Birth Prevalence of Congenital Cytomegalovirus Among Infants of HIV-Infected Women on Prenatal Antiretroviral Prophylaxis in South Africa

S. Manicklal,1,2 A. M. van Niekerk,3 S. M. Kroon,3 C. Hutto,4 Z. Novak,4 S. K. Pati,4 N. Chowdhury,4 N. Y. Hsiao,1 and S. B. Boppana4,5

1Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, 2Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, and 3Division of Neonatal Medicine, School of Child and Adolescent Health, University of Cape Town, South Africa; Departments of 4Pediatrics and 5Microbiology, University of Alabama School of Medicine, Birmingham

Background. A high rate of congenital cytomegalovirus (CMV) has been documented in human immunodeficiency virus (HIV)–exposed infants in industrialized settings, both in the pre- and post–highly active antiretroviral therapy (HAART) era. Only limited data on the birth prevalence of congenital CMV among infants of HIV-infected women on prenatal antiretroviral (ARV) prophylaxis are available from sub-Saharan Africa, despite a high prevalence of both infections. We evaluated the prevalence of congenital CMV in HIV-exposed infants in the Western Cape, South Africa.

Methods. HIV-infected mothers were recruited in the immediate postnatal period at a referral maternity hospital between April and October 2012. Maternal and infant clinical data and newborn saliva swabs were collected. Saliva swabs were assayed by real-time polymerase chain reaction for CMV. Data were analyzed using univariate and multivariate logistic regression analyses to determine specific demographic, maternal, and newborn characteristics associated with congenital CMV.

Results. CMV was detected in 22 of 748 newborn saliva swabs (2.9%; 95% confidence interval [CI], 1.9%–4.4%). Overall, 96% of mothers used prenatal ARV prophylaxis (prenatal zidovudine, 43.9%; HAART, 52.1%). Maternal age, gestational age, prematurity (<37 weeks’ gestation), type of ARV prophylaxis, length of ARV prophylaxis, birth weight, small for gestational age, and infant feeding choice were not significantly different between CMV-infected and -uninfected infants. Maternal CD4 count <200 cells/μL during pregnancy was independently associated with congenital CMV (adjusted odds ratio, 2.9; 95% CI, 1.2–7.3). A negative correlation between CMV load in saliva and maternal CD4 count was observed (r = −0.495, n = 22, P = .019).

Conclusions. The birth prevalence of congenital CMV was high despite prenatal ARV prophylaxis, and was associated with advanced maternal immunosuppression.

Keywords. HIV; congenital CMV; prevalence; antiretroviral prophylaxis; South Africa.

Cytomegalovirus (CMV) is a leading cause of congenital infections worldwide and a leading nongenetic cause of childhood hearing loss in the post–rubella vaccination era. The birth prevalence of congenital CMV in a population is associated with the proportion of mothers who are seropositive for CMV [1]. In developing country settings with near-universal CMV seroimmunity, congenital CMV rates of 1%–5% have been reported, compared with rates of 0.6%–0.7% in industrialized nations [2–4].

Human immunodeficiency virus (HIV)–infected mothers constitute a special subpopulation, in whom an increased frequency of in utero CMV transmission...
has been consistently documented in countries in Europe and the Americas. The birth prevalence of congenital CMV in these settings ranges from 4%–26% among HIV infected newborns, to 1.2%–5% in HIV-exposed but -uninfected (HIV-EU) infants [5–7]. Maternal risk factors associated with in utero CMV transmission have not been systematically assessed, although an association with advanced maternal immunosuppression (CD4 <200 cells/µL), both in HIV-infected and -uninfected infants, was documented in the French Perinatal Cohort (FPC) [6]. HIV-infected and -exposed infants who acquire CMV in the first 18 months of life have a higher risk of neurological morbidity [8, 9].

The impact of prenatal antiretroviral (ARV) prophylaxis, either prenatal zidovudine (ZDV) or highly active antiretroviral therapy (HAART), on congenital CMV transmission in HIV-infected women is unclear. In the FPC, a reduction in congenital CMV transmission rates to 1.2% in the HAART era, from 3.5% in the pre-HAART era, was observed among HIV-EU neonates [6]. However, congenital CMV transmission rates remained constant over time in 2 consecutive HIV-exposed birth cohorts in the United States, despite increasing use of maternal prenatal HAART [10].

Data on congenital CMV infection among HIV-exposed infants in sub-Saharan Africa is limited. A study in Kenya, conducted on a small sample of infants born to HIV-infected women who used perinatal ZDV, reported congenital CMV rates of 29% (n = 15) and 6.3% (n = 20) in HIV-infected and -uninfected newborns, respectively [11]. In addition, a recent study of high-risk newborns admitted to a referral neonatal unit in Zambia documented a birth prevalence of congenital CMV of 3.8% (15/395) overall, and 11.4% (9/79) in those infants exposed to maternal HIV [12]. As the HIV epidemic in sub-Saharan Africa disproportionately affects women of childbearing age, and antenatal HIV seroprevalence rates are stabilizing at alarming proportions in many countries, the sparsity of data on congenital CMV in these populations is concerning [13]. We evaluated the prevalence of congenital CMV in a large sample of HIV-exposed newborns in South Africa.

METHODS

Study Population

HIV-exposed newborns were recruited from the postnatal wards of Mowbray Maternity Hospital (MMH), a secondary-level referral hospital in the Western Cape Province of South Africa between April and October 2012. MMH serves the local Mowbray area, in addition to surrounding Midwife Obstetric Units offering subsidized healthcare for pregnant mothers and their babies in the region. Approximately a third of live-born infants (11 000/35 000) in 2012 in the Metropole West region of the Western Cape were born at MMH. Of the 11 000 babies born at MMH, approximately 13% are HIV exposed. Approximately 95% of patients seen at MMH do not have access to private healthcare facilities. Overall, the patient population is representative of the general Western Cape population, consisting of approximately 50% mixed race and 50% indigenous black African as well as an increasing number of African migrants/refugees. Maternal HIV status is ascertained prenatally by a rapid HIV test.

Study Design and Data Collection

The study was carried out as an unlinked anonymous cross-sectional survey with convenience sampling. Mothers were eligible for the study if they were known to be HIV-infected, 18 years and older, within 14 days after delivery, and living in the greater Cape Town area and had given written informed consent. Eligible mothers were approached during Monday through Friday for participation in the study. Maternal age, CD4 count, date of CD4 count, type of prenatal ARV prophylaxis (none, intrapartum ZDV and single-dose nevirapine in labor only, prenatal ZDV, HAART) and date of commencement of ARV, infant feeding choice, and infant gestational age and birth weight were recorded. Infants with birth weights <10th percentile for the gestational age were considered small for gestational age. A saliva swab in viral transport medium was collected from enrolled newborns; this was done immediately before the next feed in breastfed infants. There were no follow-up visits and mothers were not informed of the infant’s CMV status.

Testing of Samples for CMV

Saliva swabs were stored at ~80°C at a regional laboratory in Cape Town. After the completion of study enrollment, samples were shipped to the University of Alabama at Birmingham (UAB) for CMV testing. The newborn saliva swabs were processed and tested for CMV using a real-time polymerase chain reaction (PCR) assay described previously [14]. The PCR positive samples were also tested by the rapid culture method to confirm the PCR result.

Ethical Considerations

Ethical approval was obtained from the University of Cape Town Health Sciences Faculty Human Research Ethics Committee, MMH Ethics Committee, and the Institutional Review Board for Human Use of UAB. Written informed consent was obtained from HIV-infected mothers prior to enrolling infants in the study.

Statistical Analysis

The demographic, maternal, and newborn characteristics were compared between CMV-infected and -uninfected infants, and statistical significance was determined using χ² test, Fisher exact test, or student t test as appropriate. Crude odds ratios (ORs) were calculated from 2 × 2 tables to determine the association.
of various factors with an increased risk for CMV transmission. Logistic regression analyses were performed to determine co-
variates that were independently associated with intrauterine
transmission of CMV. Maternal age, birth weight, gestational
age, length of ARV prophylaxis <120 days, and CD4 count
<200 cells/µL were included in the logistic regression model.
Adjusted odds ratios (aORs) were calculated and 95% con-
fidence intervals (CIs) were determined using the parameter es-
timates and their respective standard errors. All statistical
analyses were performed using the SPSS version 21 statistical
package (IBM Corp, Armonk, New York).

RESULTS

Subjects and Specimens
A total of 833 HIV-infected mothers delivered 831 live-born
infants during the study period (April to October 2012), and
757 of those mothers were approached for participation in the
study during weekdays, of which 737 mothers consented for
participation. An additional 11 babies were enrolled during
the training component of the study in March 2012. Therefore,
90.9% (757/833) of eligible mothers were approached for
participation in the study and most women (97.4% [737/757])
agreed to participate. The median age at the collection of
saliva specimens was 1.0 day (interquartile range [IQR], 1.0–
2.0 days).

Birth Prevalence of Congenital CMV
Of the 748 HIV-exposed newborns screened for congenital
CMV by real-time PCR of saliva, 22 infants were positive, giving
a prevalence of 2.9% (95% CI, 1.9%–4.4%). Twenty of the 22
PCR-positive saliva specimens were also positive by rapid cul-
ture for CMV.

Factors Associated With CMV Transmission
Overall, 96% of mothers used prenatal ARV prophylaxis (pre-
natal ZDV, 43.9%; HAART, 52.1%). The median length of ARV
prophylaxis was 130 days (IQR, 95–165 days) for the women
receiving prenatal ZDV (n = 327) and 167 days (IQR, 101–
829 days) days for the group on HAART (n = 390). Of the
746 mothers with known CD4 counts, the timing of CD4
counts was available for 731 mothers. Of those, 721 mothers
had CD4 counts obtained during the first or second trimesters
of pregnancy at a median of 18 weeks (IQR, 13–24 weeks) of
gestation, and the remaining 10 women had CD4 counts
obtained prior to conception at a median of 29 weeks (IQR,
12–40 weeks) preconception. Maternal age, gestational age, pre-
maturity (<37 weeks’test), type of ARV prophylaxis,
length of ARV prophylaxis, birth weight, small for gestational
age, and infant feeding choice were not signifi-
cantly different be-
tween CMV-infected and uninfected infants (Table 1). Signifi-
cantly more mothers with CD4 counts <200 cells/µL had
babies with congenital CMV (8/126 [6.3%]) compared with

Top Table 1. Comparison of Demographic, Maternal, and Newborn Characteristics Between Cytomegalovirus-Infected and -Uninfected Newborns Exposed to HIV

<table>
<thead>
<tr>
<th>Finding</th>
<th>CMV-Infected Infants (n = 22)</th>
<th>CMV-Uninfected Infants (n = 726)</th>
<th>OR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age, mean ± SD</td>
<td>27.1 ± 5.1</td>
<td>28.5 ± 5.3</td>
<td>0.95 (.9–1.0)</td>
<td>.23</td>
</tr>
<tr>
<td>Length of ARV prophylaxis, d, mean ± SD</td>
<td>344 ± 526</td>
<td>383 ± 652</td>
<td>0.99 (.9–1.0)</td>
<td>.78</td>
</tr>
<tr>
<td>Maternal CD4 count, mean ± SD</td>
<td>312 ± 211</td>
<td>395 ± 205</td>
<td>0.99 (.9–1.0)</td>
<td>.06</td>
</tr>
<tr>
<td>Gestational age, wk, mean ± SD</td>
<td>36.8 ± 2.7</td>
<td>37.5 ± 1.8</td>
<td>0.86 (.7–1.0)</td>
<td>.25</td>
</tr>
<tr>
<td>Birth weight, kg, mean ± SD</td>
<td>2.8 ± 0.7</td>
<td>3.0 ± 0.6</td>
<td>0.99 (.9–1.0)</td>
<td>.06</td>
</tr>
<tr>
<td>Type of ARV prophylaxis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>1 (4.5)</td>
<td>15 (2.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrapartum ZDV/sdNVP</td>
<td>0 (0)</td>
<td>10 (1.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prenatal ZDV</td>
<td>9 (40.9)</td>
<td>319 (43.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAART</td>
<td>12 (54.5)</td>
<td>378 (52.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of ARV prophylaxis <120 d</td>
<td>11 (50)</td>
<td>262 (36)</td>
<td>1.8 (.8–4.4)</td>
<td>.18</td>
</tr>
<tr>
<td>Maternal CD4 count <200 cells/µL</td>
<td>8 (36.4)</td>
<td>118 (16.3)</td>
<td>2.9 (1.2–7.0)</td>
<td>.01</td>
</tr>
<tr>
<td>Prematurity (<37 wk)</td>
<td>5 (22.7)</td>
<td>104 (17)</td>
<td>1.7 (.6–4.6)</td>
<td>.35</td>
</tr>
<tr>
<td>Small for gestational age</td>
<td>2 (9.1)</td>
<td>67 (9.3)</td>
<td>1.0 (.2–4.4)</td>
<td>.98</td>
</tr>
<tr>
<td>Infant feeding choice</td>
<td></td>
<td></td>
<td></td>
<td>.69</td>
</tr>
<tr>
<td>Breastfeeding</td>
<td>14 (63.6)</td>
<td>476 (65.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formula</td>
<td>7 (31.8)</td>
<td>236 (32.5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are presented as No. positive (%) unless otherwise specified.
Abbreviations: ARV, antiretroviral; CI, confidence interval; CMV, cytomegalovirus; HAART, highly active antiretroviral therapy; HIV, human immunodeficiency virus; OR, odds ratio; sdNVP, single-dose nevirapine; SD, standard deviation; ZDV, zidovudine.
mothers with CD4 counts >200 cells/μL (14/620 [2.3%], \(P = .01\)) (Table 1). A significant association between maternal CD4 counts and intrauterine transmission of CMV was observed when the data were analyzed using \(\chi^2\) for trend (\(P < .005\)). Ten of the 475 (2.1%) infants born to mothers with CD4 count >300 cells/μL had congenital CMV, whereas 4 of 145 (2.8%) and 8 of 126 (6.3%) with maternal CD4 counts between 200 and 300 cells/μL and <200 cells/μL, respectively, had congenital CMV.

Table 2. Logistic Regression Analysis to Determine Risk Factors for Congenital Cytomegalovirus Infection in HIV-Exposed Infants

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Adjusted OR (95% CI)</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age</td>
<td>0.93 (0.8–1.0)</td>
<td>.14</td>
</tr>
<tr>
<td>Birth weight</td>
<td>0.99 (0.9–1.0)</td>
<td>.41</td>
</tr>
<tr>
<td>Gestational age</td>
<td>0.86 (0.7–1.0)</td>
<td>.52</td>
</tr>
<tr>
<td>Maternal CD4 count <200 cells/μL</td>
<td>2.9 (1.2–7.3)</td>
<td>.02</td>
</tr>
<tr>
<td>Length of ARV prophylaxis <120 d</td>
<td>1.6 (0.7–3.9)</td>
<td>.29</td>
</tr>
</tbody>
</table>

Abbreviations: ARV, antiretroviral; CI, confidence interval; HIV, human immunodeficiency virus; OR, odds ratio.

DISCUSSION

We evaluated the prevalence of congenital CMV among infants born to HIV-infected mothers in the Western Cape. This is the first study to document congenital CMV prevalence among a large sample of HIV-exposed infants in sub-Saharan Africa, and the first report of congenital CMV in South Africa. Despite universal maternal ARV prophylaxis, the prevalence of congenital CMV in this study was high compared with the rate in the general population documented in newborn CMV screening studies in the United States, Europe, and South America [1, 15]. In addition, the overall rate of congenital CMV in this study was consistent with that reported for HIV-EU infants in these countries [6, 7, 10].

We observed a significantly higher prevalence of congenital CMV among infants of mothers whose CD4 count during pregnancy was <200 cells/μL. On logistic regression analysis, this was the only factor independently associated with congenital CMV in the study population. Maternal immunosuppression close to delivery was also reported as an independent predictor of congenital CMV in the FPC [6]. In addition, we found an inverse relationship between various categories of maternal CD4 count and congenital CMV infection prevalence, further supporting the role of maternal immunity in CMV transmission (Figure 1). A similar, although nonsignificant, trend was recently documented in HIV-EU newborns of mothers on antenatal antiretroviral therapy (ART) in the United States [7]. In mothers with CD4 counts >200 cells/μL, the rate of congenital CMV infection in our study remained elevated in relation to populations with high CMV seroimmunity [2, 15].

The mechanisms by which maternal immunosuppression is linked to congenital CMV transmission in HIV-exposed newborns have not been elucidated. HIV-infected individuals are often CMV seropositive; therefore, it is plausible that impaired
maternal immunity could lead to more frequent reactivation or reinfection with CMV, or higher levels of CMV viremia [16]. HIV viremia during pregnancy, prior to the initiation of ART, or as a result of incomplete virological suppression in mothers on treatment, could mediate congenital CMV transmission by potentiating CMV replication [17], or leading to vertical transmission of HIV [18]. Although low rates of mother-to-child transmission (MTCT) of HIV (2%-3%) have been reported in the era of prenatal ARV prophylaxis in South Africa [19], ongoing HIV transmission could be sufficient to drive an excess risk of congenital CMV among HIV-exposed infants [5, 6]. As maternal CD4 count could reflect the ability to control CMV infection, the level of maternal HIV viremia, and the risk of MTCT of HIV, it may be a good overall predictor of congenital CMV transmission in HIV-infected women.

CMV transmission rates in this study did not differ between mothers using prenatal ZDV prophylaxis and mothers on HAART. A lack of association between type of prenatal ARV prophylaxis and prevalence of congenital CMV was previously documented in cohorts of HIV-exposed infants in the United States and Europe [6, 10]. Maternal CD4 count correlated inversely with CMV load in saliva of newborns with congenital CMV. This suggests that impaired maternal immunity may have resulted not only in increased CMV transmission to the fetus but also increased CMV replication in infected fetuses (Figure 2).

There are several limitations to this study. The background prevalence of congenital CMV in the general population and in the pre-ARV era in South Africa is not known. Therefore, it is not possible to determine whether the birth prevalence we observed is higher than expected for the general population or to delineate the impact of maternal ARV prophylaxis on congenital CMV prevalence. The anonymous unlinked design of this study precluded ascertainment of infants’ HIV infection status, and clinical and follow-up assessments of CMV-infected infants. In addition, maternal viral load data were not routinely available, and thus not collected. Both maternal HIV load and infant HIV infection are possible mediators or confounders of the relationships we observed between congenital CMV transmission and maternal CD4 count. Furthermore, maternal prenatal CD4 counts were only obtained at the start of ARV prophylaxis and serial measurements were not available, making it difficult to assess maternal immune status later in pregnancy. The absence of demographic characteristics, such as race, education, and socioeconomic status, which could also have played a role in intrauterine CMV transmission, was an additional limitation. Although the storage of specimens for several months prior to testing may have affected the saliva real-time PCR results, this is unlikely as the specimens were kept frozen at −80°C for the study duration, and shipped on dry ice. Storage of specimens could have affected the results of the rapid culture assay, and this could explain the failure to culture 2 of the PCR-positive specimens. On the other hand, the results from our ongoing multicenter CMV screening study suggest that saliva real-time PCR assay is more sensitive than the rapid culture [20], which could be the basis for the discrepancy in culture and PCR results. Although it is not possible to exclude breast milk contamination of samples, this is unlikely given that our specimen collection method allowed an interval of at least 1–2 hours between infants’ last exposure to breast milk and saliva swab collection.

The link between maternal CD4 count and congenital CMV transmission, shown here and in upper income countries, suggests that early initiation of combination ART in HIV-infected women of child-bearing age, prior to becoming immunocompromised, could lower the risk of congenital CMV in their infants. This has important implications for countries with high maternal HIV prevalence.

In South Africa, intensification of the adult HIV program in recent years [21] can be expected to continue to reduce the rates of immunosuppression among women prior to conception. In addition, recent implementation of World Health Organization option B guidelines for prevention of MTCT will impact pregnant women across all CD4 count categories. Therefore, the birth prevalence of congenital CMV in HIV-exposed infants in this population should be reevaluated, and the transmission rate in HIV-uninfected mothers should also be determined. In addition, systematic studies are needed to investigate the risk factors, including immunological and virological markers, associated with congenital CMV transmission in settings with a high burden of HIV. Furthermore, the burden of congenital CMV-induced hearing loss in this population, as well as the impact of congenital CMV infection on morbidity, growth, and development in HIV-exposed infants, should be evaluated. Finally, the validity of saliva real-time PCR for newborn CMV screening in populations where breastfeeding is common should be formally assessed.

In summary, the findings of our study demonstrate a high rate of congenital CMV in the era of prenatal ART in this South African population of HIV-exposed newborns, and an association of CMV transmission with advanced maternal immunosuppression.

Notes

Acknowledgments. We are grateful to the mothers and infants who participated in the study for their valuable time. Sincere appreciation also goes to our research assistant Kungeka Ndindwa for her hard work and dedication. S. M. owes thanks to Dr Ravi Gupta of University College London for support in developing the concept for the study, and Dr Mischka Moodley of Ampath Laboratories for helpful advice on study-related matters. The authors from South Africa thank the Mowbray Maternity Research Committee for allowing Mowbray Maternity Hospital to be used as a research site, and the Department of Pediatrics of the University of Alabama School of Medicine for their collaboration on the study. Finally, we
References

