CC9 Livestock-Associated
Staphylococcus aureus Emerges in Bloodstream Infections in French Patients Unconnected With Animal Farming

Cindy Lamamy,1,2 Aline Berthelot,3 Xavier Bertrand,5,6 Anne-Sophie Valentin,3 Sandra Dos Santos,4 Sophie Thiais,7 Virginie Morange,1 Nicole Girard,4 Pierre-Yves Donnio,6 Roland Quentin,3 Jacques Schrenzel,1,2 Patrice François,1 and Nathalie van der Mee-Marquet3,4; for the Bloodstream Infection Study Group of the Réseau des Hygiénistes du Centre

1Genomic Research Laboratory and 2Clinical Microbiology Laboratory, University of Geneva Hospitals, Switzerland; 3Service de Bactériologie et Hygiène, Centre Hospitalier Régional Universitaire, 4Réseau des Hygiénistes du Centre, Centre Hospitalier Universitaire Tours, 5Service d’Hygiène Hospitalière, Centre Hospitalier Universitaire, and 6UMR 6249 Chrono-environnement, Université de Franche-Comté, Besançon, 7Service d’Hygiène et de Gestion des Risques, Centre Hospitalier, Issoudun, and 8EA1254 Microbiologie-Risques Infectieux, Université de Rennes 1, France

We report 4 bloodstream infections associated with CC9 agr type II Staphylococcus aureus in individuals without animal exposure. We demonstrate, by microarray analysis, the presence of egc cluster, fnbA, cap operon, lukS, set2, set12, splE, splD, sak, epiD, and can, genomic features associated with a high virulence potential in humans.

Keywords. Staphylococcus aureus; CC9; bloodstream infections; France.

Staphylococcus aureus is a leading cause of bloodstream infection (BSI), associated with high levels of morbidity and mortality. Over the past 50 years, S. aureus has undergone changes in its genetic makeup, resulting in the emergence of clones that are successfully transmitted and cause disease in hospital and community settings. Staphylococcus aureus also colonizes and infects animals, particularly livestock. Staphylococcus aureus belonging to clonal complexes 398 (CC398) and CC9 is associated worldwide with livestock, their human contacts, and food products. To date, human infections with livestock-associated (LA) S. aureus isolates have generally occurred in farmers or veterinary surgeons [1].

However, in France [2] and worldwide [3], CC398 strains have recently emerged in patients without animal exposure, in whom they have caused BSI. Likewise, during an annual prospective, longitudinal BSI survey initiated in 2002 in France [4], we identified, in 2011 and 2012, the 4 first cases of BSI due to CC9 S. aureus, in patients without animal exposure. We document this emergence by reporting the clinical context and determining the genomic content of these CC9 isolates.

METHODS

BSI Epidemiologic Survey Method
A BSI surveillance program and a microbiologic study of S. aureus isolates from BSI cases have been conducted since 2002, in the central region of France (2.5 million inhabitants). The methods, study design, and data for the years 2000–2008 have been reported elsewhere [4].

Microbiologic Methods
BSI-associated S. aureus isolates were collected during each survey period and sent to a central laboratory. Antimicrobial drug susceptibility testing was performed by the disk diffusion method (Bio-Rad). The mecA and cfr genes were detected by polymerase chain reaction (PCR) [4, 5]. DNA macrorestriction and pulsed-field gel electrophoresis (PFGE) were used for typing [4]. PCR targeting sau1-hsdS1 was used for the detection of CC398 isolates [6]. For multilocus sequence typing (MLST), S. aureus isolates were analyzed as previously described [4]. Spa types were determined for all isolates as previously described and were assigned through the database www.ridom.de/spaserver [4]. Typing for agr was performed and isolates were classified as agr types I to IV [4]. PCR was performed to detect virulence genes (lukS-PV, lukF-PV, tst, eta, etb, and the genes encoding enterotoxins A, B, C, D, E, G, H, I, J, K, L, M, N, O, P, Q, U, and R) [7]. In DNA microarray experiments, isolates were studied with a previously described oligonucleotide microarray [4].

Ethics Statement
The isolates were obtained from clinical samples as part of the annual surveillance studies carried out in accordance with...
French healthcare recommendations. Ethics approval for these surveillance studies was obtained at the national level from the Réseau Alerte Investigation Surveillance des Infections Nosocomiales.

RESULTS

During the 2007–2012 period, 723 cases of S. aureus BSI were diagnosed in our network and 685 (94.7%) S. aureus isolates were available for analysis. Smal PFGE patterns were obtained for all but 27 isolates (3.9%), which were assigned to CC398 by MLST. During the 2011 and 2012 survey periods, 4 isolates presented a similar PFGE pattern that had never been observed before, and were thus subjected to MLST; all were assigned to CC9.

The 4 CC9-associated BSI cases were diagnosed at different hospitals, some distance apart and with no epidemiologic link. Two cases were genitourinary-associated BSI: a case of urinary-associated BSI in an 85-year-old man and a case associated with orchitis in a 58-year-old man with diabetes mellitus. A third BSI with no recognized portal of entry was identified in an 87-year-old man. The remaining case was a central venous catheter–associated infection in a 69-year-old man. An examination of patient histories and epidemiologic investigation revealed an absence of exposure to animal for all these patients.

The CC9 isolates were all of agr type II. Three of the 4 CC9 isolates had the same resistance pattern (only EryR), whereas the fourth was susceptible to all antibiotics. mecA and cfr were not detected. Spa typing identified 3 related spa types: t587 (2 isolates), t1939 (1 isolate), and a spa type assigned to a CC9 pig-borne isolate [8], and t8666 (1 isolate). The 4 isolates had sequences corresponding to the genes encoding the enterotoxins G, I, M, N, O, and U, known as the egc cluster. By contrast, they had no sequences corresponding to lukS-PV and lukF-PV, encoding Panton-Valentine leukocidin; tst, encoding toxic shock syndrome toxin 1; the eta and etb genes, encoding exfoliats A and B, respectively; or the genes encoding enterotoxins A, B, C, D, E, H, J, K, L, P, Q, and R.

Given the similar PFGE pattern obtained, microarray analysis was carried out for 2 of the 4 CC9 isolates. Microarray data were compared with those for 3 reference strains (RF122, COL, and USA300) and 8 previously characterized CC398 isolates [9]. Like the reference strains studied (Figure 1), but unlike CC398 isolates, the BSI-CC9 isolates had sequences corresponding to genes encoding many major staphylococcal virulence factors, some associated with various pathogenicity islands and prophages: FnB adhesin, capsule operon, leukocidin S, enterotoxins A, B, C, G, H, I, K, L, M, N, O, and P, superantigens SET2 and SET12, proteases SpIE and SpID, and staphylokinase. They also contained the
lantibiotic epidermin/gallidermin gene epiD typically harbored by virulent isolates and had a complete type I restriction-modification system (hsdS-hsdR), which plays a key role in the limitation of horizontal gene transfer. Nevertheless, the CC9 isolates had 2 major characteristics in common with CC398 isolates: they harbored the cna gene encoding the collagen-adhesin associated with colonizing strains and involved in the pathogenesis of osteomyelitis and infectious arthritis, and the gene encoding the chemotaxis inhibitory protein CHIPS, which protects S. aureus from human innate immunity [10].

DISCUSSION

In an LA environment, CC9 methicillin-resistant S. aureus (MRSA) strains easily colonize and infect humans [1, 11]. But so far, in an animal-free environment, CC9 is a minor lineage associated with scarce nasal carriage [12, 13] and bloodstream infections in human [14, 15]. In a context of increasing incidence of S. aureus BSI [16], and following the recent emergence of a new CC398 methicillin-susceptible S. aureus (MSSA) lineage, non-LA CC398, causing severe infections in patients without exposure to animals [2, 3], we report the emergence of a second S. aureus MSSA lineage, non-LA CC9, responsible for severe human BSI in an animal-free environment.

CC9 LA isolates are of agr type II and have an egc cluster, but are genetically diverse, as shown by their spa types (mostly t899, t1430, and t337), antibiotic susceptibility patterns and, for MRSA, their SCCmec elements [17]. Our CC9 isolates were also of agr type II and harbored the egc cluster, but they remained susceptible to most currently used antibiotics. More remarkably, our non-LA CC9 isolates had several characteristics in common with the successful emerging non-LA CC398 strains. First, 3 of the 4 CC9 isolates had the same resistance pattern (only EryR MSSA). Second, they had the human-specific chp gene, a gene of phage origin typically harbored by virulent S. aureus responsible for severe human infections, and recently identified as a marker of a beta-converting prophage carrying an immune evasion cluster associated with non-LA CC398 isolates [2, 3]. The concomitant presence of this prophage in non-LA CC398 isolates and in non-LA CC9 isolates raises questions about the contribution of horizontal transfer to the virulence of these isolates, which were initially identified as strict animal pathogens.

The simultaneous emergence of invasive infections due to CC398 and CC9 in humans without exposure to animals suggests a rapid epidemiologic change in these S. aureus lineages originally clearly associated with livestock. CC9 isolates have been isolated from food items in the Netherlands and Germany [18, 19], so the potential role of food products manufactured from livestock and the route of transmission to patients without animal exposure should be investigated in more detail.

Unlike CC398 isolates that lack several clinically important S. aureus–associated virulence factors [20], the BSI CC9 isolates studied here were similar to virulent S. aureus strains, with many virulence genes. Concordant with previous observations [14, 15], this strongly suggests that non-LA CC9 isolates have a considerable virulence potential, even greater than that of non-LA CC398 strains, given the contents of their respective genomes. In addition, a CC9 isolate bearing the multidrug resistance gene cfr has been recently described [5], suggesting that this clone can easily acquire genetic resistance determinants by horizontal transfer.

Our data highlight the benefits of an active surveillance strategy for the early detection of new clones responsible for invasive infections in humans that are adapted to both their host and the hospital setting. In addition, given the specific features of the genomic content of the non-LA CC9 isolates described here, these findings indicate that there is a need for active surveys to study and control the spread of this CC9 clone in humans.

Notes

Acknowledgments. We thank Antonio Oliver for the gift of a cfr-positive isolate of S. aureus.

The members of the Bloodstream Infection Study Group of the Réseau des Hygiénistes du Centre are P. Amiraux (Vierzon), M. Archambault (Pithiviers), M. N. Bachelier (Bourges), D. Bloc (Tours), M. Boucher (Chateaudun), B. Cattier (Amboise), C. Chandesris (Amilly Montargis), V. Cheverseau (La Chaussée St Victor), G. Courouble (Chateauroux), M. C. Courtin (Amboise), C. Decreux (Chateauroux), C. de Gailluly (Tours), C. Denis (Loches), F. Deperois (Chinon), C. Fievre (Le Blanc), P. Foloppe (Loches), F. Fongauf (Chateauroux), R. Fournier-Hoock (Amilly Montargis), N. Girard (Tours), T. Gourdet (La Chaussée St Victor), J. L. Graveron (Fleury Les Aubrais), F. Grobost (La Ferté Bernard), M. F. Guillot (Chateauroux), F. Guinard (Bourges), P. Harriaux (St Amand Montrotrand), C. Hombrouck-Alet (Blois, Vendome, Romorantin), D. Imbault (Vendome), D. Jehanno (Fleury Les Aubrais), M. J. Kourta (Chateaudun), O. Laurent (St Doulchard), O. Lehiani (Vierzon, Bourges, St Amand Montrotrand), A. Lepineux da Rocha (St Amand Montrotrand), A. L. Lesimple (Vendome), X. Louvier (Gien), V. Michel (Le Blanc), V. Morange (Tours), E. Morel-Desjardins (Bourges), E. Morin (Orléans), C. Naudion (Romorantin), D. Narbay (Blois), C. Neveu (Dreux), O. Paba (Vendome), F. Perigois (Le Blanc), G. Petit le Gous (Nogent Le Rotrou), D. Poitvin (Chinon), M. Prevost-Oussar (Pithiviers), D. Ratovohery (Chateauroux), B. Rousseau (Gien), A. Roussin (Orléans), A. Secher (Dreux), and S. Watt (Chinon).

Financial support. This work was supported by the Centre de Coopération de la Lutte contre les Infections Nosocomiales de l’Ouest de la France, the Agence Régionale de Santé du Centre, and the Centre Hospitalier Universitaire de Tours, France.

Potential conflicts of interest. All authors: No reported conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References


