Emergence of an Autochthonous and Community-Acquired NDM-1–Producing *Klebsiella pneumoniae* in Europe

To the Editor—The recently identified carbapenemase New Delhi metallo-β-lactamase (NDM-1) inactivates all β-lactams except aztreonam [1]. The corresponding gene that is usually plasmid-borne has spread mostly in *Escherichia coli* and *Klebsiella pneumoniae* [1, 2]. NDM-1 producers are multidrug resistant or even resistant to all antibiotics [1, 2]. Whereas contamination with NDM-1 producers is mostly hospital associated, rare cases of community acquisition are known and have been traced to the Indian subcontinent [2].

Here, we report a woman aged 83 years who had cystitis due to a multidrug-resistant *K. pneumoniae* in June 2011. She had a history of multiple and recurrent episodes of urinary tract infections caused by diverse Enterobacteriaceae that were always treated with narrow-spectrum antibiotics. Because the patient’s symptoms tended to disappear spontaneously and rapidly, the latest cystitis episode had not been treated.

K. pneumoniae EDU was resistant to all β-lactams, including carbapenems, as detected with a Vitek-2 automated susceptibility testing system (bioMérieux), with minimal inhibitory concentrations for imipenem, ertapenem, doripenem, and meropenem of 4, 12, 4, and 6 μg/mL, respectively [3]. It was also resistant to gentamicin, kanamycin, tobramycin, sulfoxamides, rifampin, chloramphenicol, and fluoroquinolones but remained susceptible to amikacin, fosfomycin, colistin, tetracycline, and tigecycline according to the Clinical Laboratory Standards Institute guidelines [4].

Polymerase chain reaction, sequencing, and plasmid analysis, performed as described elsewhere [5], revealed that *K. pneumoniae* EDU harbored the *bla*_{NDM-1} carbapenemase gene and the *bla*_{CTX-M-15} extended-spectrum β-lactamase gene, which were located on 2 different plasmids (both being approximately 150 kb in size). The isolate coexpressed the CMY-2 cephalosporinase gene, which was located on the *bla*_{NDM-1} plasmid. In addition, it possessed the *qnrB* gene encoding resistance to quinolones and the *bla*_{OXA-1} gene encoding a restricted-spectrum oxacillinase, both genes being located on the *bla*_{CTX-M-15} plasmid. Both plasmids were self-transferable by conjugation, and the *bla*_{NDM-1} plasmid was found to be of the IncA/C broad-host range type [6]. Multilocus sequence typing [7] results showed that *K. pneumoniae* EDU belonged to the sequence type 1, whereas previously reported NDM-1–positive *K. pneumoniae* isolates were of other sequence types (eg, ST14 and ST147) [6].

Neither this patient nor her husband had traveled to any country in the previous 3 years, including countries with a high prevalence of NDM-1 producers (India, Pakistan, Bangladesh, United Kingdom, Balkan states, and Middle Eastern nations) [2]. The patient was living in a small-size town in southern France, without special diet (Indian cuisine). Her single foreign contact was a Moroccan maid. She did not have contacts with hospitalized patients and did not have a history of hospitalization within the previous 5 years. Whereas autochthonous acquisition of a NDM producer was reported in July 2011 in Canada [8], the case here is an autochthonous case of community acquisition. It may correspond to the ultimate spread of NDM-1 producers outside its main reservoir (Indian subcontinent). The source of contamination remains unknown but may be difficult to find, because persistence of NDM-1 producers in human flora has been evidenced to be >1 year [9].

This present report may indicate the ongoing spread of NDM producers in the community worldwide. A nightmare perspective could be its spread similar to that reported for extended-spectrum β-lactamases of the CTX-M-type, which are now uncontrolled.

Notes

Financial support. This work was supported by INSERM (U914), France, and by grants from the Ministère de l’Education Nationale et de la Recherche (UPRES-EA3539), Université Paris XI, France, and from the European Community (TEMPoTest-QC, HEALTH-2009-241742).

Potential conflicts of interest. All authors: No reported conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Patrice Nordmann,1 Jean-Pierre Couard,2 Dominique Sansot,3 and Laurent Poirel1

1Department of Microbiology, Hôpital de Bicêtre, INSERM U914, Le Kremlin-Bicêtre, 2Laboratoire Symbiose, Cuers, and 3Laboratoire de Biologie, Hôpital Font-Pré, Toulon, France

References

3. Poirel L, Fortinneau N, Nordmann P. International transfer of NDM-1-producing *Klebsiella*
4. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial sus-
ceptibility testing: 21st informational supple-
ment. CLSI M100-S21. Wayne, PA: Clinical and Laboratory Standards Institute, 2011.
5. Poirel L, Dortet L, Bernaue S, Nordmann P. Genetic features of bla NDM-1-positive En-
6. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of
9. Poirel L, Hervé V, Hombröck-Alet C, Nordmann P. Long-term carriage of NDM-

Correspondence: Patrice Nordmann, MD, Service de
Bactériologie-Virologie, Hôpital de Bicêtre, 78 rue du Général
Leclerc, 94275 Le Kremlin-Bicêtre Cedex, France (nordmann.
patrice@bct.aphp.fr).

Clinical Infectious Diseases 2012;54(1):150–1
© The Author 2011. Published by Oxford University Press on
behalf of the Infectious Diseases Society of America. All rights
reserved. For Permissions, please e-mail: journals.permissions@
op.com.
DOI: 10.1093/cid/cir720