IDSA Clinical Practice Guideline for Acute Bacterial Rhinosinusitis in Children and Adults

Anthony W. Chow,1 Michael S. Benninger,2 Itzhak Brook,3 Jan L. Brozek,4,5 Ellie J. C. Goldstein,5,7 Lauri A. Hicks,8 George A. Pankey,9 Mitchel Seleznick,10 Gregory Volturo,11 Ellen R. Wald,12 and Thomas M. File Jr13,14

1Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, Canada; 2Otolaryngology, The Head and Neck Institute, Cleveland Clinic, Ohio; 3Department of Pediatrics, Georgetown University School of Medicine, Washington, D.C.; 4Department of Clinical Epidemiology and Biostatistics and 5Department of Medicine, McMaster University, Hamilton, Ontario, Canada; 6Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, R. M. Alden Research Laboratory, Santa Monica, California; 6National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; 7Department of Infectious Disease Research, Ochsner Clinic Foundation, New Orleans, Louisiana; 8Division of General Internal Medicine, University of South Florida College of Medicine, Tampa; 9Department of Emergency Medicine, University of Massachusetts, Worcester; 10Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison; 11Department of Infectious Diseases, Northeast Ohio Medical University, Rootstown; and 12Summa Health System, Akron, Ohio

Evidence-based guidelines for the diagnosis and initial management of suspected acute bacterial rhinosinusitis in adults and children were prepared by a multidisciplinary expert panel of the Infectious Diseases Society of America comprising clinicians and investigators representing internal medicine, pediatrics, emergency medicine, otolaryngology, public health, epidemiology, and adult and pediatric infectious disease specialties. Recommendations for diagnosis, laboratory investigation, and empiric antimicrobial and adjunctive therapy were developed.

EXECUTIVE SUMMARY

This guideline addresses several issues in the management of acute bacterial rhinosinusitis (ABRS), including (1) inability of existing clinical criteria to accurately differentiate bacterial from viral acute rhinosinusitis, leading to excessive and inappropriate antimicrobial therapy; (2) gaps in knowledge and quality evidence regarding empiric antimicrobial therapy for ABRS due to imprecise patient selection criteria; (3) changing prevalence and antimicrobial susceptibility profiles of bacterial isolates associated with ABRS; and (4) impact of the use of conjugated vaccines for Streptococcus pneumoniae on the emergence of nonvaccine serotypes associated with ABRS. An algorithm for subsequent management based on risk assessment for antimicrobial resistance and evolution of clinical responses is offered (Figure 1). This guideline is intended for use by all primary care physicians involved in direct patient care, with particular applicability to patients managed in community or emergency department settings. Continued monitoring of the epidemiology and rigorous investigation of the efficacy and cost-benefit of empiric antimicrobial therapy for suspected ABRS are urgently needed in both children and adults.

Summarized below are the recommendations made in the new guideline for ABRS in children and adults. The panel followed a process used in the development of other Infectious Diseases Society of America (IDSA) guidelines that includes a systematic weighing of the strength of recommendation (eg, “high, moderate, low, very low”) and quality of evidence (eg, “strong, weak”) using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) system [1–6] (Table 1). A detailed description of the methods, background, and evidence summaries that support each of the recommendations can be found in the full text of this guideline.
INITIAL TREATMENT

1. Which Clinical Presentations Best Identify Patients With Acute Bacterial Versus Viral Rhinosinusitis?

Recommendations. 1. The following clinical presentations (any of 3) are recommended for identifying patients with acute bacterial vs viral rhinosinusitis:

i. Onset with persistent symptoms or signs compatible with acute rhinosinusitis, lasting for ≥10 days without any evidence of clinical improvement (strong, low-moderate);

ii. Onset with severe symptoms or signs of high fever (≥39°C [102°F]) and purulent nasal discharge or facial pain lasting for at least 3–4 consecutive days at the beginning of illness (strong, low-moderate); or

iii. Onset with worsening symptoms or signs characterized by the new onset of fever, headache, or increase in nasal discharge following a typical viral upper respiratory infection (URI) that lasted 5–6 days and were initially improving (“double-sickening”) (strong, low-moderate).
II. When Should Empiric Antimicrobial Therapy Be Initiated in Patients With Signs and Symptoms Suggestive of ABRS?

Recommendation. 2. It is recommended that empiric antimicrobial therapy be initiated as soon as the clinical diagnosis of ABRS is established as defined in recommendation 1 (strong, moderate).

III. Should Amoxicillin Versus Amoxicillin-Clavulananate Be Used for Initial Empiric Antimicrobial Therapy of ABRS in Children? Recommendation. 3. Amoxicillin-clavulanate rather than amoxicillin alone is recommended as empiric antimicrobial therapy for ABRS in children (strong, moderate).

IV. Should Amoxicillin Versus Amoxicillin-Clavulananate Be Used for Initial Empiric Antimicrobial Therapy of ABRS in Adults? Recommendation. 4. Amoxicillin-clavulanate rather than amoxicillin alone is recommended as empiric antimicrobial therapy for ABRS in adults (weak, low).

V. When Is High-Dose Amoxicillin-Clavulanate Recommended During Initial Empiric Antimicrobial Therapy for ABRS in Children or Adults? Recommendation. 5. “High-dose” (2 g orally twice daily or 90 mg/kg/day orally twice daily) amoxicillin-clavulanate
is recommended for children and adults with ABRS from geographic regions with high endemic rates (≥10%) of invasive penicillin-nonsusceptible (PNS) *S. pneumoniae*, those with severe infection (e.g., evidence of systemic toxicity with fever of 39°C [102°F] or higher, and threat of suppurative complications), attendance at daycare, age <2 or >65 years, recent hospitalization, antibiotic use within the past month, or who are immunocompromised (weak, moderate).

VI. Should a Respiratory Fluoroquinolone Versus a β-Lactam Agent Be Used as First-line Agents for the Initial Empiric Antimicrobial Therapy of ABRS?

Recommendation. 6. A β-lactam agent (amoxicillin-clavulanate) rather than a respiratory fluoroquinolone is recommended for initial empiric antimicrobial therapy of ABRS (weak, moderate).

VII. Besides a Respiratory Fluoroquinolone, Should a Macrolide, Trimethoprim-Sulfamethoxazole, Doxycycline, or a Second- or Third-Generation Oral Cephalosporin Be Used as Second-line Therapy for ABRS in Children or Adults?

Recommendations. 7. Macrolides (clarithromycin and azithromycin) are not recommended for empiric therapy due to high rates of resistance among *S. pneumoniae* (~30%) (strong, moderate).

8. Trimethoprim-sulfamethoxazole (TMP/SMX) is not recommended for empiric therapy because of high rates of resistance among both *S. pneumoniae* and *Haemophilus influenzae* (~30%–40%) (strong, moderate).

9. Doxycycline may be used as an alternative regimen to amoxicillin-clavulanate for initial empiric antimicrobial therapy of ABRS in adults because it remains highly active against respiratory pathogens and has excellent pharmacokinetic/pharmacodynamic (PK/PD) properties (weak, low).

10. Second- and third-generation oral cephalosporins are no longer recommended for empiric monotherapy of ABRS due to variable rates of resistance among *S. pneumoniae*. Combination therapy with a third-generation oral cephalosporin (cefixime or cefpodoxime) plus clindamycin may be used as second-line therapy for children with non-type I penicillin allergy or from geographic regions with high endemic rates of PNS *S. pneumoniae* (weak, moderate).

VIII. Which Antimicrobial Regimens Are Recommended for the Empiric Treatment of ABRS in Adults and Children With a History of Penicillin Allergy?

Recommendations. 11. Either doxycycline (not suitable for children) or a respiratory fluoroquinolone (levofloxacin or moxifloxacin) is recommended as an alternative agent for empiric antimicrobial therapy in adults who are allergic to penicillin (strong, moderate).

12. Levofloxacin is recommended for children with a history of type I hypersensitivity to penicillin; combination therapy with clindamycin plus a third-generation oral cephalosporin (cefixime or cefpodoxime) is recommended in children with a history of non-type I hypersensitivity to penicillin (weak, low).

IX. Should Coverage for Staphylococcus aureus (Especially Methicillin-Resistant S. aureus) Be Provided Routinely During Initial Empiric Therapy of ABRS?

Recommendation. 13. Although *S. aureus* (including methicillin-resistant *S. aureus* (MRSA)) is a potential pathogen in ABRS, on the basis of current data, routine antimicrobial coverage for *S. aureus* or MRSA during initial empiric therapy of ABRS is not recommended (strong, moderate).

X. Should Empiric Antimicrobial Therapy for ABRS Be Administered for 5–7 Days Versus 10–14 Days?

Recommendations. 14. The recommended duration of therapy for uncomplicated ABRS in adults is 5–7 days (weak, low-moderate).

15. In children with ABRS, the longer treatment duration of 10–14 days is still recommended (weak, low-moderate).

XI. Is Saline Irrigation of the Nasal Sinuses of Benefit as Adjunctive Therapy in Patients With ABRS?

Recommendation. 16. Intranasal saline irrigation with either physiologic or hypertonic saline is recommended as an adjunctive treatment in adults with ABRS (weak, low-moderate).

XII. Are Intranasal Corticosteroids Recommended as an Adjunct to Antimicrobial Therapy in Patients With ABRS?

Recommendation. 17. Intranasal corticosteroids (INCSs) are recommended as an adjunct to antibiotics in the empiric treatment of ABRS, primarily in patients with a history of allergic rhinitis (weak, moderate).

XIII. Should Topical or Oral Decongestants or Antihistamines Be Used as Adjunctive Therapy in Patients With ABRS?

Recommendation. 18. Neither topical nor oral decongestants and/or antihistamines are recommended as adjunctive treatment in patients with ABRS (strong, low-moderate).

NONRESPONSIVE PATIENT

XIV. How Long Should Initial Empiric Antimicrobial Therapy in the Absence of Clinical Improvement Be Continued Before Considering Alternative Management Strategies?

Recommendation. 19. An alternative management strategy is recommended if symptoms worsen after 48–72 hours of initial empiric antimicrobial therapy or fail to improve despite 3–5 days of initial empiric antimicrobial therapy (strong, moderate).

XV. What Is the Recommended Management Strategy in Patients Who Clinically Worsen Despite 72 Hours or Fail to Improve After 3–5 Days of Initial Empiric Antimicrobial Therapy With a First-line Regimen?

Recommendation. 20. An algorithm for managing patients who fail to respond to initial empiric antimicrobial therapy
is shown in Figure 1. Patients who clinically worsen despite
72 hours or fail to improve after 3–5 days of empiric antimicro-
brbial therapy with a first-line agent should be evaluated for the
possibility of resistant pathogens, a noninfectious etiology,
structural abnormality, or other causes for treatment failure
(strong, low).

XVI. In Managing the Patient With ABRS Who Has Failed
to Respond to Empiric Treatment With Both First-line and
Second-line Agents, It Is Important to Obtain Cultures to
Document Whether There Is Persistent Bacterial Infection and
Whether Resistant Pathogens Are Present. In Such Patients,
Should Cultures Be Obtained by Sinus Puncture or Endoscopy,
or Are Cultures of Nasopharyngeal Swabs Sufficient?

Recommendations. 21. It is recommended that cultures be
obtained by direct sinus aspiration rather than by nasopha-
ryngeal swab in patients with suspected sinus infection who
have failed to respond to empiric antimicrobial therapy (strong,
moderate).

22. Endoscopically guided cultures of the middle meatus may
be considered as an alternative in adults, but their reliability in
children has not been established (weak, moderate).

23. Nasopharyngeal cultures are unreliable and are not rec-
ommended for the microbiologic diagnosis of ABRS (strong,
high).

XVII. Which Imaging Technique Is Most Useful for Patients
With Severe ABRS Who Are Suspected to Have Suppurative
Complications Such as Orbital or Intracranial Extension of
Infection?

Recommendation. 24. In patients with ABRS suspected to
have suppurative complications, axial and coronal views of
contrast-enhanced computed tomography (CT) rather than
magnetic resonance imaging (MRI) is recommended to localize
the infection and to guide further treatment (weak, low).

XVIII. When Is Referral to a Specialist Indicated in a Patient
With Presumed ABRS?

Recommendation. 25. Patients who are seriously ill and im-
munocompromised, continue to deteriorate clinically despite
extended courses of antimicrobial therapy, or have recurrent
bouts of acute rhinosinusitis with clearing between episodes
should be referred to a specialist (such as an otolaryngologist,
infectious disease specialist, or allergist) for consultation.
As this is a “good clinical practice” statement rather than
a recommendation, it is not further graded.

Note

Disclaimer. Guidelines cannot always account for individual variation
among patients. They are not intended to supplant physician judgment
with respect to particular patients or special clinical situations. The In-
fected Diseases Society of America considers adherence to this guideline
to be voluntary, with the ultimate determination regarding their appli-
cation to be made by the physician in light of each patient’s individual
circumstances.

References

1. Guyatt GH, Oxman AD, Kunz R, et al. Going from evidence to rec-
2. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on
rating quality of evidence and strength of recommendations. BMJ 2008;
336:924–6.
decisions on clinical practice guidelines when consensus is elusive. BMJ
2008; 337:a744.
5. Schunemann HJ, Oxman AD, Brozek J, et al. Grading quality of ev-
idence and strength of recommendations for diagnostic tests and
What is “quality of evidence” and why is it important to clinicians? BMJ