Circulating Biomarkers for Discrimination Between Aseptic Joint Failure, Low-Grade Infection, and High-Grade Septic Failure

Max Ettinger,1 Tilman Calliess,1 Jan T. Kielstein,2 Jasmin Sibai,1 Thomas Brückner,1 Ralf Lichtinghagen,3 Henning Windhagen,1 and Alexander Lukasz2,4

1Department of Orthopaedic Surgery, 2Department of Nephrology and Hypertension, 3Department of Laboratory Medicine, Hannover Medical School, and 4Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, Germany

Background. Late-onset chronic (low-grade) periprosthetic joint infections are often accompanied by unspecific symptoms, false-negative cultures or nonspecific low values of serum biomarkers. This may lead to the unintended implantation of a revision prosthesis into an infected surgical site with the risk of short-term failure developing again. Conversely, false diagnosis of joint infection may result in multistage revision procedures, which expose the patient to unnecessary surgical procedures and inappropriate antibiotic treatment. Here, we investigated whether circulating biomarkers can preoperatively distinguish between aseptic prosthesis loosening and low-grade joint infection, and which biomarker combinations are most accurate.

Methods. Inclusion criteria for the study were indication for revision arthroplasty due to aseptic implant failure, acute high-grade infection, or (suspected) low-grade infection. C-reactive protein (CRP), procalcitonin, tumor necrosis factor α, interleukin 6 (IL-6), interleukin 10, and lipopolysaccharide binding protein were assessed preoperatively in the serum of 98 adult patients.

Results. The classification tree method revealed IL-6 and CRP as the most suitable biomarker combination for the discrimination of aseptic loosening vs low-grade joint infection. The combination of IL-6 >5.12 pg/mL and CRP >0.3 mg/dL correctly identified 15 of 16 patients as having low-grade infection (94%) whereas just one patient was aseptic (6%).

Conclusions. This is the first comprehensive prospective clinical study to our knowledge investigating the significance of a combined biomarker approach in differentiating between aseptic prosthesis loosening and low-grade joint infection. CRP plus IL-6 seems to be the most helpful combination for preoperative discrimination of aseptic loosening vs low-grade joint infection.

Keywords. low-grade; high-grade; septic joint failure; joint infection.

Total knee arthroplasty and total hip arthroplasty are very common operations and are projected to increase dramatically in numbers over the next 2 decades [1, 2], whereas the prevalence of periprosthetic joint infection (PJI) has not decreased over the past 20 years [3]. Thus, we are facing an increasing medical and economic problem of device-related infections in the future.

Traditionally, PJIIs were classified by time of appearance, as early (<3 months) or late (>3 months) postoperative infections [4]. However, recent strategies for classification of septic prosthetic failure are based on the pathogenicity and etiology of the infection. Based on these strategies, 3 classes of infection are recognized: (1) acute perioperative infections with early postoperative onset and highly virulent bacteria; (2) primary chronic low-grade infections with delayed onset and low-virulence or small colony-forming bacterial stains; and (3) late hematogenous high-grade infections. Furthermore, the standard diagnostic methods, such as blood
tests for C-reactive protein (CRP) or erythrocyte sedimentation rate or by microbiological analysis of the joint aspiration fluid, may not diagnose infections, especially low-grade infections, accurately. The current most accurate method for detection of low-grade infections is histopathological analysis of the periprosthetic membrane in conjunction with microbial analysis of periprosthetic tissue cultures [5]. In cases of joint failure, a periprosthetic membrane, which is a seam of connective tissue, is formed between the bone/cement and the implant interface and is histopathologically classified into 4 subtypes [6, 7].

The distinction between PJI and aseptic failure is crucial to make preoperative treatment decisions but can be clinically difficult due to the low virulence and biofilm-forming ability of the pathogens [8]. Clinical symptoms are not always reliable, especially for low-grade infections. False-negative and low values of serum biomarkers often occur when low-virulence pathogens are responsible for late-onset chronic (low-grade) joint infections [9]. By contrast, concomitant inflammatory conditions may cause severe elevation of these biomarkers [10, 11]. Consequently, a surgeon may decide on a 1-stage revision procedure, which may lead to the unintended implantation of a new prosthesis into an infected surgical site. Without proper debridement of the joint and sufficient antibiotic treatment, this may lead to persistence of the infection and immediate failure of the revision arthroplasty. Conversely, incorrect diagnosis of a joint infection where there is none may result in a multistage revision procedure, the consequences of which may be an extended duration of hospital stay and/or multiple admissions, as well as prolonged immobilization and rehabilitation, together with increased overall costs [3, 8, 12].

Biomarkers have been shown to be helpful for the diagnosis of PJI [13]. The purpose of this study was to determine the utility of several serum biomarkers in distinguishing between aseptic failure, low- and high-grade infections in patients undergoing revision surgery for failure of total joint arthroplasty. Using a prospective approach, we intended to detect biomarkers with optimal cutoff values to predict cause of joint failure.

PATIENTS AND METHODS

Design

Institutional review board approval was obtained for this study. Inclusion criteria were indications for revision arthroplasty of hip, knee, or shoulder prosthesis, including aseptic implant failure, acute high-grade infection, or (suspected) low-grade infection. Patients with diseases associated with elevated inflammatory circulating biomarkers, including malignancy [14], rheumatism [15], renal failure, autoimmune disease (such as systemic lupus erythematosus or vasculitis) [16], and chronic infectious disease (such as human immunodeficiency virus or hepatitis C virus) [17] were excluded from the study. Patients with early-onset infections occurring less than 4 weeks after the index surgery and patients on antibiotics were also excluded.

Patient demographics, medical history, and clinical data including sex, age, body temperature, pulse, blood pressure, retention parameters, hemoglobin, hematocrit, leucocytes, and electrolytes were recorded. During surgery, a total of 8 tissue and fluid samples were collected for histological and microbiological examination.

The definite diagnosis of septic joint failure was carried out postoperatively with reference to the guidelines of the Musculoskeletal Infection Society [18]: (1) presence of a fistula that is connected to the prosthesis; (2) same pathogen in at least 2 separate tissue or fluid samples taken from the joint; and (3) any 3 of the following 4 criteria together: (a) CRP >0.5 mg/dL; (b) pus in the joint; (c) isolation of microorganisms in a liquid culture of the tissue or joint; and (d) positive histology (>5 neutrophils per high-power field in 5 high-power fields, or >1 neutrophil per high-power field on average after examination of 10 high-power fields in a tissue sample under ×400 magnification [19, 20], as well as membrane type II and III according to the classification of Morawietz et al [7]). The distinction between low- and high-grade infection was made clinically based on symptoms and the time-point of the infection relative to the index surgery, and the onset of symptoms in correlation with the histology and isolation of microorganisms [21, 22]. Patients with nocturnal pain, intermediate swelling, or stiffness in combination with membrane types II and III according to the Morawietz classification, or isolation of low-virulence pathogens were classified as having low-grade infection. Intraoperative tissue samples were examined by a pathologist skilled in interpretation of periprosthetic tissue.

Quantification of Biomarkers

CRP was quantified in serum samples by an immunoturbidimetric test (Roche Diagnostics, Mannheim, Germany) in line with other biochemical parameters in the Laboratory Medicine on a Cobas 6000 analyser (Roche Diagnostics), and PCT sensitivity was determined on a Brahms Kryptor analyser with an immunofluorescence assay (Thermo Fisher Scientific, Brahms GmbH, Hennigsdorf, Germany). Tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-10, and lipopolysaccharide binding protein (LBP) were quantified in serum samples using solid-phase enzyme-labeled, chemiluminescent, sequential immunometric assays on an Immulite instrument (Siemens Healthcare, Eschborn, Germany).

Statistical Analysis

Unpaired t-test, 1-way analysis of variance and Bonferroni multiple comparison test were applied for comparison of quantitative variables. Two-tailed P-values <.05 were considered statistically significant. The classification tree method was used with the following assumptions: minimal number of cases at the superior point of 10, minimal number of cases at the
inferior point of 5, and χ^2 P-values <.05 for the distribution at break points. Categorical variables were compared using the χ^2 test. Receiver operator characteristic (ROC) curves were used to visualize cutoff values, sensitivity, and specificity of different biomarkers. Data analysis was performed using SPSS software version 22 (SPSS Inc, Chicago, Illinois). Contingency table-derived data and likelihood ratios were calculated using the StatPages website (www.statpages.org/ctab2x2.html). Figures were prepared using GraphPad Prism software version 6 (GraphPad Prism Software Inc, San Diego, California).

RESULTS

Patient Characteristics

In total, 98 adult patients were included in this study; 57 patients with no suggestion of infection were postoperatively assigned to the aseptic loosening group, while 20 were diagnosed with a low-grade infection and were postoperatively assigned to the low-grade infection group, and 21 patients received a revision on the basis of a high-grade infection.

Demographic, clinical, and laboratory characteristics and are shown in Table 1. Detailed characteristics of the 20 patients assigned to the low-grade infection group are shown in Table 2.

Leucocytes, CRP, PCT, TNF-α, IL-10, IL-6, and LBP Levels in Relation to Cause of Joint Failure

Patients with aseptic joint failure had significantly lower levels of leucocytes compared with patients with low- or high-grade infection (6.4 vs 7.6 vs $8 \times 10^3/\mu L$, $P < .01$ and $P < .01$, respectively) (Figure 1A). Patients with aseptic joint failure had significantly lower levels of CRP compared with patients with low- or

Table 1. Demographic, Clinical and Laboratory Characteristics of Patients

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total</th>
<th>Aseptic</th>
<th>Low-grade</th>
<th>High-grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics (n, %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of patients</td>
<td>98 (100)</td>
<td>57 (58)</td>
<td>20 (20)</td>
<td>21 (21)</td>
</tr>
<tr>
<td>Male</td>
<td>42 (43)</td>
<td>23 (23)</td>
<td>9 (9)</td>
<td>10 (10)</td>
</tr>
<tr>
<td>Female</td>
<td>56 (57)</td>
<td>34 (35)</td>
<td>11 (11)</td>
<td>11 (11)</td>
</tr>
<tr>
<td>Age (years, median [IQR])</td>
<td>67 (60.3–76)</td>
<td>64 (60–72)</td>
<td>68 (66.5–77.5)</td>
<td>72 (61–78)</td>
</tr>
<tr>
<td>BMI</td>
<td>27.9 (25.4–31.9)</td>
<td>27.8 (24.8–31.3)</td>
<td>28.4 (25.7–30.9)</td>
<td>29.4 (25.7–35.1)</td>
</tr>
<tr>
<td>Joint (n, %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hip</td>
<td>57 (58)</td>
<td>29 (30)</td>
<td>13 (13)</td>
<td>15 (15)</td>
</tr>
<tr>
<td>Knee</td>
<td>39 (40)</td>
<td>28 (29)</td>
<td>7 (7)</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Shoulder</td>
<td>2 (2)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Patients with joint revision (n, %)</td>
<td>25 (26)</td>
<td>8 (8)</td>
<td>4 (4)</td>
<td>13 (13)</td>
</tr>
<tr>
<td>Number of revisions (mean [IQR])</td>
<td>1.68 (1–2)</td>
<td>1.63 (1–2)</td>
<td>1 (1–1)</td>
<td>1.92 (1–3)</td>
</tr>
<tr>
<td>Number of joint infections (n, %)</td>
<td>6 (6)</td>
<td>0</td>
<td>0</td>
<td>6 (6)</td>
</tr>
<tr>
<td>Implant survival (days, [median, IQR])</td>
<td>1064 (276–2829)</td>
<td>1499 (595–3444)</td>
<td>526 (138–2226)</td>
<td>149 (74–1196)</td>
</tr>
<tr>
<td>Clinical parameters (median [IQR])</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>36.8 (36.5–37)</td>
<td>36.8 (36.4–37)</td>
<td>36.8 (36.5–37)</td>
<td>36.8 (36.5–37.2)</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>72 (64–80)</td>
<td>72 (64–80)</td>
<td>72 (68–81)</td>
<td>72 (64–84)</td>
</tr>
<tr>
<td>Laboratory data (median [IQR])</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucocytes (10³/μL)</td>
<td>6.8 (5.5–8)</td>
<td>6.4 (5.5–7.23)</td>
<td>7.6 (6.48–9.18)</td>
<td>8 (5.65–9.8)</td>
</tr>
<tr>
<td>CRP (mg/dL)</td>
<td>0.4 (0.2–1.7)</td>
<td>0.2 (0.1–0.4)</td>
<td>1.2 (0.6–6.25)</td>
<td>3.5 (1.45–13.35)</td>
</tr>
<tr>
<td>PCT (ng/mL)</td>
<td>0.04 (0.03–0.06)</td>
<td>0.04 (0.01–0.05)</td>
<td>0.04 (0.03–0.07)</td>
<td>0.06 (0.04–0.1)</td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>9.1 (7.65–11.45)</td>
<td>8.65 (7.2–10.98)</td>
<td>10.3 (8.2–14.25)</td>
<td>11 (8.6–12.85)</td>
</tr>
<tr>
<td>IL-10 (pg/mL)</td>
<td>2.4 (2–3.9)</td>
<td>2.4 (2–3.48)</td>
<td>2.6 (2–4.03)</td>
<td>2.9 (1.95–4.3)</td>
</tr>
<tr>
<td>LBP (μg/mL)</td>
<td>6.7 (4.9–9.7)</td>
<td>5.65 (4.28–7.2)</td>
<td>7.65 (6.48–11.95)</td>
<td>10.7 (7.75–17.45)</td>
</tr>
<tr>
<td>IL-6 (pg/mL)</td>
<td>4.26 (1–10.9)</td>
<td>2.77 (1–4.3)</td>
<td>11.9 (5.24–19.33)</td>
<td>12.8 (5.93–32.65)</td>
</tr>
</tbody>
</table>

Percentage related to total no. of patients.

Abbreviations: BMI, body mass index; CRP, C-reactive protein; IL-6, interleukin 6; IL-10, interleukin 10; IQR, interquartile range; LBP, lipopolysaccharide binding protein; PCT, procalcitonin; TNF-α, tumor necrosis factor α.

a Of the affected joint.

b Number of revisions of the affected joint of the patients mentioned one line above.

c Of the affected joint; all 6 patients had one joint infection in the past, respectively.
<table>
<thead>
<tr>
<th>Patient</th>
<th>Affected Joint</th>
<th>Temp (°C)</th>
<th>CRP (mg/dL)</th>
<th>IL6 (pg/mL)</th>
<th>Revision Number</th>
<th>Implant Survival, Days</th>
<th>Pathogen</th>
<th>Positive Swabs</th>
<th>Histology</th>
<th>Symptoms</th>
<th>Synovial Fluid Culture</th>
<th>Comorbidities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Knee</td>
<td>36.7</td>
<td>0.2</td>
<td>4.78</td>
<td>0</td>
<td>4265</td>
<td>Staphylococcus epidermidis</td>
<td>2/5</td>
<td>Type 2</td>
<td>Nocturnal resting pain, discrete swelling</td>
<td>Negative</td>
<td>Arterial hypertension</td>
</tr>
<tr>
<td>2</td>
<td>Hip</td>
<td>36.1</td>
<td>1.9</td>
<td>13.2</td>
<td>1</td>
<td>615</td>
<td>Staphylococcus epidermidis</td>
<td>2/5</td>
<td>Type 2</td>
<td>Stress-induced pain</td>
<td>Negative</td>
<td>Arterial hypertension, diabetes mellitus, hypothyreosis, auditory vertigo</td>
</tr>
<tr>
<td>3</td>
<td>Hip</td>
<td>36.8</td>
<td>1.0</td>
<td>3.2</td>
<td>0</td>
<td>591</td>
<td>Staphylococcus auricularis</td>
<td>1/5</td>
<td>Type 3</td>
<td>Stress-induced pain</td>
<td>Negative</td>
<td>Arterial hypertension</td>
</tr>
<tr>
<td>4</td>
<td>Hip</td>
<td>36.2</td>
<td>0.1</td>
<td>1.0</td>
<td>0</td>
<td>74</td>
<td>Micrococcus luteus</td>
<td>1/5</td>
<td>Type 2</td>
<td>Stress-induced pain, nocturnal resting pain</td>
<td>Negative</td>
<td>Arterial hypertension</td>
</tr>
<tr>
<td>5</td>
<td>Knee</td>
<td>37</td>
<td>1.4</td>
<td>15.2</td>
<td>0</td>
<td>5819</td>
<td>None</td>
<td>Type 3</td>
<td>Stress-induced pain, resting pain</td>
<td>Negative</td>
<td>Arterial hypertension, hypothyreosis</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Hip</td>
<td>37</td>
<td>8.9</td>
<td>13.2</td>
<td>0</td>
<td>5455</td>
<td>Staphylococcus epidermidis</td>
<td>2/5</td>
<td>Type 3</td>
<td>Stress-induced pain, resting pain</td>
<td>ND</td>
<td>Depression, Parkinson’s disease</td>
</tr>
<tr>
<td>7</td>
<td>Knee</td>
<td>36.8</td>
<td>0.6</td>
<td>5.42</td>
<td>0</td>
<td>188</td>
<td>Propionibacterium acnes</td>
<td>3/5</td>
<td>Type 3</td>
<td>Stress-induced pain, nocturnal resting pain</td>
<td>Negative</td>
<td>Chronic heart failure</td>
</tr>
<tr>
<td>8</td>
<td>Hip</td>
<td>36.2</td>
<td>0.3</td>
<td>5.22</td>
<td>1</td>
<td>154</td>
<td>Staphylococcus epidermidis</td>
<td>2/5</td>
<td>Type 3</td>
<td>Nocturnal resting pain</td>
<td>Negative</td>
<td>Arterial hypertension, diabetes mellitus</td>
</tr>
<tr>
<td>9</td>
<td>Hip</td>
<td>36</td>
<td>0.1</td>
<td>1.0</td>
<td>0</td>
<td>3647</td>
<td>Staphylococcus capitis</td>
<td>2/5</td>
<td>Type 3</td>
<td>Resting pain and nocturnal resting pain</td>
<td>ND</td>
<td>Arterial hypertension, mitral regurgitation, gastroesophageal reflux</td>
</tr>
<tr>
<td>10</td>
<td>Knee</td>
<td>36.8</td>
<td>2.6</td>
<td>16.7</td>
<td>0</td>
<td>1484</td>
<td>Staphylococcus haemolyticus</td>
<td>3/5</td>
<td>Type 3</td>
<td>Resting pain and nocturnal resting pain</td>
<td>Negative</td>
<td>Arterial hypertension, mitral regurgitation, gastroesophageal reflux</td>
</tr>
<tr>
<td>11</td>
<td>Hip</td>
<td>36.5</td>
<td>0.6</td>
<td>7.23</td>
<td>0</td>
<td>1142</td>
<td>Propionibacterium acnes</td>
<td>1/5</td>
<td>Type 3</td>
<td>Stress-induced pain, nocturnal resting pain</td>
<td>ND</td>
<td>Arterial hypertension</td>
</tr>
<tr>
<td>12</td>
<td>Hip</td>
<td>36.6</td>
<td>1.0</td>
<td>10.7</td>
<td>1</td>
<td>78</td>
<td>None</td>
<td>Type 3</td>
<td>Stress-induced pain, nocturnal resting pain</td>
<td>Negative</td>
<td>Arterial hypertension, coronary heart disease, restless legs syndrome, hypothyreosis</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Hip</td>
<td>37</td>
<td>1.8</td>
<td>5.29</td>
<td>1</td>
<td>461</td>
<td>Staphylococcus capitis</td>
<td>3/5</td>
<td>Type 2</td>
<td>Stress-induced pain</td>
<td>ND</td>
<td>Arterial hypertension, diabetes mellitus, arterial occlusive disease</td>
</tr>
<tr>
<td>14</td>
<td>Knee</td>
<td>36.6</td>
<td>13.1</td>
<td>22.9</td>
<td>0</td>
<td>90</td>
<td>None</td>
<td>Type 3</td>
<td>Nocturnal resting pain, intermediate swelling</td>
<td>ND</td>
<td>Arterial hypertension, cholelithiasis, hypothyreosis, carotid artery disease</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Hip</td>
<td>37</td>
<td>6.4</td>
<td>62.2</td>
<td>0</td>
<td>70</td>
<td>Staphylococcus epidermidis</td>
<td>2/5</td>
<td>Type 2</td>
<td>Stress-induced pain</td>
<td>ND</td>
<td>Arterial hypertension, hypothyreosis</td>
</tr>
<tr>
<td>16</td>
<td>Hip</td>
<td>36.8</td>
<td>5.8</td>
<td>20.2</td>
<td>0</td>
<td>4141</td>
<td>Staphylococcus capitis, Staphylococcus epidermidis</td>
<td>2/5, 3/5</td>
<td>Type 2</td>
<td>Stress-induced pain, resting pain</td>
<td>ND</td>
<td>Arterial hypertension</td>
</tr>
</tbody>
</table>
high-grade infection (0.2 vs 1.2 vs 3.5 mg/dL, $P < .0001$ and
$P < .05$, respectively) (Figure 1B). Compared with patients
with low-grade or high-grade infection, patients with aseptic
joint failure had significantly lower levels of PCT (0.04 vs 0.04
vs 0.06 ng/mL, $P < .0001$ and $P < .05$, respectively) (Figure 1C).
Patients with aseptic joint failure had significantly lower levels
of TNF-α compared with patients with low-grade or high-grade
infection (8.65 vs 10.3 vs 11 pg/L, $P < .05$ and $P < .05$, respec-
tively) (Figure 1D). Patients with low-grade infection had
significantly lower levels of IL-10 compared with patients with high-grade
infection (2.6 vs 2.9 pg/mL, $P < .05$) but not compared to aseptic joint failure (2.4 pg/mL) (Figure 1E).
Patients with aseptic joint failure had significantly lower levels
of LBP compared with patients with low- or high-grade infec-
tion (5.65 vs 7.65 vs 10.7 μg/mL, $P < .0001$ and $P < .0001$,
respectively) (Figure 1F). IL-6 levels were signifi-
cantly higher in low-grade patients compared with aseptic patients (2.77 vs
11.9 pg/mL), whereas IL-6 levels of patients with high-grade
infection were not significantly different from those of patients
with low-grade joint failure (12.8 pg/mL, $P = .06$) (Figure 1G).

Predicting Cause of Joint Failure With a Joint Biomarker
Model
In a prospective approach, our aim was to identify biomarkers
and their optimal cutoff values in order to predict cause of joint
failure. The classification tree method was used to search for
biomarkers and cutoff values that would differentiate aseptic
from low-grade infected joint failure. Patients with high-grade
joint failure were excluded from this calculation because our
aim was finding a model that would detect low-grade infections,
which, in contrast to high-grade infections, are difficult to diag-
nose both preoperatively and intraoperatively. Within the panel
of quantified biomarkers mentioned above, the classification
tree method revealed IL-6 and CRP as the most suitable bio-
markers. An IL-6 cutoff of ≤5.12 pg/mL divided a total of 77
patients (57 aseptic, 20 low-grade patients) into two groups.
The first group, the low-risk group, consisted of 54 patients
(50 aseptic [93%] and 4 low-grade [7%]). The remaining 23 pa-
tients had IL-6 >5.12 pg/mL (7 aseptic [30%] and 16 low-grade
[70%]). These patients could be divided further into 2 groups by
a cutoff for CRP ≤0.3 mg/dL. The medium-risk group (IL-6
>5.12 pg/mL and CRP ≤0.3 mg/dL) consisted of 6 aseptic pa-
tients (86%) and 1 low-grade patient (14%). The third group
was the high-risk group (IL-6 >5.12 pg/mL and CRP >0.3 mg/
dL) and consisted of 16 patients. In this group, 15 patients
were correctly identified as having low-grade infection (94%),
whereas just 1 patient was aseptic (6%). The classification tree
method is visualized in Figure 2. Five low-grade infections pa-
tients and one aseptic patient misclassified by the classification
tree method are described in detail in supplementary material
(Supplementary Table 1).
To visualize the sensitivity and specificity of the measured biomarkers to predict the cause of joint failure (aseptic vs low-grade infection), a conventional ROC curve was generated, and the area under the curve (AUC) calculated (Figure 3). The high-risk model calculated by classification tree method had an AUC of 0.878 (95% confidence interval [CI], .77–.99). The AUC of IL-6 and CRP were 0.861 (95% CI, .75–.97) and 0.828 (95% CI, .71–.95), respectively. Table 3 lists the derived sensitivities, specificities, and predictive values of the combined models and the biomarkers alone. The combined model I (IL-6 >5.12 pg/mL + CRP >0.3 mg/dL = high-risk group) had an odds ratio of 168 (95% CI, 16.36–4233.3), a negative predictive value (NPV) of 91.8%, and a positive predictive value (PPV) of 93.8%. The combined model II (IL-6 ≤5.12 or >5.12 pg/mL + CRP <0.3 mg/dL = low-risk and medium-risk groups, respectively) had an odds ratio of 24.7 (95% CI, 2.46–601.14), an NPV of 83.1%, and a PPV of 83.3% (Table 3).
DISCUSSION

The primary goal of this study was to evaluate the diagnostic value of biomarkers to distinguish not only between aseptic failure and high-grade infections in joint arthroplasty but also to detect low-grade infections against aseptic situations. To our knowledge, this is the first study that discriminates between aseptic joint failure, low-grade infection, and high-grade septic failure with reference to the guidelines of the Musculoskeletal Infection Society [18] and according to the classification of Morawietz et al. [7]. Recent studies focusing on IL-6 and CRP did not distinguish between low- and high-grade infections [23–25].

Our study strictly excluded patients with inflammatory comorbidities or patients receiving antibiotic treatment, because both may have a significant effect on the diagnostic value of the biomarkers evaluated. This is in contrast to most of the other published studies [23, 25, 26].

Our study has some important limitations. Patients with any inflammatory comorbidity were excluded from this study to minimize influences other than the examined joint infections on the biomarkers measured in this cohort. Therefore, the results of our study may not be generalizable to the general population, and further studies are needed to address the relevance of the biomarkers measured in this study in patients with joint infections and inflammatory comorbidities. Furthermore, the results of our classification tree method have to be validated in further studies of patients with aseptic joint failure vs low-grade infections. Although we included a comparatively high

Figure 2. The classification tree method revealed interleukin 6 (IL)-16 and C-reactive protein (CRP) as the most suitable biomarkers for the discrimination of aseptic vs low-grade infection caused joint failure. The IL-6 cutoff of \(\leq 5.12 \text{ pg/mL} \) divided 77 patients into 2 groups. The first group, the low-risk group, consisted of 54 patients. The remaining 23 patients with an IL-6 \(>5.12 \text{ pg/mL} \) were divided into 2 groups by CRP \(\leq 0.3 \text{ mg/dL} \). The medium-risk group (IL-6 \(>5.12 \text{ pg/mL} \) and CRP \(\leq 0.3 \text{ mg/dL} \)) consisted of 7 patients, and the high-risk group (IL-6 \(>5.12 \text{ pg/mL} \) and CRP \(>0.3 \text{ mg/dL} \)) of 16 patients. In this group, 15 patients were correctly identified as low-grade infections (94%), whereas just one patient was aseptic (6%).
number of patients, the numbers in the individual groups of our cohort are low, thus larger studies are needed to propose general recommendations.

In the current literature, many different biomarkers have been evaluated regarding their ability to distinguish between aseptic and septic joint failure. Botter et al [25] showed a high specificity (98%) for PCT at a value of >0.3 ng/mL for the discrimination of aseptic loosening vs septic failure. However, the sensitivity was quite low (33%), whereas Glehr et al [27] reported a specificity of 33% and a sensitivity of 90% at a cutoff of 0.35 ng/mL. Focusing on low-grade infections, our PCT levels showed a sensitivity of 90% and specificity of 27.8% at a low cutoff value of >0.025 ng/mL. Although the cutoff values are not comparable, because we differentiated between low-grade and high-grade infection, we came to the same conclusion, namely, that PCT alone cannot be considered as a suitable marker for the discrimination of aseptic loosening vs low-grade infection.

Data concerning the diagnostic value of LBP for the discrimination of aseptic loosening vs septic joint failure were recently published [28]. LBP showed significantly higher values in PJI compared with aseptic loosening, with a specificity of 66% and a sensitivity of 71% at a cutoff value of >7 μg/mL. Our results provide slightly higher values for the specificity (72%) and sensitivity (84%) at a cutoff value of >6.35 μg/mL, and promote the conclusion that LBP alone also cannot be considered as a suitable marker for the discrimination of aseptic loosening vs low-grade infection.

TNF-α (>40 pg/mL), is reported as having high specificity (94%), but low sensitivity (43%) in the current literature [29]. Our results confirm this observation with regard to low-grade infections. In this study, TNF-α specificity was 86% and sensitivity 35% at a cutoff value at >11.9 pg/mL when discriminating between aseptic joint failure and low-grade infection.

The diagnostic value of CRP and IL-6 has been evaluated in a variety of studies. Bottner et al [29] measured serum levels of CRP and IL-6 in 78 patients undergoing revision arthroplasty; 21 patients were categorized by intraoperative culture into the septic group. CRP and IL-6 had the highest sensitivity (95%) for the detection of a septic joint failure when levels were higher than 3.2 mg/dL and 12 pg/mL, respectively. These levels are higher than the cutoff values evaluated in our study, probably because our cutoff values were calculated with a focus on low-grade infections and excluding high-grade infections. Bottner et al did not discriminate between low- and high-grade infection and included patients with potentially inflammatory comorbidities (eg, patients receiving hemodialysis) into the

Figure 3. A conventional receiver operator characteristic (ROC) curve was generated and the area under the curve (AUC) calculated. The high-risk model (IL-6 >5.12 pg/mL and CRP ≥0.3 mg/dL) had the highest AUC (0.878, P < .0001). Abbreviations: CRP, C-reactive protein; IL-6, interleukin 6; LBP, lipopolysaccharide binding protein; PCT, procalcitonin; TNF-α, tumor necrosis factor α.

Table 3. Test Characteristics of Different Cutoff Values and Combined Models for Predicting Low-Grade Infections

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cutoff</th>
<th>OR</th>
<th>95% CI</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>NPV</th>
<th>PPV</th>
<th>PValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT</td>
<td>>0.025 ng/mL</td>
<td>3.5</td>
<td>0.67–23.77</td>
<td>90</td>
<td>27.8</td>
<td>90.9</td>
<td>25.7</td>
<td>.14</td>
</tr>
<tr>
<td>TNF-α</td>
<td>>11.9 pg/mL</td>
<td>3.3</td>
<td>0.87–12.65</td>
<td>35</td>
<td>86</td>
<td>79</td>
<td>46.7</td>
<td>.054</td>
</tr>
<tr>
<td>LBP</td>
<td>>6.35 μg/mL</td>
<td>14</td>
<td>3.19–70.61</td>
<td>84.2</td>
<td>72.4</td>
<td>93.3</td>
<td>50</td>
<td>< .0001</td>
</tr>
<tr>
<td>IL-6</td>
<td>≥5.12 pg/mL</td>
<td>28.6</td>
<td>6.36–143.73</td>
<td>80</td>
<td>87.7</td>
<td>92.6</td>
<td>69.6</td>
<td>< .0001</td>
</tr>
<tr>
<td>CRP</td>
<td>≥0.3 mg/dL</td>
<td>7.1</td>
<td>1.95–28.29</td>
<td>80</td>
<td>64</td>
<td>92.3</td>
<td>37.2</td>
<td>.001</td>
</tr>
<tr>
<td>Combined model I (high risk)</td>
<td>IL-6 >5.12 pg/mL & CRP ≥0.3 mg/dL</td>
<td>168</td>
<td>16.36–4233.3</td>
<td>75</td>
<td>98.2</td>
<td>91.8</td>
<td>93.8</td>
<td>< .0001</td>
</tr>
<tr>
<td>Combined model II (low and med risk)</td>
<td>IL-6 ≤5.12 or ≥5.12 pg/mL and CRP <0.3 mg/dL</td>
<td>24.7</td>
<td>2.46–601.14</td>
<td>25</td>
<td>98.7</td>
<td>83.1</td>
<td>83.3</td>
<td>.001</td>
</tr>
</tbody>
</table>

P values in bold are provided in the chi-square test.

Abbreviations: CI, confidence interval; CRP, C-reactive protein; IL-6, interleukin 6; LBP, lipopolysaccharide binding protein; NPV, negative predictive value; OR, odds ratio; PCT, procalcitonin; PPV, positive predictive value; TNF-α, tumor necrosis factor α.
study. Glehr et al [27] excluded patients with inflammatory co-
morbidities but did not discriminate between low- and high-
grade infections. They reported an IL-6 sensitivity of 86% and
specificity of 67% at an IL-6 cutoff of 4.7 pg/mL. Randau et al
[23] compared patients with septic loosening and aseptic loos-
ening with a control group of mechanical joint failures, and re-
ported a sensitivity of 49% and a specificity of 88% when serum
IL-6 is >6.6 pg/mL. This study did not discriminate between low-
and high-grade infections, and there were no exclusion cri-
teria. This may have caused the discrepancy to our results.

Elegeidi et al [24] excluded patients with chronic inflammatory
diseases, but did not discriminate between low- and high-
grade infections. They reported a sensitivity of 100% and a
specificity of 91% when serum IL-6 was >10.4 pg/mL. They iso-
lated high-virulence bacteria such as Staphylococcus aureus,
Escherichia coli, or Pseudomonas aeruginosa in about 70% of the
cases. As we isolated only low-virulence bacteria in our low-grade
cohort, this may have caused the discrepancy to our results.

In comparison, our IL-6 cutoff of 5.12 pg/mL had a sensitivity of
80% and specificity of 87.7% for predicting a low-grade infec-
tion. The classification tree method showed that the combination
of CRP and IL-6 was the most suitable combination for the dis-
crimination of aseptic loosening vs low-grade infection. A patient
with IL-6 >5.12 pg/mL plus CRP >0.3 mg/dL could be catego-
rized as very likely (high-risk) to have a low-grade infection.

To summarize, this is the first study concentrating on the dis-
agnoses of even low-grade infections against aseptic failure of
knee and hip arthroplasty. We were able to calculate cutoff val-
ues for IL-6 and CRP that were much lower than in the current
literature but showed a high sensitivity and specificity at detect-
ing even low-grade infections. We consider that these findings
should be useful to identify patients who require further inves-
tigation because they are very likely to have an infection when
presenting with joint failure.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online (http://cid.oxfordjournals.org). Supplementary materials consist of data provided by the author that are published to benefit the reader. The posted materials are not copyrighted. The contents of all supplementary data are the sole responsibility of the authors. Questions or messages regarding errors should be addressed to the author.

Notes

Acknowledgments. We are indebted to all our colleagues at the Depart-
ment of Orthopaedic Surgery of the Medical School Hannover for intensive
monitoring of the patients. Furthermore, we thank Dr Kwiecien, Institute of
Biometrics of the University Hospital Münster and Dr Kümpers, Depart-
ment of Medicine D, University Hospital Münster for statistical assistance
in performing the classification tree method.

Financial support. This work was supported by the Erwin Roever
Foundation (grant no #19510199).

Potential conflicts of interest. All authors: No reported conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential
Conflicts of Interest. Conflicts that the editors consider relevant to the con-
tent of the manuscript have been disclosed.

References

1. Kurtz SM, Lau E, Ong K, Zhao K, Kelly M, Bozic KJ. Future young
patient demand for primary and revision joint replacement: national
projections from 2010 to 2030. Clin Orthop Relat Res 2009; 467:
2606–12.

2. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and
revision hip and knee arthroplasty in the United States from 2005 to

3. Del Pozo JL, Patel R. Clinical practice. Infection associated with pros-

4. Tsukayama DT, Estrada R, Gustilo RB. Infection after total hip arthro-
plasty. A study of the treatment of one hundred and six infections.

granulocytes in 10 high-power fields is the best histopathological
threshold to differentiate between aseptic and septic endoprosthesis

7. Morawietz L, Classen RA, Schroder JH, et al. Proposal for a histopa-
thetical consensus classification of the periprosthetic interface mem-

8. Trampuz A, Osmon DR, Hanssen AD, Steckelberg JM, Patel R. Molec-
ular and antibiofilm approaches to prosthetic joint infection. Clin

9. Spanghel MJ, Masterson E, Masri BA, O’Connell JX, Duncan CP. The
role of intraoperative gram stain in the diagnosis of infection during

10. Shih LY, Wu JJ, Yang DJ. Erythrocyte sedimentation rate and C-reactive
protein values in patients with total hip arthroplasty. Clin Orthop Relat
Res 1987; 238–46.

protein, erythrocyte sedimentation rate and orthopedic implant infec-

12. Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management
of prosthetic joint infection: clinical practice guidelines by the Infectious

13. Biomarkers Definitions Working G. Biomarkers and surrogate end-
points: preferred definitions and conceptual framework. Clin Pharma-
col Ther 2001; 69:89–95.

14. Allin KH, Nordegaard BG. Elevated C-reactive protein in the diagno-
155–70.

levels of vascular endothelial growth factor, angiopoietin-1, and angio-
poietin-2 in patients with rheumatoid arthritis. J Rheumatol 2010;

Krasowska D. Angiopoietin-1 and -2 are differentially expressed in the
sera of patients with systemic sclerosis: high angiopoietin-2 levels are
associated with greater severity and higher activity of the disease. Rheu-

17. Graham SM, Mwilu R, Liles WC. Clinical utility of biomarkers of endo-
thelial activation and coagulation for prognosis in HIV infection: a sys-

18. Parviz I, Zmistrowski B, Berbari EF, et al. New definition for peripros-
thetic joint infection: from the Workgroup of the Musculoskeletal Infec-

19. Fehring TK, McAlister JA Jr. Frozen histologic section as a guide to sep-