>
<tr>
<td>CRP level at initial presentation, median mg/L (range)</td>
</tr>
<tr>
<td>Need for patient hospitalization</td>
</tr>
<tr>
<td>Duration of symptoms, median days (range)</td>
</tr>
<tr>
<td>Intermittent symptoms</td>
</tr>
<tr>
<td>Duration of shedding, median days</td>
</tr>
<tr>
<td>Viral clearance</td>
</tr>
</tbody>
</table>

NOTE. Data are no (%) of patients, unless otherwise indicated. CRP: C-reactive protein; CyA, cyclosporin A.

Nucleotide sequences of the capsid gene from the first and the last specimen amplified were submitted to GenBank (accession numbers, GQ266690–GQ266697).
Figure 2. Sequence analysis of a polymerase gene fragment from all 9 patients. Neighbor-joining tree of a 297 nucleotide-long fragment of the polymerase gene (region A). Sequences were obtained from the first stool specimens available for all 9 patients (P1–P9). Prototype sequences (bold, italics) from GenBank are II.1 Hawaii (U07611), II.3 Toronto (U02030), II.4 2006A Terneuzen70 (EF126964), II.4 2006B Nijmegen115 (EF126966), II.7 Leeds (AJ277608), and II.17 Sommieres1203/2006 (EF529742). Bootstrap values >70% are indicated. The scale represents nucleotide substitutions per site.

RESULTS

Patient characteristics. Nine consecutive patients (7 men and 2 women) with a renal allograft and gastroenteritis due to chronic norovirus infection were identified from November 2006 through November 2008 and were followed up until April 2009. The age of the patients at onset was 23–59 years. Norovirus infection started between 1.3–125 months after transplantation (median, 42 months). At the onset of norovirus infection, 7 patients were receiving standard triple immunosuppression with a calcineurin inhibitor, mycophenolate mofetil, and prednisone; 2 patients were receiving dual immunosuppression with a calcineurin inhibitor and mycophenolate mofetil; 7 patients were receiving tacrolimus; and 2 patients were receiving cyclosporine A (Table 1).

Clinical course of norovirus infection. Duration of chronic virus shedding ranged from 97 to 898 days (Figure 1). A very high virus concentration (threshold cycle value, 15–20; mean, 17.29) was found in 18.4%, and a high concentration (threshold cycle value, >20–30; mean, 24.22) was in 71.4% of all positive specimens. In 10.2% of samples with positive PCR results for norovirus, the concentration was low to average (threshold cycle value, >30–38; mean, 34.45); in most of these, the following PCR for norovirus had a negative result. In all cases, diarrhea led to a reversible prerenal decrease of renal function.

Five patients were hospitalized because of severe dehydration and allograft dysfunction. Symptoms of overt diarrhea, irregularly formed stools, and/or abdominal bloating and pain in repeated consultations lasted 24–898 days. Patient 3 had the longest follow-up, with chronic viral shedding over 898 days, and intermittent clinical symptoms were documented over the whole study period after detection of the first positive stool. At initial presentation, C-reactive protein was mildly elevated (median, 1 mg/L; range, 1–38 mg/L), whereas in the asymptomatic shedding phase, the C-reactive protein level remained normal except for episodes associated with other infections.

Three of the 9 patients cleared the virus during the observation period after 104–379 days. Because of the lack of a specific therapy, a cautious decrease of immunosuppression was initiated if possible, mainly by reduction or withdrawal of prednisone or mycophenolate mofetil. Two patients were switched from mycophenolate mofetil to azathioprine because it is associated with fewer gastrointestinal adverse effects. Reduction of immunosuppression led to clinical amelioration or full recovery in all patients, but norovirus shedding only stopped in 3 patients.

Results of sequence analysis I: no evidence for nosocomial transmission. Sequence analysis of region A in the polymerase gene (Figure 2) and region C (5’ end of the capsid gene; data
not shown) revealed that patients 2, 3, 4, and 8 were infected by GI.4 variant 2006A (prototype sequence Terneuzen/70/2006; GenBank accession number EF126964), and patients 1, 5, and 9 were infected by GI.4 variant 2006B (prototype sequence Nijmegen115/2006; GenBank accession number EF126966), with DNA distances of 0.0102–0.0345 among each other. Furthermore, comparison of nearly full-length capsid sequences of the earliest samples available from patients 2, 3, and 4 (all infected with GI.4 2006A) demonstrated 1.7%–2.4% differences in nucleic acid and 1%–1.5% differences in amino acid sequences. In patients 6 and 7, the non-GI.4 genotypes GI.7 and GI.17 were detected, respectively. All patients remained infected by the initially detected strain throughout the period of the study. Because of the finding of 3 different genotypes and 2 variants of GI.4, no evidence for nosocomial transmission in the outpatient clinic was found for the 9 patients analyzed.

Results of sequence analysis II: evidence for viral evolution.

To study viral evolution, nearly full-length sequences of the capsid gene (1596 nucleotides long) in follow-up samples from 4 patients (patients 3, 4, 5, and 7) were analyzed, and the neighbor-joining tree is shown in Figure 3. In 5 serial stool specimens from patient 3 (infected by GI.4 2006A; shedding over 898 days) obtained over a period of 683 days, 46 nucleotide changes occurred, resulting in 25 amino acid changes. The accumulation and fixation of amino acid changes resulted in an overall fixation rate of 0.037 amino acids/day. Interestingly, a biphasic pattern with a decreased fixation rate after day 262 was observed (0.049 before day 262 and 0.027 after day 262), which may be related to a reduction of immunosuppressive therapy (ie, stop of prednisone; Figure 4). Twenty-one of 25 amino acid changes were accumulated in the P2 and P1–2 domain (amino acids 294–459), including amino acid substi-
Figure 5. Amino acid substitutions in the capsid gene during long-term shedding from patients 3, 4, 5, and 7. Capsid domains are indicated in the first bar. Changing amino acid positions are shown at the top of the 1-letter amino acid code. Gray boxes indicate informative sites according to Siebenga et al [10], and asterisks indicate hot spots according to Allen et al [20]. Labeled bars indicate amino acid positions belonging to antigenic sites A and B.

Substitutions at positions 296–298 and 393, which are considered to be sites putatively associated with antigenic changes (site A, amino acids 296–298; site B, amino acids 393–395) [20]. In patient 4, who was also infected by GII.4 2006A, 22 nucleotide changes resulting in 14 amino acid changes were found after 281 days (0.049 amino acid changes/day). Twelve amino acid changes occurred in the P1 and P2 domain positions 256 and 450, and 1 each occurred in the extreme N- and C-termini of the capsid protein (amino acid 6 and amino acid 521, respectively). Also in this patient, amino acid substitutions occurred in site A and B. The 2 other patients demonstrated more reduced fixation rates. Patient 5 (infected by GII.4 2006b) had a fixation rate of 0.012 amino acid changes/day (2 amino acid changes, 3 nucleotide changes) after 161 days of infection, and in patient 7, (infected by GII.17) a fixation rate of 0.013 amino acids/day was observed after 384 days of chronic infection (6 amino acid changes, 10 nucleotide changes). All amino acid changes observed in the capsid gene of the 4 patients are represented in Figure 5.

DISCUSSION

This study presents a detailed clinical and molecular analysis of a series of 9 adult renal allograft recipients with chronic norovirus infection. This infection in immunocompetent patients is usually self-limiting and of short duration. Virus shedding 13–56 days after inoculation has been described in experimentally infected volunteers [9]. Kirkwood [21] investigated 8 children recovering from norovirus gastroenteritis and demonstrated a shedding for at least 25 days in 3 children and up to 100 days in 1 child. Prolonged asymptomatic shedding has been reported in special groups of immunocompromised patients, such as small children or geriatric hospitalized individuals [10, 22]. In adult solid organ transplant recipients, chronic excretion has been reported in 1 heart transplant patient [15]. Westhoff et al [16] found virus shedding in 2 kidney allograft recipients over a maximum of 7.5 months. In our series, we found chronic virus shedding in 9 kidney allograft recipients with a median shedding duration of 230 days and a maximum of 898 days. Clinical symptoms lasted 24–898 days. Initial clinical presentation was acute gastroenteritis, as expected, whereas further clinical follow-up was more heterogeneous. Although no specific therapy for this infection is available, intravenous fluid and electrolyte substitution and hospitalization was required in severe cases. Reduction of immunosuppression may be indicated in situations with severe symptoms and chronic shedding. Adjustment of immunosuppression needs to be performed with great care and must be individualized for each patient. Blood levels of calcineurin inhibitors, in particular tacrolimus, tend to increase during symptomatic episodes and should be adjusted [23, 24]. Intensity and duration of symptoms as well as virus shedding were influenced by dosage reductions of steroids or mycophenolate mofetil or by a switch from mycophenolate mofetil to azathioprine. Because we did not alter tacrolimus or cyclosporine treatment, no conclusions can be made with regard to the role of calcineurin inhibitors. Interestingly, after reduction of immunosuppression most recipients were able to recover completely despite chronic virus shedding after a phase of stool irregularities (loose stool without diarrhea or meteorism). Thus, in renal allograft recipients presenting with diarrhea, norovirus should be included in the differential diagnosis. PCR for norovirus in
stool samples is routinely available and should be included in
the work-up of these patients.

Molecular analysis of norovirus isolates, including follow-up
specimens, was performed with the following 2 aims: (1) ad-
dressing a potential nosocomial transmission and (2) evaluating
virus evolution over time under a reduced immune pressure
due to maintenance immunosuppressive treatment. Contami-
nation of environmental surfaces, such as sanitary equipment,
scales, or objects in the examination room, is known to play
a role in norovirus transmission [25, 26]. Therefore, hospital-
ized symptomatic patients with proven norovirus infection are
usually isolated. However, in the outpatient setting with chroni-
cally infected patients the situation is less clear. Recently, Xerry
et al [27] demonstrated that a point source outbreak is char-
acterized by 100% nucleotide similarity in the capsid P2 domain
among strains from different patients. In contrast, in our 9
patients 3 different norovirus genotypes were detected. Fur-
thermore, among the 7 patients infected with genotype II.4, 2
variants (2006A and 2006B) differing 1%–6% in the nucleotide
sequences of the capsid region were identified. Thus, although
in our outpatient clinic all renal transplant recipients share a
common waiting area and use the same toilets, the molecular
analysis of virus strains showed no evidence of nosocomial
transmission. This surprising observation may be explained by
a lower amount of virus shedding and/or a lower infectiousness
of mutated viruses in chronically infected patients, compared
with acute norovirus infection. However, this has not yet been
proven, and therefore, the exact role of contact isolation in
asymptomatic and symptomatic solid organ recipients in the
outpatient clinic setting still needs to be defined.

The second goal of molecular analysis was to assess viral
evolution in chronically infected patients shedding norovirus
over several months. By comparison of subsequent epidemic
variants of GI.4 strains, the existence of several hotspots of
amino acid variation across the P domain has been demon-
strated [2, 3, 28]. Analysis of mutations at these hotspots and
their mapping onto the 3D crystal structure revealed 2 surface
exposed sites in the P2 domain (site A and site B, both 3 amino
acid residues in length) which were strongly associated with
amino acid changes per day, respectively, whereas 0.13 amino
acid changes per day were found in an otherwise healthy patient.
Thus, amino acid changes within the P2 surface also detected in
solid organ allograft recipients receiving maintenance immu-
nosuppression showed that even a weak immune pressure causes
modification of the capsid protein to evade immune recognition,
which may be part of the persistence strategy of norovirus.

Taken together, to our knowledge, this study for the first
time presents a series of renal allograft recipients with chronic
norovirus infection, including a molecular analysis of norovirus
isolates. Norovirus infection in immunosuppressed patients can
occur for up to 898 days with or without clinical symptoms.
The implications for hospital hygiene procedures in inpatients
and outpatients have to be defined. Molecular analysis dem-
onstrated no evidence of nosocomial transmission in our out-
patient clinic but suggested immunity-driven virus evolution.

Acknowledgments

Potential conflicts of interest. All authors: no conflicts.

References

5. Marks PJ, Vipond IB, Regan FM, Wedgwood K, Fey RE, Caul EO. A
school outbreak of Norwalk-like virus: evidence for airborne trans-
electron microscopy of the Snow Mountain agent of acute viral gas-
8. Chan MC, Sung JI, Lam RK, et al. Fecal viral load and norovirus-
1557.
10. Siebenga JJ, Beersma MF, Vennema H, van Biezen P, Hartwig NJ,
Koopmans M. High prevalence of prolonged norovirus shedding and
illness among hospitalized patients: a model for in vivo molecular
768.
Chronic norovirus and adenoovirus infection in a solid organ transplant
13. Florescu DF, Hill LA, McCartan MA, Grant W. Two cases of Norwalk
virus enteritis following small bowel transplantation treated with oral
375.
detection of norovirus excretion in pediatric patients with cancer and
80(8):1461–1467.
calicivirus RNA in vivo: accumulation of mutations in the protruding
P2 domain of the capsid leads to structural changes and possibly a
2009;24(3):1051–1053.
17. Hohne M, Schreier E. Detection and characterization of norovirus out-
breaks in Germany: application of a one-tube RT-PCR using a fluorogenic
18. Vinje J, Hamidjaja RA, Sobsey MD. Development and application of
a capsid VP1 (region D) based reverse transcription PCR assay for ge-
19. Oh DY, Gaedicked G, Schreier E. Viral agents of acute gastroenteritis
in German children: prevalence and molecular diversity. J Med Virol
20. Allen DJ, Gray JJ, Gallimore CI, Xerry J, Iturriza-Gomara M. Analysis
of amino acid variation in the P2 domain of the GI-4 norovirus VP1
e1485.
21. Kirkwood CD, Streitberg R. Calicivirus shedding in children after re-
22. Davidson MM, Sood VP, Ho-Yen DO. Small round virus excretion in
concentration due to diarrhea in renal transplant recipients. Clin Trans-
24. Asano T, Nishimoto K, Hayakawa M. Increased tacrolimus trough levels
in association with severe diarrhea, a case report. Transplant Proc 2004;
36(7):2096–2097.
term-care facility: the role of environmental surface contamination.
hospital environment with gastroenteric viruses: comparison of two
pediatric wards over a winter season. Journal of clinical microbiology
2008;46(9):3112–3115.
27. Xerry J, Gallimore CI, Iturriza-Gomara M, Gray JJ. Tracking the trans-
mision routes of genogroup II noroviruses in suspected food-borne
or environmental outbreaks of gastroenteritis through sequence anal-
5957.
30. Donaldson EF, Lindesmith LC, Lobue AD, Baric RS. Norovirus path-
ogenesis: mechanisms of persistence and immune evasion in human