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1. INTRODUCTION

Finite-state machines can model a wide variety of systems,
such as communication protocols, hardware components or
software projects. If a model of a system is not available
explicitly or one wants to determine how the system behaves,
machine learning methods can be used.

Knowing the inner representation of a system is the main
goal of reverse engineering and it is a crucial part of many
other related fields, for example, testing and verification.
There are two main approaches to learning, active and
passive. Passive learning derives a model of a system
from given traces, or input sequences with corresponding
responses. In contrast, active learning interacts with the
system by asking for responses on particular input sequences
chosen by the learner. The process of learning is stepwise,
on each step a tentative model is expanded based on the
output from a previous sequence and a sequence to query
next is generated.

The contribution of the paper is to show the beneficial use
of testing theory in active learning of finite-state machines.
A new approach to learning will be described in Section 4.
The improvement of the new approach emerges from the
comparison with the framework that covers the standard
learning algorithms such as the L* algorithm. Section 4 also
proposes three new learning algorithms that are based on the
new approach. The experimental evaluation in Section 5
then confirms the improvement in the learning by the new
learning algorithms compared to the standard ones.

2. BACKGROUND

This section defines the type of finite-state machines used
in this paper and it explains testing and active learning on a
simple example.

2.1. Finite-State Machine

A finite-state machine (FSM) is a model consisting of states
and transitions between states. According to the received
input, the FSM changes its current state and responds with
corresponding output. There are many different definitions
of finite-state machines in the literature. Active automata
learning deals with deterministic finite automata (DFA)
whereas active learning of finite-state machines works rather
with Mealy machines as they describe reactive systems more
precisely. A Moore machine is another type of finite-state
machines. The difference is mainly the position of outputs in
a model. Moore machines and deterministic finite automata
have outputs tied to states. In contrast, outputs are only
on transitions in the case of Mealy machines. This section
proposes a general model called deterministic finite-state
machine (DFSM) that have outputs both on states and on
transitions.

There are two functions that describe the behaviour of
a model, a transition and an output functions. Generally,
both functions take an input symbol and produce either a
next state, that is, a state where the transition with the input
leads, or an output symbol that is observed if the transition
is followed. Two special symbols are introduced to cover
both Moore and Mealy machines in one definition. An
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input symbol ↑ called stOut requests the state output and the
current state of the machine is not changed when asked. An
output symbol ↓ called noOut represents ‘no response’.

DEFINITION 2.1. A deterministic finite-state machine
(DFSM) is a septuple (S,X, Y, s0, D, δ, λ), where S is
a finite nonempty set of states and s0 is an initial state
(s0 ∈ S), X and Y are input and output alphabets (a finite
nonempty sets of symbols, ↑ /∈ X), D is a domain of defined
transitions; D ⊆ S × X , D↑ = D ∪ {S × {↑}}, δ is a
transition function δ : D↑ → S such that ∀s ∈ S : δ(s, ↑) =
s, and λ is an output function λ : D↑ → Y ∪ {↓}.

Note that the stOut ↑ is not in the input alphabet X so
that it differs from all other input symbols. Similarly, the
noOut ↓ can be declared outside the output alphabet Y not to
interfere with other output symbols but it is usually matched
to the output of ‘timeout’ that is in Y . Therefore, it is not
specified if ↓ is or is not in Y . The timeout output represents
the situation in which no response is observed during the
predefined time limit. Strings over X ∪ {↑} are called
input sequences and strings over Y ∪ {↓} are called output
sequences. ‘Input’ and ‘output’ are sometimes omitted so
only ‘sequence’ is used if it is clear from the context. The
empty string is denoted ε. An input sequence with the
corresponding output sequence that was observed is called
a trace. Any sequence w can be split into a prefix u and a
suffix v where w = u · v.

The initial state s0 is the current state of the machine
before any input is asked. Moreover, s0 is also the current
state if the machine is reset. Machines that can be reset are
called resettable.

Transitions are labelled with input and output symbols.
The next state, or the target state, of a transition is defined
by the transition function δ and the function λ assigns an
output symbol to the transition. This paper works only with
completely-specified machines, that is, DFSMs that have all
transitions defined; D = S ×X .

An example of a DFSM is shown in Fig. 1. The model on
the right captures a part of the map E shown on the left such
that the map is formed of the grid of tiles and every tile is
modelled by a state. The agent that is directed by the user
can move in four directions and to explore the map. If the
adjacent tile in a particular direction is not accessible, that is,
it is outside the map or there is a wall, then the agent stays
on the same tile and C is received as the response to the
input corresponding to the direction. Otherwise, the agent
moves in the chosen direction and the output F is obtained
as the response. For instance, δ(s0, right) = s2 and λ(s0,
right) =F. Each tile can contain an object. The agent asks the
input ↑ in order to find out which object is on the tile where
the agent stands; there is usually nothing (the output N), for
example, λ(s0, ↑) =N. Note that the agent does not move
from the tile while exploring it, that is, δ(si, ↑) = si for any
i. The map E (Fig. 1) is from the GridWorld scenario of
the Brain Simulator [1]. The GridWorld scenario is similar
to the toy environment that motivated the research of one of
the first learning algorithm [2].

2.2. Testing of Finite-State Machines

A finite-state model of a system is very useful for
construction of a test suite to test an implementation for
equivalence to this model. There is a range of different
testing methods known for this, originally developed for
testing of communication protocols where testing is purely
black box, that is, no internal structure of the implementation
is known and it is not possible to observe a state such an
implementation is in. A testing method would derive a series
of tests from the model and if these sequences produce the
same response from the model and the implementation, the
implementation is deemed correct and otherwise faulty.

Derivation of test sequences requires an a-priori knowl-
edge of the upper bound on the number m of states in the
implementation. Without such a bound, it is not practical to
explore all of a state space and hence not possible to have
any guarantee of equivalence by testing. Traditional DFSM
testing methods (such as the W-method [3, 4]) generate test
sequences to explore the state space of the model by vis-
iting every state, attempting every input and then verifying
entered states by observing how these states respond to se-
quences that distinguish them from other states in the model.
The model, or the specification, is therefore assumed to be
minimal. A machine is minimal if every state is reachable
from the initial one and every two states si, sj are distin-
guishable, that is, there is a sequence w that produces dif-
ferent output sequences when is asked from both si and sj ;
w is called separating sequence of si, sj . A set of separat-
ing sequences is called state characterizing set of si if for
each state sj different from si the set contains a separating
sequence of si and sj . In addition, state characterizing sets
of all states are called harmonized state identifiers (HSI) if
for each two states there is a common separating sequence
in both corresponding sets.

An m-complete test suite is by definition one capable of
finding all faults in an implementation of at most m states.
Where a model has n < m states, one has to consider a
possibility of redundant states in an implementation. These
states also have to be tested in case they have different
transitions leading from them compared to a model. Since
it is not known how to enter these states, all sequences
of inputs of length m − n have to be attempted in every
state, followed by all possible inputs and then sequences to
check the target state. This causes an exponential growth in
the number of test sequences. More effective test methods
generate sequences that do multiple things at the same time
such as combine testing of transitions with checking of states
entered by earlier transitions.

An example of separating and test sequences below is
depicted using GridWorld map E in Fig. 1. A separating
sequence of s0 and s7 is the stOut input ↑ because there is
an object on the tile corresponding to s7. The action ‘right’
separates s9 from states s0 or s2. If one wants to test the
transition with input ‘down’ from s6, a test sequence consists
of an access sequence of s6 (‘right · right’ for instance),
then the transition ‘down’ and a separating sequence that
identifies the target state s7 (‘right · left · ↑’); one of
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FIGURE 2. Active learning explained on the GridWorld example

complete test sequences thus could be ‘right · right · down ·
right · left · ↑’. The choice of the separating sequence ‘right
· left · ↑’ is explained in Section 4 where so-called adaptive
separating sequences are introduced.

2.3. Learning of Finite-State Machines

Active learning of finite-state machines usually consists of
four entities as sketched in Fig. 2. There is a learner, a
teacher, the black box and the conjectured model. The
learner, or the learning algorithm, interacts with the black
box through the teacher in order to construct the conjectured
model M that is equivalent to the black box. There are
two types of queries that the learner can ask. An output
query (OQ), or a membership query in the case of automata
learning, asks for the response to the given input sequence.
This could be done without the teacher but in general, the
teacher can operate as a mapper between symbolic and
concrete inputs and outputs used by the learner and the black
box. An equivalence query (EQ) is asked in order to check
if the given conjectured model is output-equivalent to the
black box, that is, if both machines respond equivalently to
any input sequence. If they are not, a counterexample is
provided to the learner.

For models of software, a ‘teacher’ is an unknown
program. Therefore, EQ is usually approximated by testing
where a testing method constructs test sequences based on
the given conjectured model providing some confidence
that both the conjectured model and the black box are
equivalent. The amount of testing to confirm the correctness

of a program is in the worst case exponential in the number
of extra states. The example in Fig. 2 depicts the learner
assuming that the GridWorld map E is modelled with the 1-
state DFSM and so the counterexample to an EQ could be
the sequence ‘right · down · ↑’.

3. RELATED WORK

The field of Active Automata Learning is based on
the notion, proposed in [5], that each finite automaton
is identifiable in the limit (from positive and negative
examples). The L* algorithm was then proposed by Angluin
in [6]. It learns using an observation table that stores
observed responses in its cells and the labels of rows and
columns form queries, that is, both rows and columns are
labelled with input sequences. The rows can be separated
into two parts. The first part represents observed states;
labels of these rows are access sequences of states. The
second part is labelled with one-symbol extensions of the
access sequences, that is, it corresponds to next states. The
L* algorithms aims to have an observation table (OT) that
is closed and consistent. An OT is closed if each row
of the second part has the content equal to a row from
the first part, that is, each transition leads to an observed
state. An OT is consistent if for every two rows of the
first part that are equal, the rows corresponding to their
one-symbol extensions have the same content as well. In
other words, if an observed state is accessed by different
sequences, their extensions reach the same states (this is
required because the machine is deterministic). When the
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OT is both closed and consistent, the OT defines an finite-
state machine M and so the algorithm asks an equivalence
query that checks whether M correctly models the system.
There are several versions of the algorithm that differ in
processing of provided counterexamples (CE). The original
version by Angluin uses all prefixes of CE, thus here called
L* – AllPrefixes. Other versions work with suffixes only,
for example [2, 7, 8]. The best processing of long random
CEs provides the version Suffix1by1 [9] that extends the
set of separating sequences by suffixes of a CE (starting
from the shortest) until the conjectured model responds to
the CE correctly. L* was adjusted for Mealy machines in
[10]. The Discrimination Tree (DT) algorithm [11] employs
a classification tree to learn instead of an observation table
used by the L* algorithm. The DT algorithm was improved
by the TTT algorithm proposed in [12].

A theoretic framework called observation pack for
efficient active learning was set in [13]. The authors
showed that the L* and DT algorithms implement their
framework and provided lower bounds of numbers of output
and equivalence queries and their complexity. Moreover,
they introduced a way to reduce the number of equivalence
queries (EQ) by identifying all successors of states reached
by a sequence of length up to the given number l. The
Observation Pack (OP) algorithm proposed in the PhD
thesis of Howar [14] combines a discrimination tree and
observation tables to infer Mealy machines. Its versions,
OP – AllGlobally, OP – OneGlobally and OP – OneLocally,
differ in the way how the distinguishing suffix of a CE is
used. The thesis [14] also covers incremental approximation
of EQs using a testing method. The GoodSplit algorithm
[15] approximates EQs by querying random input sequences
of limited length.

Correspondence of testing and active learning was
studied, for example in [16] and [17]. A recent method,
called here the Quotient algorithm [18], inspired by testing
of finite-state machines learns using the observation tree. It
is based on one of the oldest testing methods, the W-method
[3, 4]. There are more advanced testing methods such as
the H-method [19], the SPY-method [20], or the SPYH-
method [21]. An experimental evaluation of different testing
methods of FSMs can be found in [22].

The most promising application of active learning and
testing is adaptive model checking (AMC) [23] and grey
box checking [24] that are based on black box checking
[25]. Both AMC and grey box checking use testing as a
task separated from the learning, hence, it duplicates a lot
of queries that the learner already asked. AMC employs
the L* algorithm to learn a model that is then passed to
a model checker. If a discrepancy is found, it is checked
against the system. A counterexample is returned to L*
if the discrepancy is not confirmed in the system. On the
other hand, if all properties hold in the conjectured model,
the W-method is employed to test the model against the
system. AMC thus provides software verification. The
model checker is an additional oracle which the work
presented in this paper would also benefit from. Grey box
checking uses knowledge about parts of the system that

are so-called white boxes because the definition of their
behaviour is available as source code for example.

A framework is needed for experiments with learning
approaches. Such tools are LearnLib [26], libalf [27]
and FSMlib [22]. LearnLib is a JAVA framework with
GUI for experimenting with learning process; libalf is a
C++ library supporting remote execution and Java native
interface. FSMlib is a new C++ library used in this paper
for handling DFSM and it contains an implementation of
numerous test generation and active inference methods [28].

4. OBSERVATION TREE APPROACH

The standard learning algorithms mentioned in the previous
section have limitations addressed in this section by
introducing a new framework called the observation tree
approach. This approach allows one to use the testing theory
in order to minimize the interaction with the black box and
still learn its model.

This section is structured as follows. First, drawbacks of
standard learning algorithms are discussed as they motivate
the research of a new learning procedure. Then, the structure
of an observation tree is defined and the new learning
approach is proposed in Section 4.3. The learning using
the approach is explained on an example in Section 4.4.
Section 4.5 describes three new learners that implement
the observation tree approach. A high-level description
of dealing with inconsistencies is provided in Section 4.6.
This section is concluded with a comparison against the
observation pack framework and with the time complexity
of the approach.

4.1. Motivation

The standard learning algorithms ask an equivalence query
(EQ) immediately after the conjectured model becomes
completely-specified. Hence, the states of the black box
are revealed mostly due to the provided counterexamples
rather than a targeted exploration. This is captured best
by the use of the DT algorithm that needs almost n EQs
to learn a machine with n states. The L* algorithm does
not need so many EQs but it requires many more output
queries (OQ) in order to learn a completely-specified model.
The trade-off between the numbers of EQs and OQs was
described by [13] based on the framework of an observation
pack. The insufficient generality of the observation pack will
be discussed at the end of this section after new learning
algorithms are described.

There are two reasons to base active learning on methods
of testing of finite-state machines:

1. a faster construction of a completely-specified conjec-
tured model, and

2. a guided exploration of the black box based on the
assumption of extra states.

The first reason is a direct improvement compared to the
standard learning algorithms as either they do not handle
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the observed traces well or they correspond to the W-
method. The W-method uses a characterizing set, or a set
of separating sequences, for the state identification which
is exactly what the L* algorithm or the Quotient algorithm
do. The DT algorithm corresponds to a more efficient
testing method, the HSI-method [29], as it identifies states
by harmonized state identifiers. The classification tree used
by the DT algorithm does not remember observed traces and
so the drawback of the DT algorithm is the duplication of
many output queries.

The second reason to base active learning on testing is the
assumption of extra states that allows the learner to provide
the following guarantee.

DEFINITION 4.1. (Complete learning guarantee) If the
black box is different from the conjectured model of n states,
then the black box has more than n + l states where l is the
assumed number of extra states.

The guarantee relies on sufficient conditions that are
formally proven for the described FSM testing methods.
These conditions capture what should be observed in order
to check the equivalence of two machines with bounded
number of states. The conditions help learning algorithms
to optimize which output query to ask in order to reveal new
states or gain the complete learning guarantee. Moreover,
the number of asked equivalence queries is decreased
dramatically by the assumption of extra states. The
experimental evaluation shows that the assumption of just
one extra state is sufficient to reveal most states and then
there is no need for equivalence queries which are hard to
approximate for software.

4.2. Structure of an Observation Tree

The observation tree approach is proposed in Algorithm 1.
It provides a general framework for a learner to learn with
the assumption of extra states based on the testing theory
in order to reduce the number of equivalence queries. All
traces that are observed during learning are stored in the
observation tree (OTree).

DEFINITION 4.2. Given a set U of observed traces of a
DFSM (S,X, Y, s0, D, δ, λ), the observation tree is a DFSM
(R,X, Y, r0, DU , δU , λU ) such that for each trace ui ∈ U
there is a unique state ri ∈ R which only ui leads to.

The observation tree basically groups observed traces
with the same prefix. Its transition system has no cycles
and looks like a tree with the root as the initial state r0.
Hence, it corresponds to a prefix tree acceptor (PTA) used
in passive grammar inference, for example, by the Blue-
Fringe algorithm [30]. The observation tree is the most
suitable learning structure because it does not forget any
observed trace in contrast with the classification tree of the
DT algorithm and it stores each trace only once in contrast
with the observation table of the L* algorithm. In addition,
the OTree corresponds to a testing tree that is used to capture
test sequences while a testing method is constructing a test
suite. Sequences of both the OTree and the testing tree

consist of 4 parts: an access sequence, a tested transition,
an extension, and a separating sequence. Each state of
the conjectured model (or of the specification in the case
of testing) corresponds to a reference node (RN) of the
OTree (or the testing tree) and each node is reached by a
unique access sequence from the root of the OTree. Access
sequences as the first parts of sequences in the OTree are
used to lead to a particular state from which a transition
is to be tested or the target state of the transition which
to be identified if it is not known. In contrast, separating
sequences are used to identify the state in which they start.
The third part, that is, the extension, is needed when one
works with the assumption of extra states. These extensions
have the length up to the considered number l of extra
states in order to reach states that could be ‘extra’ with
respect to the conjectured model, that is, such states could
be different from those corresponding to the reference nodes.
The purpose of the separating sequences is thus to determine
if these states are different or not.

The correspondence between the conjectured model and
the observation tree is based on the reference nodes that
represent states of the conjectured model. Every two
reference nodes are distinguished in the OTree by different
responses to the same input sequence that starts in both
RNs. Transitions are defined such that the target state is
determined according to the corresponding successor r of
the RN, that is, if there is a transition labelled with the input
a leading from the RN of state si to the node r corresponding
to the state sj , then the conjectured model contains the
transition (si, a) leading to sj . The correspondence of
the successor r and the state sj is based on the sufficient
conditions for the used FSM testing method that also
depends on the number l of extra states. Basically, the
successor r needs to be distinguished from the RNs of states
different from sj and the successors of r reached by a
sequence of the length up to l need to correspond to a single
RN as well. Moreover, these successors of r need to be
distinguished one from the other if the one is a successor of
the other one. If all the transitions are defined with respect
to the assumed number l of extra states, then the observation
tree is closed for l extra states.

4.3. Learning Process

The learning process of the learner that is based on the OTree
approach (Algorithm 1) can be divided into two phases. In
the first phase, the learner constructs a completely-specified
conjectured model as the standard learning algorithms do,
that is, the observation tree is made closed for 0 extra states
and all transitions are defined. In the second phase when
the learner makes the OTree closed for the number l of
extra states such that l > 0, all transitions are considered
defined but unverified. Note that undefined transitions are
also unverified. Any response observed for the first time
can break the consistency between the conjectured model
and the OTree. It means that the conjectured model can
no longer model the observed traces as the black box has
more states than the conjectured model. The inconsistency
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Algorithm 1: Learner based on the observation tree approach
input : A teacher providing information about the black box through output and equivalence queries
input : maxExtraStates as the maximal number of extra states to be considered during learning
output: A conjectured model M

1 repeat
2 for l← 0 to maxExtraStates do

// make the observation tree T closed for l extra states
3 while there is an unverified transition do
4 (s, x)← choose an unverified transition
5 if l = 0 then // t is not defined in M
6 identify state δ(s, x) using adaptive separating sequences
7 else
8 verify transition (s, x) using testing theory, l extra states

9 if observed responses and outputs of M differ then
10 RESOLVEINCONSISTENCY(T,M):
11 query appropriate sequences to reveal a new state
12 update the conjectured model M

13 l← 0 // assume 0 extra states again as
14 break // some transitions are not defined in M

15 if equivalence query returns a counterexample w then
16 query w and RESOLVEINCONSISTENCY(T,M)

17 until EQ reports that M is correct or EQs are not allowed or the user is satisfied with M

is resolved by localizing a new reference node which usually
requires several output queries that distinguish a node from
all current reference nodes. This process is described by the
RESOLVEINCONSISTENCY function (discussed later) which
is also used after the teacher provides a counterexample
in response to an equivalence query. The purpose of a
counterexample is to show an inconsistency between the
OTree and the conjectured model. After resolving the
inconsistency, the transitions from the new state are usually
not defined, therefore, the number l of assumed extra state
is reset to 0. If there is no inconsistency observed in the
second phase and the number l reaches the given number
maxExtraStates, an equivalence query can be asked. The
learning can stop for three reasons: (1) either the conjectured
model is correct as no counterexample is returned to an EQ,
or (2) EQs are not allowed at all because the teacher has
no capability to answer this type of query, or (3) the user
is satisfied with the conjectured model. The last reason
could be used in the following scenario. The user starts the
learner with a large value for maxExtraStates. Most states
are revealed by the assumption of 1 extra state, that is, l = 1.
A few last states are harder to reveal and so the learner
starts to increase l. The number of output queries grows
exponentially with the increasing l and so it takes more time
to reveal these ‘hidden’ states. The learner provides the user
with the guarantee of l extra states (Definition 4.1) and the
user can be satisfied with the number of revealed states so
that the user stops the learning even if l does not reach the
given maxExtraStates. The exponential growth is due to
the complexity of FSM testing that nevertheless secures the

guarantee.
The first phase of the learning depends on so-called

adaptive separating sequences. An adaptive separating
sequence groups separating sequences with the same prefix
so that it looks like a tree. Each transition corresponds
to an input and branches reflect different outputs from the
black box. It is used to identify the target state of a
transition that is not defined yet. If the corresponding node,
that is, the successor of a RN, is not distinguished from
more than one RN, then the separating sequences of these
‘undistinguished’ RNs captured in the OTree form adaptive
separating sequences such that each starts with a different
input symbol. To reduce the amount of testing, the input
that distinguishes the most ‘undistinguished’ RNs is then
queried. Note that only one separating sequence is queried
out of all sequences that form the chosen adaptive separating
sequence because the input to be queried next is selected
based on the observed response to the previous input. This
is a change compared to the standard learning algorithms
that ask output queries on entire input sequences, not symbol
by symbol. The use of adaptive separating sequences thus
reduces the number of queried symbols.

4.4. Running Example

Figure 3 shows how the learning of the GridWorld map
E (Fig. 1) could start. The observation tree on the left
captures the first 5 queries that correspond to the numbers
labelling nodes of the tree. At first, the output of the initial
state is obtained by asking ↑. Then, the learner asks for
the response on ‘left · ↑‘. The response N to ↑ suggests
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FIGURE 3. Beginning of learning the GridWorld example

that the transition on input ‘left‘ leads back to the initial
state s0. It is confirmed by the same response to ‘left · ↑‘
queried from the reached state δ(s0, left). The fourth query
checks the transition on ‘right‘ from the initial state. The
reached state produces the output N, hence, it seems to equal
to s0. Nevertheless, the response to another ‘right · ↑‘
(fifth query) differs from the expected one. The observed
difference leads to the identification of two states, s1 and s2,
that are reached by ‘right‘ and ‘right · right‘ from the initial
state, respectively. All three states can be distinguished by
separating sequences ‘↑‘ and ‘right · ↑‘ that can be combined
in the adaptive distinguishing sequence shown in Fig. 3.

4.5. Novel Learners

The H-, SPY- and S- learners are novel learning algorithms
that follow the observation tree approach and so outperform
the standard learning algorithms. They differ in the choice of
testing method by which they are inspired. It influences the
choice of access and separating sequences as is summarized
in Table 1. The H-learner is the simplest of the three. It
is inspired by the H-method [19] and so it always uses the
shortest access sequences of reference nodes. In the second
phase of the learning, it chooses separating sequences on-
the-fly from the observed ones in order to distinguish the
reached node from one reference node that corresponds to
a different state. The SPY-learner is inspired by the SPY-
method [20]. In addition to the shortest access sequences
of RNs, it can employ the access sequence of nodes that
were proven to be convergent with RNs. The convergence of
two sequences (or the reached nodes of OTree) means that
both sequences lead to the same state in all machines with
up to m states that provide expected responses to queried
sequences [20]. This paper considers the system to learn has
at most m states where m equals the number n of states in
the specification plus the number l of considered extra states.
The convergence provides a way to minimize the number
of output queries by appending the needed separating
sequences over convergent sequences. The drawback of
the SPY-learner is the use of fixed separating sequences
formed in the harmonized state identifiers (HSI) that is not so
efficient compared to separating sequences chosen on-the-fly
by the H-learner. The S-learner is similar to the SPY-learner

Learner Access sequences Separating sequences

H-learner fixed
chosen on-the-fly to

distinguish from one RN

SPY-learner fixed + convergent fixed – formed in HSIs

S-learner fixed + convergent
chosen on-the-fly to

distinguish from most RNs

TABLE 1. The choice of access and separating sequences by the
three new learners.

in the first phase, that is, it utilizes the convergence of access
sequences and employs adaptive separating sequences. The
second phase is delegated to the S-method that is a new
testing method that is an improvement of the SPYH-method
[21]. It makes the given OTree (considered as a testing tree)
closed for the given number of states by extending some
sequences. It works with the convergence of sequences and
separating sequences are chosen based on the splitting tree
that allows one to distinguish most ‘undistinguished’ RNs.
Hence, it is more efficient than the H- and SPY- methods.
Their implementation can be found in the FSMlib [28].

4.6. Resolving Inconsistencies

An inconsistency of the conjectured model and the OTree
can be observed in different ways depending on the
implementation of the learner. All three new learners use the
notion of domains of states associated with each node of the
OTree. Domains capture the similarity of the corresponding
node to the reference nodes. Hence, a RN s is not in the
domain of node r if a separating sequence of s and r was
observed. The basic inconsistency is revealed if a node
r has an empty domain. It means that r is distinguished
from all RNs and so it represents another state of the
system; r becomes a new RN. Another type of inconsistency
is when a node r should correspond to a particular state
of the conjectured model but the corresponding RN s is
not in the domain of r. Such an inconsistency is called
inconsistent domain and can be resolved by querying several
sequences that reveal the basic inconsistency in a form of
an empty domain. The sequences are formed from the
separating sequence of r and s (captured in the OTree)
prepended with suffixes of the access sequence of r. The
sequences are queried starting from the shortest and each is
queried from the RN that corresponds to the node where the
sequence begins in the OTree. There are two other types
of inconsistency that can be observed by the SPY- and S-
learners as they employ the convergence of sequences. Both
learners group OTree nodes in convergent nodes (CN) if
their access sequences were proven to be convergent. It
means that a so-called convergent graph is built on top of
the OTree. If any two OTree nodes belonging to different
CNs are shown to be convergent, then the CNs are merged
so that the convergent graph is equivalent to the conjectured
model in the end of learning. As all OTree nodes of a
CN need to correspond to a single state, there are also CN
domains that keep track which state the CN can correspond
to. The inconsistency is observed if a CN domain is
empty or if a CN cannot be merged successfully into the
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corresponding CN of RN because some of their successors
are incompatible. These two inconsistencies are resolved
by reducing the domain of a particular OTree node r using
observed separating sequences of other OTree nodes that
were (possibly incorrectly) in the same CN as r.

4.7. Comparison with an Observation Pack

The proposed observation tree approach is more general
than the framework of observation pack (OP) [13] as the
following shows. First, each state has a fixed verifying
component of separating sequences in the OP; components
thus corresponds to HSIs. Therefore, the H-learner does
not implement the OP framework. Second, the OP does not
allow different access sequences of a single state, that is, the
convergence of sequences is not considered. Therefore, the
SPY- and S- learners do not implement the OP framework.

4.8. Time Complexity

The time complexity of the observation tree approach
depends mainly on the number of considered extra states.
Any learner that uses a testing method to approximate
equivalence queries is bound by the time complexity of the
used testing method. In the worst case, it is exponential in
the number l of extra states with the base of the number p
of inputs because all sequences of the length l need to be
examined from every state in order to secure the guarantee
(Definition 4.1). Nevertheless, the average case is nearly
always much smaller. Theoretical evaluation of such an
average complexity is the subject of future work. If no extra
state is considered, then the complexity relates to the size
of the OTree which is polynomial in the number n of states
in this case. The complexity is also influenced by provided
counterexamples that could be of arbitrary length in general.

5. EXPERIMENTS

This section describes an experimental evaluation that aims
to address the following two research questions:
Q1. Is practical complexity of automata inference using new
methods significantly better than that of existing methods?
Q2. Is it practical to learn accurate models in the presence
of extra states?

The three new learners were compared with the standard
learning algorithms experimentally on the GridWorld map
E (Fig. 1), on three real system models and on a set of
randomly-generated machines. GridWorld had no model
available and so it was learnt by interaction and equivalence
queries were approximated by a testing method. The
interaction with GridWorld was done through a mapper
that translates symbolic inputs to real actions and observed
responses to symbolic outputs. Hence, the GridWorld
learning is the most realistic experiment. Random machines
show that the learners are very effective on a range of
different DFSMs and finally three models of real systems
are shown where learners exhibit similar trends to both
GridWorld and randomly-generated machines.

5.1. GridWorld Case Study

The learnt model of the GridWorld map E is visualized in
Fig. 4 using the FSMvis that is a part of the FSMlib. The
learning metrics of 6 learners are captured in Table 2. The
algorithms are compared on the numbers of resets, queried
symbols, output queries, equivalence queries, GridWorld
simulation steps and the learning time in seconds. The
three new learners were not allowed to ask EQ but they
can learn the correct model with the assumption of only
one extra state. Therefore, when they assume 2 extra states
(ES), they also do not need the teacher but they provide a
stronger guarantee about the states of the black box. The
most efficient of the standard learning algorithms is the
Quotient algorithm that however needs 4 EQs (implemented
by the SPY-method and 0 ES). Test sequences generated
by the SPY-method are queried by the teacher starting with
the shortest ones, hence, the shortest counterexample is
provided. The results in Table 2 show the lowest number of
extra states that the SPY-method needs to assume in order to
find a counterexample for each faulty conjectured model that
the standard learning algorithms create. A faulty conjectured
model is simply each that has less than 32 states. It is not
mentioned in Table 2 but the S-learner assuming 1 ES learns
the map E only in 7 894 simulation steps and in the next
23 228 steps the learner verifies the absence of another state.

5.2. Randomly Generated Machines

Figure 5 depicts the results of learning randomly-generated
DFSMs. The algorithms were compared on 3 400 DFSMs,
3 400 Mealy machines, 3 400 Moore machines and 3 400
deterministic finite automata (DFA) such that all of them
except DFA have 5 outputs. For each machine type, half
of machines has 5 inputs and the others 10 inputs, both
halves are divided into 17 groups of 100 machines with
the same number of states that ranges from 10 to 1000.
Target states of transitions and outputs are first chosen at
random and then some are changed in order to create initially
connected machine with the presence of each output symbol.
If the generated machine is not strongly connected, then it
is deleted and another machine is generated. A machine
is strongly connected if there is a directed path between
any two states. As the black box is known to the teacher,
it provides the shortest counterexamples in response to an
equivalence query if the conjectured model is not output-
equivalent to the black box. The shortest counterexample is
obtained by the breadth-first search in the product machine
of the black box and the given conjectured model.

The figures in Fig. 5 show the first and the third quartiles
calculated for each ‘state group’ of 100 DFSMs with 5
inputs. In addition, the boxplots on the right of each
graph also capture minimum and maximum values for the
machines with 1000 states. All machines with the results are
available in the GitHub repository FSMmodels [31].

The exploration efficiency (EE) is a new objective
developed by the authors. It is calculated as the number of
edges in the OTree divided by the total number of queried
symbols. It permits one to evaluate how much of the black
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Mapping
to Fig. 1:

Inputs
0 - stay
1 - left
2 - right
3 - up
4 - down

State outputs
0 - N
i - Oi

Transition
outputs

0 - F
2 - C

FIGURE 4. Learnt model of the GridWorld map E. States, inputs and outputs are numbered from 0. Highlighted state 0 (with the output 0
shown below) is the initial state.

Learning algorithm Resets Symbols OQs EQs Seconds Steps
S-learner: 1 ES 486 9 784 3 859 0 620 31 122
H-learner: 1 ES 1 026 10 028 2 618 0 829 41 434
Quotient 1 110 7 487 1 110 4 615 48 652
+ SPY-method: 0 ES 377 4 835
SPY-learner: 1 ES 1 801 17 415 4 058 0 1 345 74 651
S-learner: 2 ES 2 005 51 300 20 997 0 3 443 156 357
H-learner: 2 ES 4 185 44 325 10 565 0 3 314 186 274
TTT 1 363 7 870 1 363 11 4 145 378 793
+ SPY-method: 2 ES 6 864 131 212
SPY-learner: 2 ES 9 630 96 493 18 177 0 8 134 432 450
L*AllPrefixes 3 444 28 062 3 444 8 4 664 445 285
+ SPY-method: 2 ES 5 641 115 749

TABLE 2. Learning GridWorld map E: learners are sorted by the number of simulation steps (last column) that corresponds to the amount
of interaction, that is, the number of resets of the black box plus the number of symbols queried during the learning by both the learner and
the teacher. The teacher gets a counterexample to equivalence queries by the SPY-method.

box is explored and how much effort was put in it. The
greater the value, the better the learner is.

The new learners assuming 0 extra states (ES) can be
directly compared with the standard learning algorithms.
They outperform the DT and TTT algorithms in all measures
(besides time). They are more efficient than the other
standard algorithms in the numbers of OQs, queried symbols
and resets and in the exploration efficiency. However,
they have a greater number of EQs because they build a
completely-specified model fast with the least number of
symbols which means very little exploration and hence a low
chance to find an inconsistency. This is balanced by the new
learners assuming 1 ES that query about the same number of
symbols as the standard algorithms but reset the black box
less and need no EQ to learn. Moreover, they provide the
guarantee at the end that there is not one extra state. Note

that all learners were allowed to ask EQ, therefore, they
ask at least one EQ, the last one, which confirms that the
conjectured model is correct. The DFSMs with 10 inputs as
well as the 10 200 randomly generated machines of the other
three machine types produce results with the same trends of
the learners’ performance as in Fig. 5.

5.3. Real Systems

Table 3 shows the results of learning a scheduler. Its model
is referred sched4 in the literature [14, 12] and it is a
deterministic finite automaton with 97 states and 12 inputs.
The teacher provides the shortest counterexamples. The
results are similar for the other two models of real systems
that are called peterson2 and sched5. The results also
capture the same trends observed on randomly-generated
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FIGURE 5. Comparison of learning algorithms on 17 groups of 100 randomly-generated DFSMs with 5 inputs and 5 outputs such that the
groups vary in the number of states, from 10 to 1000.
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Learning algorithm Resets Symbols EQs Seconds EE [%]
SPY-learner: 0 ES 2 007 25 334 68 9.14 14.3
S-learner: 0 ES 2 017 25 438 65 9.09 14.0
H-learner: 0 ES 2 307 28 913 78 0.55 11.0
TTT 3 606 43 757 94 0.03 5.5
DT 11 805 110 183 96 0.05 2.2
S-learner: 1 ES 14 107 178 965 1 181.94 9.8
H-learner: 1 ES 14 254 190 634 1 5.42 14.8
SPY-learner: 1 ES 15 908 203 289 1 350.83 9.0
Quotient 16 741 206 793 4 0.14 8.3
OPOneLocally 18 322 224 021 18 0.10 6.3
L*Suffix1by1 18 655 231 131 15 0.16 7.4
OPOneGlobally 21 736 269 173 4 0.12 6.4
L*AllPrefixes 23 235 283 013 12 0.19 7.6
OPAllGlobally 63 670 1 056 247 4 0.60 18.4
GoodSplit: l = 2 149 591 1 944 084 2 42.87 7.8

TABLE 3. Learning sched4: learners are sorted by the amount of interaction, that is, the number of resets of the black box plus the number
of input symbols queried during the learning

machines (Fig. 5). Hence, the improvement by the new
learners is more than promising. As in the case of randomly-
generated machines, all three models with the results of
experiments are available in the repository FSMmodels.

5.4. Results

The research questions are answered based on the
experiment results as follows.
Q1. The experimental evaluation shows that the new
methods are more efficient than the standard learning
algorithms in the interaction with the black box.
Q2. There is always exponential growth in complexity if one
works with extra states. Nevertheless, the results show that
the assumption of one or two extra states is sufficient to learn
a correct model and no equivalence query is needed.

5.5. Threats to Validity

Automata used for experiments are not representative of
those seen in real life. This is mitigated by generating both
random machines and by using actual case studies. In order
to make it less likely to have a bias in the generation of
random machines, a machine that is not strongly connected
is discarded and a new one generated. Case studies
were chosen from different domains, including both AI
(GridWorld) and real software.

Equivalence queries are cheap when one has access to
an efficient oracle. This is usually encountered in model
verification where models could be generated by abstraction
of more complex models in order to check compliance with
temporal logic formulae [32, 33]. The work considered in
this paper is aimed at building models of actual software so
an oracle has to consult the source code or an executable
which makes this task computationally expensive (existing
methods use testing).

6. CONCLUSION

The proposed observation tree approach allows one to
employ testing theory in active learning which improves
the learning performance. The improvement is both in the
construction of a completely-specified conjectured model
and in the reduction of dependency on the teacher. The
conjectured model can be constructed using much less
interaction with the black box than the standard learning
algorithms need because of the analysis of observed traces
and the use of appropriate separating sequences which is
what advanced testing methods do. The assumption of
extra states can guide the exploration of the black box
in order to reveal other states efficiently and thus reduce
the number of equivalence queries (which corresponds to
the need of an efficient teacher). The complexity grows
exponentially with the number of assumed extra states. The
experiments show that the assumption of a single extra state
is usually sufficient to learn a correct model without any
counterexample provided by the teacher. Moreover, all three
new learners based on the observation tree approach need
about the same (or less) amount of interaction with the black
box to learn it even if they assume one extra state.

The three new learners differ in the choice of a testing
method which they are based on. It means that they trade-
off the complexity of their algorithm and their learning
efficiency differently. Future work involves evaluation of
these learners on larger real systems and with a teacher
providing non-optimal counterexamples.

REFERENCES

[1] GoodAI (2018). BrainSimulator. https://www.
goodai.com/brain-simulator. Last accessed: 10
October 2018.

[2] Rivest, R. L. and Schapire, R. E. (1993) Inference of
finite automata using homing sequences. Information and
Computation, 103, 299–347.

[3] Vasilevskii, M. (1973) Failure diagnosis of automata.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



12 M. SOUCHA, K. BOGDANOV

Cybernetics and Systems Analysis, 9, 653–665.
[4] Chow, T. S. (1978) Testing software design modeled by finite-

state machines. Software Engineering, IEEE Transactions
on, 4, 178–187.

[5] Gold, E. M. (1972) System identification via state characteri-
zation. Automatica, 8, 621–636.

[6] Angluin, D. (1987) Learning regular sets from queries and
counterexamples. Information and computation, 75, 87–106.

[7] Shahbaz, M. and Groz, R. (2009) Inferring mealy machines.
FM 2009: Formal Methods, pp. 207–222. Springer, Berlin.

[8] Isberner, M. and Steffen, B. (2014) An abstract framework
for counterexample analysis in active automata learning.
International Conference on Grammatical Inference, Kyoto,
Japan, September, pp. 79–93. PMLR.

[9] Irfan, M. N. (2010) State machine inference in testing context
with long counterexamples. Software Testing, Verification
and Validation (ICST), 2010 Third International Conference
on, Paris, France, April, pp. 508–511. IEEE Computer
Society.

[10] Niese, O. (2003) An integrated approach to testing complex
systems. PhD thesis Technical University of Dortmund
Dortmund, Germany.

[11] Kearns, M. and Vazirani, U. V. (1994) An introduction to
computational learning theory. The MIT Press, Cambridge,
MA.

[12] Isberner, M., Howar, F., and Steffen, B. (2014) The TTT
algorithm: a redundancy-free approach to active automata
learning. Runtime Verification, Toronto, Canada, September,
pp. 307–322. Springer.
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