No Perinatal HIV-1 Transmission From Women With Effective Antiretroviral Therapy Starting Before Conception

Laurent Mandelbrot,1,2,5,8 Roland Tubiana,3,10 Jerome Le Chenadec,2 Catherine Dollfus,11 Albert Faye,5,12 Emmanuelle Pannier,8,13 Sophie Matheron,5,14 Marie-Aude Khung,17 Valerie Garrait,18 Veronique Reliquet,19 Alain Devidas,20 Alain Berrebi,21 Christine Allisy,22 Christophe Elleau,23 Cedric Arvieux,24 Christine Rouzioux,6,15 Josiane Warszawski,2,4 and Stéphane Blanche7,16; for the ANRS-EPF Study Groupa

1Obstetrics-Gynecology Department, Hôpital Louis Mourier, Hôpitaux Universitaires Paris Nord Val de Seine, Assistance Publique-Hôpitaux de Paris, Colombes, 2CESP, INSERM U1018, 3Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, 4Université Paris Sud, Le Kremlin-Bicêtre, 5Université Paris Diderot, 6EA 3610 INSERM, and 7EA Pharmacologie, INSERM, Université Paris Descartes, Sorbonne Paris-Cité, 8Risks in Pregnancy University Department, 9Infectious Diseases Department, Hôpital Pitié Salpétrière and Université Pierre et Marie Curie, 10INSERM- UMR_S 943 Pierre Louis Institute of Epidemiology and Public Health, 11Pediatric Hemato-Oncology Department, Hôpital Trousseau, 12Infectious Diseases Department, Bichat-Claude Bernard, Hôpitaux Universitaires Paris Nord Val de Seine, 13Obstetrics-Gynecology Department, Hôpital Cochin Port Royal, 14Pediatrics Department, Hôpital Robert Debré, 15Virology Laboratory, and 16Pediatric Immunology Department, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, 17Infectious Diseases Department, Hôpital Delafontaine, Saint Denis, 18Internal Medicine Department, Hôpital Intercommunal de Créteil, 19Infectious Diseases Department, Centre Hospitalier Universitaire de Nantes, 20Infectious Diseases Department, Hôpital Sud Francilien, Evry, 21Obstetrics-Gynecology Department, Centre Hospitalier Universitaire de Toulouse, Maternité Paule de Viguer, 22Pediatrics Department, Hôpital d’Argenteuil, 23Pediatrics Department, Centre Hospitalier Universitaire de Bordeaux, and 24Infectious Diseases Department, Centre Hospitalier Universitaire de Rennes, France

Background. The efficacy of preventing perinatal transmission (PT) of human immunodeficiency virus type 1 (HIV-1) depends on both viral load (VL) and treatment duration. The objective of this study was to determine whether initiating highly active antiretroviral therapy (ART) before conception has the potential to eliminate PT.

Methods. A total of 8075 HIV-infected mother/infant pairs included from 2000 to 2011 in the national prospective multicenter French Perinatal Cohort (ANRS-EPF) received ART, delivered live-born children with determined HIV infection status, and did not breastfeed. PT was analyzed according to maternal VL at delivery and timing of ART initiation.

Results. The overall rate of PT was 0.7% (56 of 8075). No transmission occurred among 2651 infants born to women who were receiving ART before conception, continued ART throughout the pregnancy, and delivered with a plasma VL <50 copies/mL (upper 95% confidence interval [CI], 0.1%). VL and timing of ART initiation were independently associated with PT in logistic regression. Regardless of VL, the PT rate increased from 0.2% (6 of 3505) for women starting ART before conception to 0.4% (3 of 709), 0.9% (24 of 2810), and 2.2% (23 of 1051) for those starting during the first, second, or third trimester (P < .001). Regardless of when ART was initiated, the PT rate was higher for women with VLs of 50–400 copies/mL near delivery than for those with <50 copies/mL (adjusted odds ratio, 4.0; 95% CI, 1.9–8.2).

Conclusions. Perinatal HIV-1 transmission is virtually zero in mothers who start ART before conception and maintain suppression of plasma VL.

Keywords. HIV; pregnancy; antiretroviral therapy; treatment as prevention; mother-to-child transmission.
The prevention of perinatal transmission (PT) of human immunodeficiency virus type 1 (HIV-1) had a major breakthrough 21 years ago, when the American-French randomized clinical trial ACTG076-ANRS024 [1] demonstrated a two-thirds reduction of mother-to-child transmission using the antiretroviral drug zidovudine during the second and third trimesters of pregnancy, at delivery, and in the neonatal period. Progressively lower PT rates were observed with increasingly potent antiretroviral therapy (ART) [2–6], and the current standard of care is triple antiretroviral combination therapy. The World Health Organization issued a goal of virtually eliminating mother-to-child transmission (ie, perinatal plus breastfeeding) transmission of HIV worldwide by 2015. The use of ART to protect the exposed fetus from HIV transmission is a model for “treatment as prevention,” which is now recommended on an individual as well as a population basis to prevent sexual transmission [7].

Three main factors are associated with a residual risk of PT despite ART, in the absence of breastfeeding: detectable maternal viral load (VL) at delivery, preterm delivery, and a short duration of ART before delivery [4, 8]. These factors are related, because starting ART earlier improves the chances of obtaining an undetectable VL before delivery, provided that the woman takes the medications. The relationship between the duration of ART during pregnancy and the risk of transmission is well established [6, 9]. Until recently, treatment guidelines indicated that for women who are not yet receiving therapy and have CD4 lymphocyte counts >500/μL, the indication for ART is mainly prophylactic to prevent PT, and one important issue is when to start therapy. Most guidelines in industrialized countries are to initiate ART as early as possible. However, other guidelines still recommend starting at some point between 12 and 24 gestational weeks, depending on the baseline VL and the estimated risk of premature delivery [10]. These guidelines were based on data from the United Kingdom indicating that women with a baseline VL <10 000 copies/mL can delay ART to 26 weeks without compromising their likelihood of achieving an undetectable VL by delivery [11]. Findings from other studies, however, including a case-control study of PT in which Tubiana et al [9] studied women with low VLs at delivery, suggested that the risk of in utero transmission was increased with delayed ART, particularly in women with high baseline VLs. Early and sustained control of maternal VL was associated with lower PT.

Women are increasingly starting ART before becoming pregnant. The most recent US guidelines for preconception counseling now suggest starting ART when planning pregnancy [12], and French HIV treatment guidelines are to offer ART to all HIV-infected persons regardless of CD4 cell counts and VL [13]. The objective of the current study was to quantify the reduction in the risk of PT associated with ART initiation before conception.

METHODS

The French Perinatal Cohort (ANRS CO1/CO11) is an ongoing, prospective, observational study involving 90 perinatal centers throughout France [4]. In each participating center, about 95% of all HIV-infected pregnant women are included, with informed consent. The study was approved by the Cochon Hospital Institutional Review Board and the French computer database watchdog commission. Clinicians are encouraged to follow current French national guidelines, which are updated at 2-year intervals [13]; these include monthly follow-up during pregnancy with plasma VL assessment and pediatric follow-up from birth to 18–24 months.

All HIV-1-infected women enrolled in the French Perinatal Cohort delivering in metropolitan France between 2000 and 2011 were included in the study if they received highly active ART, defined as a regimen containing ≥3 drugs or 1 drug other than a nucleoside reverse-transcriptase inhibitor, during pregnancy. Women who received only reverse-transcriptase inhibitor monotherapy or dual therapy were excluded. However, women who switched from a combination therapy to monotherapy or dual therapy were included, as were the small number of women who received monotherapy with ritonavir-boosted protease inhibitors (PIs) [14]. Breastfeeding women were also excluded.

Plasma VL testing was performed locally, using polymerase chain reaction (PCR)–based techniques in nearly all cases. No centralized testing was performed at the time of inclusion, nor were samples retested subsequently for the purpose of the study. Thus, the cutoffs for HIV RNA detection changed during the 11-year period, from 500 to 50 copies/mL, <50 copies/mL becoming the standard after 2005. The data for VL and the ART regimen at delivery were those recorded nearest to the date of delivery. A child was considered infected if HIV-1 DNA or RNA PCR results were positive for 2 consecutive samples or if HIV-1 antibodies were detected at ≥18 months of age. A child was considered uninfected if HIV-1 DNA or RNA PCR results were negative ≥2 months of age and ≥1 month after ceasing all antiretroviral prophylaxis and/or if results of HIV-1 serology became negative, as described elsewhere [15].

Statistical Analysis

We first compared maternal and infant characteristics according to the timing of ART initiation in 4 categories (before conception and at ≤14, 24–27, and ≥28 gestational weeks), using χ² or Fisher exact tests for categorical variables and Student t tests or Wilcoxon rank tests for continuous variables. The estimated date of conception was determined by last menstrual period and/or ultrasound. When studying PT, we excluded children with indeterminate HIV status. In cases of first-trimester interruption of the treatment present at conception, the timing of ART initiation was defined by the date of reintroduction.
Transmission rates were estimated with their binomial exact 95% confidence interval (CI). The analysis was then stratified according to timing at ART initiation and level of VL near delivery into 4 categories: <50 copies/mL or undetectable with a lower threshold (usually 20 copies/mL); undetectable with a threshold >50 copies/mL; detectable at 50–400 copies/mL; and ≥400 copies/mL. We used logistic regression to compare PT rates specifically between women with delivery VLs of <50 or 50–399 copies/mL, independent of timing of ART initiation, and then performed logistic regression for all VL categories. SAS statistical software (version 9.3; SAS, Institute) was used for analyses.

RESULTS

From 2000 to 2011, a total of 12,284 mother/infant pairs were enrolled in EPF (Enquête Périnatale Française), among whom 8,678 (including 218 twin pairs and 1 set of triplets) were eligible for the study (Figure 1).

Timing of ART Initiation (Table 1)

ART was initiated before conception in 47.2% of women (n = 4,095), during the first trimester in 8.2% (n = 713), during the second trimester in 32.3% (n = 2,803), and during the third trimester in 12.3% (n = 1,067). Most ART regimens were PI-based triple therapy (82.5%) at the time of delivery. The overall proportion of women who were aware of their HIV diagnosis before becoming pregnant was 80.4%. The proportion was lower for those with treatment introduction beyond the first trimester; nonetheless, 59.8% of the women who started ART in the second or third trimester did know their HIV status before becoming pregnant. The majority of women (71.4%) maintained their initial ART regimen throughout the pregnancy.

Figure 1. Flow chart. Abbreviations: ART, antiretroviral therapy; EPF, Enquête Périnatale Française; HIV, human immunodeficiency virus; HIV-1, HIV type 1; HIV-2, HIV type 2; NRTI, nucleoside reverse-transcriptase inhibitor.
Table 1. Maternal and Obstetrical Characteristics for Children Born to Human Immunodeficiency Virus-Infected Mothers in French Metropolitan Enquête Périnatale Française Sites in 2000–2011, Receiving Combined Antiretroviral Therapy During Pregnancy

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Time at First Antiretroviral Treatment During Pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>All</td>
<td>.</td>
</tr>
<tr>
<td>Year of delivery</td>
<td></td>
</tr>
<tr>
<td>2000–2002</td>
<td>14.8</td>
</tr>
<tr>
<td>2003–2005</td>
<td>25.3</td>
</tr>
<tr>
<td>2006–2008</td>
<td>30.9</td>
</tr>
<tr>
<td>2009–2011</td>
<td>29</td>
</tr>
<tr>
<td>Maternal age, y</td>
<td></td>
</tr>
<tr>
<td><25</td>
<td>8.7</td>
</tr>
<tr>
<td>25–34</td>
<td>56.5</td>
</tr>
<tr>
<td>>34</td>
<td>34.8</td>
</tr>
<tr>
<td>Missing</td>
<td>.</td>
</tr>
<tr>
<td>Maternal geographic origin</td>
<td></td>
</tr>
<tr>
<td>Metropolitan France</td>
<td>16.6</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>71.6</td>
</tr>
<tr>
<td>Other</td>
<td>11.8</td>
</tr>
<tr>
<td>Missing</td>
<td>.</td>
</tr>
<tr>
<td>HIV diagnosis before conception</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>19.6</td>
</tr>
<tr>
<td>Yes</td>
<td>80.4</td>
</tr>
<tr>
<td>Missing</td>
<td>30</td>
</tr>
<tr>
<td>Primiparous</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>67.4</td>
</tr>
<tr>
<td>Yes</td>
<td>32.6</td>
</tr>
<tr>
<td>Missing</td>
<td>4</td>
</tr>
<tr>
<td>Gestational age at first antenatal maternity visit, wks gestation</td>
<td></td>
</tr>
<tr>
<td><14</td>
<td>45.6</td>
</tr>
<tr>
<td>14–27</td>
<td>44.9</td>
</tr>
<tr>
<td>≥28</td>
<td>9.4</td>
</tr>
<tr>
<td>Missing</td>
<td>945</td>
</tr>
<tr>
<td>First ART during pregnancy</td>
<td></td>
</tr>
<tr>
<td>Triple NRTI</td>
<td>5.9</td>
</tr>
<tr>
<td>PI based</td>
<td>76.1</td>
</tr>
<tr>
<td>NNRTI based</td>
<td>15.8</td>
</tr>
<tr>
<td>Three classes</td>
<td>1.2</td>
</tr>
<tr>
<td>Other</td>
<td>1.0</td>
</tr>
<tr>
<td>Last ART during pregnancy</td>
<td></td>
</tr>
<tr>
<td>Zidovudine monotherapya</td>
<td>0.4</td>
</tr>
<tr>
<td>Dual NRTI</td>
<td>1.1</td>
</tr>
<tr>
<td>Triple NRTI</td>
<td>3.1</td>
</tr>
<tr>
<td>PI based</td>
<td>81.2</td>
</tr>
<tr>
<td>NNRTI based</td>
<td>10.9</td>
</tr>
<tr>
<td>Three classes</td>
<td>1.3</td>
</tr>
<tr>
<td>Other</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Proportion of Virological Success
The proportion of women with VLs of <50 copies/mL at delivery was highest when ART was initiated before conception (75.4%) or in the first trimester (74.2%) and significantly lower when ART was initiated later, during the second (64.8%) or third (44.1%) trimester (\(P < .001\)).

Pregnancy Outcomes (Table 2)
There were 16.1% preterm deliveries, of which most (12.7%) were moderately preterm (from 32 gestational weeks to 36 weeks + 6 days). The preterm delivery rate was similar in women who started ART before conception or during the 2 first trimesters (\(P = .32\)) and lower in those starting ART during the third trimester. We observed no difference in the incidence of stillbirths or in Apgar scores according to the timing of ART. The proportion of children with undetermined HIV status did not differ according to treatment timing.

PT of HIV-1 (Tables 3 and 4)
There was no PT (95% CI, 0%–1%) among the 2651 women who started ART before conception, continued it during the pregnancy, and delivered with a VL of <50 copies/mL (Table 3). Furthermore, there was no case of transmission among the small subgroup of 212 women initiating ART before conception who had an undetectable VL using older-generation kits with limits of quantification >50 copies/mL.

Among the 4095 women receiving therapy before becoming pregnant, 7.6% (n = 312) had a treatment interruption in the
first trimester. There were 4 cases of PT in this subgroup (1.3%); 2 of these children were born to mothers with VL <50 copies/mL near delivery.

The VLs and timing of highly active ART initiation were independently associated with PT in logistic regression (Table 4). Overall, the transmission rate increased from 0.2% (95% CI, 0.06–0.4%)
for women starting ART before conception to 0.4% (0.09%–1.2%), 0.9% (0.5%–1.3%), and 2.2% (1.4%–3.3%) for those starting ART during the first, second, or third trimester, respectively (P < .001). The transmission rate increased with VL at delivery: from 0.3% (0.1%–0.4%) when the VL was <50 copies/mL to 1.5% (0.9%–2.4%) for VL 50–399 copies/mL and 2.8% (1.8%–4.2%) when the VL was >400 copies/mL (P < .001). None of the other variables included in the multivariate analysis were significantly associated with PT; these included maternal age, geographic origin, mode of delivery, gestational age, first ART used (PI based vs nonnucleoside reverse-transcriptase inhibitor based), receipt of intrapartum intravenous zidovudine or peripartum nevirapine, type of postnatal prophylaxis, and sex of the child. In the multivariate analysis, PT remained significantly higher in women delivering with a VL of 50–400 copies/mL than in those delivering with a VL <50 copies/mL, independently of when ART was initiated (adjusted odds ratio, 4.0; 95% CI, 1.9–8.2), and this difference did not change when all of the VL categories were considered (Table 4).

Table 3. Perinatal Human Immunodeficiency Virus Type 1 Transmission Rate According to Timing of Antiretroviral Therapy Initiation and Maternal Viral Load Near Delivery (Enquête Périnatale Française, Metropolitan France, 2000–2011): Stratified Analysis

<table>
<thead>
<tr>
<th>Maternal VL nearest delivery, copies/mL</th>
<th>Timing of ART Initiation</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before Conception</td>
<td>1st Trimester (<14 wk)</td>
<td>2nd Trimester (14–27 wk)</td>
<td>3rd Trimester (≥28 wk)</td>
</tr>
<tr>
<td>PT, % (95% CI)</td>
<td>No. With PT/Total No.</td>
<td>PT, % (95% CI)</td>
<td>No. With PT/Total No.</td>
<td>PT, % (95% CI)</td>
</tr>
<tr>
<td>≥400</td>
<td>2.2 (1.7–5.0)</td>
<td>5/230</td>
<td>1.5 (0.4–7.8)</td>
<td>1/69</td>
</tr>
<tr>
<td>50–400</td>
<td>0.3 (0.1–1.8)</td>
<td>1/201</td>
<td>1.6 (0.4–8.8)</td>
<td>1/61</td>
</tr>
<tr>
<td>Undetectable, threshold >50</td>
<td>0.0 (0–1.7)</td>
<td>0/212</td>
<td>0.0 (0–6.8)</td>
<td>0/52</td>
</tr>
<tr>
<td><50</td>
<td>0.0 (0–1.1)</td>
<td>0/2651</td>
<td>0.2 (<0.1 to 1.1)</td>
<td>1/507</td>
</tr>
<tr>
<td>Missing VL</td>
<td>. . .</td>
<td>. . .</td>
<td>0/111</td>
<td>0/20</td>
</tr>
<tr>
<td>Undetermined child HIV status</td>
<td>. . .</td>
<td>. . .</td>
<td>. . .</td>
<td>. . .</td>
</tr>
</tbody>
</table>

Table 4. Perinatal Human Immunodeficiency Virus Type 1 Transmission Rate According to Timing of Antiretroviral Therapy Initiation and Maternal Viral Load Near Delivery (Enquête Périnatale Française, Metropolitan France, 2000–2011): Multivariate Logistic Regression

<table>
<thead>
<tr>
<th>Maternal VL and ART Timing</th>
<th>PT, % (95% CI)</th>
<th>No. With PT/Total No.</th>
<th>Adjusted OR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall PT (all infants with determined HIV status)</td>
<td>0.7 (0.5–0.9)</td>
<td>56/5075</td>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td>Maternal VL nearest delivery, copies/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥400</td>
<td>2.8 (1.8–4.2)</td>
<td>23/818</td>
<td>6.2 (2.6–15.2)</td>
<td><.001</td>
</tr>
<tr>
<td>50–399</td>
<td>1.5 (0.9–2.4)</td>
<td>18/1174</td>
<td>4.3 (1.8–9.8)</td>
<td></td>
</tr>
<tr>
<td>Undetectable, threshold >50</td>
<td>0.2 (<0.1 to 1.2)</td>
<td>1/474</td>
<td>1.1 (0.1–8.6)</td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>0.3 (0.1–1.4)</td>
<td>14/5345</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Missing VL</td>
<td>0/264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing of ART initiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd trimester (≥28 wks gestation)</td>
<td>2.2 (1.4–3.3)</td>
<td>23/1051</td>
<td>7.8 (2.1–28.8)</td>
<td><.001</td>
</tr>
<tr>
<td>2nd trimester (14–27 wks gestation)</td>
<td>0.9 (0.5–1.3)</td>
<td>24/2810</td>
<td>6.0 (1.7–20.7)</td>
<td></td>
</tr>
<tr>
<td>1st trimester (<14 wks gestation)</td>
<td>0.4 (0.0–1.2)</td>
<td>3/709</td>
<td>2.9 (0.6–17.7)</td>
<td></td>
</tr>
<tr>
<td>Before conception</td>
<td>0.2 (0.0–1.4)</td>
<td>6/3505</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ART, antiretroviral therapy; CI, confidence interval; HIV, human immunodeficiency virus; OR, odds ratio; PT, perinatal transmission; VL, viral load.

* Adjusted for maternal age, geographic origin, mode of delivery, gestational age, protease inhibitor–based versus nonnucleoside reverse-transcriptase inhibitor–based first combination ART regimen, zidovudine intrapartum prophylaxis, postnatal prophylaxis, and child’s sex. The HIV status was unknown in 603 children.
DISCUSSION

Remarkably, we observed no case of PT among nearly 2700 women who started ART before conception and had a plasma VL <50 copies/mL at delivery. This contrasts with a “natural” PT risk of 15%–20% [16]. Numerous cohort studies have reported very low PT with antiretroviral prophylaxis [6], but this is the first to confirm that the virtual elimination of transmission is possible, with an upper 95% CI limit of 0.1%. The few cases of transmission in women who had VL <50 copies/mL at delivery occurred when therapy was started beyond the first trimester or interrupted during the pregnancy.

The main strengths of this cohort study are its large size, multicenter recruitment in routine clinical settings, high participation rates at each center, low proportion of infants lost to follow-up, and prospective data collection before knowledge of infant HIV status, thus limiting selection and differential classification biases. Our findings show that the earlier ART was started, the lower the rate of PT, whether or not VL at delivery was <50 copies/mL. When ART was started in the first trimester, it was nearly as effective as when it was started before pregnancy. The duration of therapy was shown elsewhere to be an important determinant of PT risk in our cohort [4, 9] and others [6]. Moreover, PT was significantly lower when maternal VL at delivery was <50 copies/mL than when it was 50–400 copies/mL, confirming a recent report on a cohort from the United Kingdom and Ireland [6].

There are several reasons to expect that long-term ART would optimize the prevention of in utero as well as intrapartum transmission, including the quality of immune restoration, reduction of proviral HIV-1 DNA in reservoirs, and better control of VL in various compartments, including the cervicovaginal tract. The relative contributions of ART duration and VL are difficult to investigate because they are highly associated, and statistical power is lacking because few cases of transmission are observed overall.

Our findings provide a strong argument for initiating therapy as soon as pregnancy is planned, even when there seems to be no immediate benefit for the woman’s own health. In the French cohort in 2011, >40% of women were not yet receiving ART before becoming pregnant. Recent guidelines [13] recommend lifelong ART for all persons living with HIV, even when they are asymptomatic and have CD4 cell counts >500/μL. The rationale for this major change includes potential long-term benefit for the person’s own health but also the prevention of transmission to sexual partners. The World Health Organization also endorsed in 2013 the objective of starting lifelong ART as early as possible in all HIV-infected pregnant women regardless of CD4 count and VL, referred to as Option B+ in the developing world [17]. In resource-poor settings with difficult access to care, starting ART as soon as possible can reduce the cascade of missed opportunities to eliminate PT, although there are obstacles to implementing such programs [18, 19].

More recently, the Panel on Treatment of HIV-Infected Pregnant Women in the United States recommended that all HIV-infected women contemplating pregnancy be placed on a maximally suppressive antiretroviral regimen [12]. Initiating ART before conception has several practical advantages. Antiretroviral drugs can be chosen in light of pregnancy issues, to assess tolerance, adherence, and efficacy and to allow for continuity between preconceptional and prenatal care. Another major benefit is to protect the male partner during attempts to conceive, if he is HIV uninfected [20]. PT prevention is the first example and model for treatment as prevention [7].

There are implications for perinatal management [12, 13, 21]. In the case of low maternal VL before delivery, Briand et al [22, 23] reported elsewhere that neither cesarean delivery [22] nor intrapartum preexposure prophylaxis with intravenous zidovudine [23] offer additional protection against PT. Regarding postnatal prophylaxis for the infant, future studies are required to evaluate whether treatment with several weeks of zidovudine or nevirapine is still necessary when the mother has long-term optimal VL control and does not breastfeed [24].

When ART is started earlier, safety is a crucial issue [25–27]. Because the rate of PT is already low, the incremental benefit for the child of moving toward systematic first-trimester ART exposure must take into consideration even rare toxic effects. The efficacy of ART to prevent PT depends solely on maternal VL, but tolerance differs according to the individual molecules used. Although no increase in the overall incidence of birth defects has been reported, Sibiude et al [28] reported an increase in congenital heart defects associated with first-trimester exposure to zidovudine, and there is controversy regarding the risk of central nervous system anomalies associated with efavirenz in the first trimester [29, 30]. Preterm birth was increased in numerous studies among women receiving ART [31–34], in addition to the role of maternal HIV infection itself [33]. In the present study, the incidence of preterm delivery was >16%, much higher than in the general population in high-income countries [34]. However, there was no difference in the incidence of preterm delivery according to the timing of treatment, before or after conception.

In conclusion, the present study provides evidence in favor of offering ART to all HIV-infected women planning to become pregnant and initiating ART as early as possible in pregnancy in women who become pregnant before being treated. These indications, as well as the specific antiretroviral drugs to be used, should be decided with the patient on an individualized basis, taking into consideration both safety and PT.

Notes

Acknowledgments. We thank all families who agreed to participate in this study and all contributors to the French Perinatal Cohort Study, listed below.
ANRS-EPF study group. Currently active contributors to ANRS-EPF:
APHP Hôpital Louis Mourier, Colombes: Laurent Mandelbrot, Catherine Crenn-Hebert (main investigator [MI]), Corinne Floch-Tudal (MI), Fabienne Mazy, Marine Joras, Françoise Meier, Emmanuel Mortier.
APHP Hôpital Beaujon, Clichy: Pierre-François Ceccaldi (MI), Maïa Banige, Agnès Villemant Uludag, Virginie Zarouk, Agnès Lefort.
Hôpital Sainte Musse, Toulon: Gilles Hittinger (MI), Jean-Marc Chamouilli, Christian Burle, Alain Lafeuillade.
CHG Marechal Joffre, Perspigan: Marie Medus (MI), Germaine Bachelard.
CHU Caremeau, Nîmes: Joëlle Dengale-Nguyen (MI).
CHD les Oudairies, La Roche sur Yon: Thomas Guimard (MI), Karine Guimard, Jean-Pierre Brossier, Philippe Perré, Jean-Luc Esauna, Olivier Bollengier Stragier, Sophie Leautaz-Nainville.
Centre Hospitalier William Morey, Chalon sur Saone: Sandrine-Anne Martha (MI), Benoît Martha, Elise Maurel, Michel François, Muriel Barat, Patricia Murger.
Centre Hospitalier, Vernon: Mahfoud Rouha (MI), Philippe Lumbroso, Alain Checquy.
Centre Hospitalier Intercommunal de Cornouaille, Quimper: Pascale Perpezou (MI), Gilles Blondin.
Centre Hospitalier Universitaire, Brest: Séverine Ansart (MI), Luc De Saint Martin (MI), Philippe Le Moine.
Centre Hospitalier, St Brieuc: Corinne Daniel (MI), Christian Calvez, Emmanuelle Routard.
Centre Hospitalier Universitaire, Rennes: Cédric Arvieux (MI), Estelle Bauville, Christelle Dupre.
Centre Hospitalier Bretagne Atlantique, Vannes: Yves Poinsignon (MI), Anne Grelier, Gaëtane Mousset, Corinne Cudeville.
Centre Hospitalier de Bretagne Sud, Lorient: Mathilde Naulot (MI), Isabelle Belzic, Philippe Moreau, Marie-Françoise Le Coz, Odile Luyx Vaillant.
Centre Hospitalier de la région d’Anney, Anney: Virginie Vitrat (MI), Didier Tardif, Jacques Gaillat, Anne Vanderbergh, Suzanne Braig.
Centre Hospitalier Intercommunal, Montfermeil: Marion Dehlinger-Paul (MI), Khaled Mohamed.
Centre Hospitalier Intercommunal, Montreuil: Brigitte Heller-Roussin (MI), Cécile Winter.
APHP Hôpital Cochin-Port Royal, Paris: Ghislaine Firtion (MI), Emmanuelle Pannier (MI), Myriam Costa, Odile Launay, Dominique Salmon Ceron.
Centre Hospitalier Intercommunal, Creteil: Valérie Garrait (MI), Isabelle Hau (MI), Claudine Touboul, Lanto Ratsimbazafy, Christiane Kommé, Brigitte Elharrar.
Hôpital de la Croix Rousse, Lyon: Jean-Marc Labaune (MI), Laurent Cotte, René-Charles Rudigoz.
Centre Hospitalier Pellegrin, Bordeaux: Christophe Elleau (MI), Camille Runel-Belliard (MI), Thierry Pistone.
CHU Les Abymes, Pointe à Pitre: Blandine Muanza (MI), Elisabeth Broustal.
Centre Hospitalier Général, Creil: Marc Duval-Arnould (MI), Bénédicte Carpentier, Etienne Dienega.
Hôpital de Haute Pierre, Strasbourg: MariaLuisa Partisani (MI), Natasha Enzt-Werle, Eric David, David Rey.
Centre Hospitalier Général, Longueville: Hervé Seuma (MI), Sarah Ducrocq, Philippe Bally-Salin.
Hôpital Péle de Viguier, Toulouse: Joëlle Tricoire (MI), Alain Berrebi (MI).
Centre Hospitalier de la Côte Basque, Bayonne: Claudine Cayla (MI).
Centre Hospitalier Intercommunal, Villeneuve St Georges: Anne Chacé (MI), Isabelle Metheron.
Centre Hospitalier Intercommunal, Poissy Saint Germain en Laye: Anne Boutemy (MI), Didier Armangaud, Sophie Couderc.
Centre Hospitalier Général, Fontainebleau: Corinne Routier (MI), Alain Alissa.
Centre Hospitalier Robert Ballanger, Aulnay: Elisabeth Questiaux (MI), Ahmed Zakaria, Hélène Dauphin, Céline Goissen, Marie Bellot, Jean-Luc Delassus.
Hôpital Civil, Strasbourg: MariaLuisa Partisani (MI), Christine Cheneau, Jean-Marie Lang.
Centre Hospitalier Victor Dupouy, Argenteuil: Dominique Brault (MI), Christine Allay.
APHP Hôpital Tenon, Paris: Marie-Gisèle Lebrette (MI), Lise Selleret, François Hervé.
Centre Hospitalier Général, Saint-Denis: Pascal Bolot (MI), Marie-Aude Khuong-Josses, Dieudonné Ekoukou, Stéphane Bouan.
APHP Hôpital Necker, Paris: Stéphane Blanche (MI), Delphine Lemercier (MI), Pierre Frange, Florence Veber, Alain Fisher.
Centre Hospitalier Sud Francilien, Evry Corbeil: Michèle Granier (MI), Alain Devidas (MI), Rose Nguyen, Adrien May, Amélie Chabrol, Pierre Chevojon, Zaitoun Abdallah Moussa.
Centre Médico-Chirurgical et Obstétrical, Schlüchtern.
CHR American Memorial Hospital, Reims: Claire Pluchart (MI), Christine Rouger.
APHP Groupe Hospitalier Pitie Salpêtrière, Paris: Roland Tubiana (MI), Manuela Bonmarchand, Luminata Sheinder, Fabienne Caby, Ruxandra-Oana Calin, Marc Dommergues, Marco Millions, Ines de Montgolfier.
Centre Hospitalier René Dupouy, Pontoise: Anne Coursol (MI).
APHP Hôpital Béclère, Clamart: Véronique Chambrin (MI), Philippe Labrune (MI), Laure Clech.
Centre Hospitalier Marc Jacquet, Melun: Isolde Pauly-Ravelly (MI), Raghad Moolim, Lydie Sanchez.
Centre Hospitalier Général, Evreux: Ama Johnson (MI).
APHP Hôpital Jean Verdier, Bondy: Eric Lachassine (MI), Laurence Benoist, Vincent Jeantils, Joel Gaudeul, Amélie Benbara, Anne Borgne.
Centre Hospitalier de Meaux, Meaux: Leila Karaoùi (MI), Véronique Lefever Elbert.
CHU de l’Archet, Nice: André Bongain (MI), Fabrice Monpoux (MI), Anne Deville, Eliane Galiba.
Centre Hospitalier Français Quesnay, Mantes La Jolie: Antione Doumet (MI).
CHU Hôpital Nord, Amiens: Jean-Luc Schmidt (MI).
Hôpital de la Conception, Marseille: Ludovic Cravello (MI).
CHU de Brabois-Hôpital des Adultes, Vandœuvres les Nancy: Claire Hubert (MI).
APHP Hôpital Trousseau, Paris: Catherine Dollfus (MI), François Hervé, Marie-Dominique Tabone, Mary-France Courcoux, Guy Leverger, Bruno Carbonne, Philippe Faucher.
Hôpital Charles Nicolle, Rouen: Didier Pinquier (MI), Brigitte Clavier, Gaëlle Pinto-Cardoso.
APHP Hôpital Robert Debré, Paris: Albert Faye, Sophie Matheron (MI), Martine Levine (MI), Érianna Bellaton Marouts, Constance Borie, Christine Boissinot.
APHP Hôpital de Bicêtre, Le Kremlin-Bicêtre: Delphine Peretti (MI), Corinne Fourcade (MI).
CHR Hôpital Saint Jacques, Besançon: Catherine Chirouze (MI), Cécile Hafer Mauvais.
CHU de Nantes, Nantes: Véronique Reliquet (MI), Cécile Brunet-Cartier (MI), Norbert Winer, Edouard Vaucl.
CHR Hôpital du Bocage, Dijon: Claire Brandet (MI).
APHP Hôpital Clementeau, Caen: Jacques Brouard (MI).
Centre Hospitalier de Lagney, Lagney: Arnaud Chalvon Demersay (MI).
Hôpital André Mignot, Le Chesnay: Véronique Hentgen (MI), Fabienne Messaoudi.
CHR de Tours: Louis, Bernard (MI), Zoha Maakroun, Pascale Nau.
Institut d’Hématologie-Oncologie Pédiatrique, Lyon: Kamila Kebaïli (MI).
Hôpital Nord, Saint Etienne: Karenne Billémaz (MI).
Centre Hospitalier Général, Bastia: Ramona Abrudan (MI).
Centre Hospitalier Universitaire, Angers: Pascale Fialaire (MI), Loïc Sentilles, Stéphanie Proust.
Centre Hospitalier Régional, Orléans: Philippe Arsac (MI), Louis Mesnard, Evelyne Werner.
APHP Hôpital Lariboisière, Paris: Nicole Ciraru-Vignerou (MI), Geneviève Mouchmou, Dominique Ayrail.
CHU Arnaud de Villeneuve, Montpellier: Emmanuelle Vintejou (MI), Muriel Lalande, Jacques Reynes, Michel Segondy.
Centre Hospitalier Général, Orsay: Christiane De Gennes (MI).
Centre Hospitalier de Saint Martin, St Martin: Cyril Clavel (MI).
CHR Jeanne de Flandres, Lille: Françoise Mazingue (MI), Yamina Hammad.
Centre Hospitalier Dron, Tourcoing: Faiza Ajana.
CHU–Maison de la Femme et de l’Enfant, Fort de France: Yves Hatchuel (MI), Imad Nahi.
CHU Dupuytren, Limoges: Claire Genet (MI), Sophie Ducroix-Roubert, Yves Aubard, Anne Constanty, Pierre Weinbreck.
Hôpital Intercommunal Sud Léman Valserine, Saint Julien: Emilie Piet (MI), François Jacquier.
Centre Hospitalier Saint Nazaire Cité Sanitaire, Saint Nazaire: Christophe Michau (MI), Hassan Safwan, Arnaud Boutet.
Centre Hospitalier André Rosemon, Cayenne: Narcisse Elenga (MI), Hôpital Calmette, Lille.

Financial support. The French Perinatal Cohort Study is funded by the Agence Nationale de Recherche sur le Sida et les Hépatites Virales (INSERM-ANRS).

Potential conflicts of interest. L. M. reports personal fees from Bristol-Myers Squibb and Gilead outside the submitted work. V. G. reports support from Institut Pichsquared and Sanofi Pasteur MSD and grants from the French Health Ministry outside the submitted work. J. W. reports grants from Agence Nationale de Recherche sur le Sida et les Hépatites Virales, Agence Autonome de l’INSERM and Agence Nationale de Sécurité du Médicament et des Produits de Santé during the study; grants from Société Française de Lutte contre le Cancer, ViV’ Healthcare, Abbott, and Parexel; and non-financial support from Abbvie outside the submitted work. All other authors report no potential conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

