
Pipelined Decision Trees for Online
Traffic Classification on FPGAs
Oğuzhan Erdem1, Tuncay Soylu2 and Aydın Carus3

1Electrical and Electronics Engineering, Trakya University, Edirne, TURKEY 22030
2Occupational Health and Safety, University of Health Sciences, Istanbul, TURKEY 34668

3Computer Engineering, Trakya University, Edirne, TURKEY 22030
Email: ogerdem@trakya.edu.tr

Decision tree-based Machine Learning (ML) algorithms are one of the preferred
solutions for real-time internet traffic classification in terms of their easy
implementation on hardware. However, the rapid increase in today’s newly
developed applications and the resulting diversity in internet traffic greatly
increases the size of decision trees. Therefore, the tree-based hardware classifiers
cannot keep up with this growth in terms of resource usage and classification
speed. To alleviate the problem, we propose to group application classes by
certain rules and create an individual small decision tree per each group. In
this article, a pipelined organization of multiple decision tree data structures,
called Pipelined Decision Trees (PDT), is proposed as a scalable solution to
tree-based traffic classification. We also propose two distinct algorithms, namely
Confusion Matrix-based Class Aggregation (CMCA) and Leaf Count-based Class
Aggregation (LCCA) algorithms, to set group creation rules that allows traffic
classification on pipelined smaller decision trees in a hierarchical order. We further
designed an hardware engine on Field Programmable Gate Arrays (FPGAs), that
can search those pipelined trees within a single clock cycle by transforming them
into bit vectors and implementing multiple range comparisons in parallel. Our
architecture with 12 classes can run in 928.88 giga bit per second (Gbps) and

achieve 96.04% accuracy.

Keywords: Traffic Classification; Machine Learning; Decision-tree; Data structure; FPGA;
Flow association

1. INTRODUCTION

Network traffic classification is the key function of net-
work security and management processes such as en-
suring quality of service (QoS), resource usage projec-
tion, identifying security threats in intrusion detection
frameworks and traffic shaping/billing needed. In traffic
classification, an incoming network traffic is associated
with the application classes that generate the traffic so
that appropriate network service is provided according
to predefined agreements or rules. If this process is
performed while traffic is flowing, it is called real-time
traffic classification [1].

The techniques developed for internet traffic classifi-
cation can be examined in four groups; (i) Port num-
ber based, (ii) Deep packet inspection (DPI) based,
(iii) Heuristic based and (iv) Machine learning (ML)
based. In port number based approaches, only TCP or
UDP port numbers of internet packets are processed to
determine the application class of the flowing traffic.
However, it is a fact that some new applications may
not have their dedicated port numbers enrolled in Inter-
net Assigned Numbers Authority (IANA), while others
specifically prefer to use unpredictable dynamic port

numbers to hide themselves [2]. As a result, the clas-
sification accuracy of port number based approaches is
adversely affected with the increase in the usage of un-
steady port numbers. As the techniques utilizing port
numbers often cause erroneous predictions, solutions
have begun to be developed in the field of Intrusion
Detection Systems (IDS) [3]. In DPI based approaches,
signature analysis is applied to recognize specific signa-
tures of applications [4, 5]. However this method does
not yield the expected results under encrypted traf-
fic conditions [6, 7, 8]. Furthermore, the interest in
DPI based approaches has waned due to government-
enforced privacy regulations that restrict third parties
from legally examining package contents [9]. Heuris-
tic based techniques classify internet traffic according
to specific traffic patterns. However, these approaches
have large memory requirements for storing traffic pat-
terns and their classification accuracy is limited com-
pared to existing approaches [10]. In order to cope with
all those aforementioned problems, Machine Learning
(ML) based techniques that can classify internet traf-
fic using the statistical properties of traffic flows with-
out the need for content information has emerged as

The Computer Journal, Vol. ??, No. ??, ????

2

a critical solution in this area [11, 12, 13, 14, 15]. In
ML based approaches, a traffic classification model is
designed using a pre-classified or labeled set of flows.
The new incoming unknown streams are then classified
according to this created model. ML based classifica-
tion approaches have attracted great interest in recent
years, especially because they can work in encrypted
traffic conditions and Internet of Things (IoT) environ-
ments while providing cybersecurity solutions with high
performance outcomes [16, 17, 18, 19, 20, 21].

In order to perform online traffic classification within
ML based algorithms, decision trees (DTs) are the
mostly preferred choice due to their layered structure
and easy mapping onto pipelined hardware [10, 11, 16,
22]. C4.5 in particular, is one of the most frequently
studied algorithm among decision trees due to its
high classification accuracy and quick adaptability to
hardware [11, 23, 24, 25]. In DT based solutions, the
depth of a tree is closely related to the number of
traffic application classes. As the number of classes
increases, more branching to distinguish those classes is
needed, and resultantly the tree depth increases further.
This situation negatively affects the search delay as
well as the throughput performance. As a solution,
data structure transformation techniques that make
the tree depth independent of the number of classes
while without changing the classification philosophy are
utilized [16]. In this way, one can accomplish real-time
traffic classification without performance degradation
due to the likely growth of internet applications in the
near future.

In our previous study, we deeply focused on this
problem and proposed a novel data structure called
Bit Vector-Coded Simple Cart (BC-SC) [16], which
is an alternative representation of a Simple CART
(SC) [26] decision tree. In BC-SC, a single large
decision tree is transformed into many small range
trees with the help of bit vectors, and the depths
of these new trees are independent of the number
of application classes. Furthermore, we proposed a
novel Discrete Parallel Range Comparators (DPRC)
based hardware architecture to support BC-SC data
structure. Typically, the pipeline model is used for
hardware mapping of tree structures and the search
process is done separately at each tree level in the form
of a pipeline. On the other hand, DPRC-based BC-
SC can search all the tree nodes simultaneously within
a single step regardless of their levels, once the tree
nodes are disjoint. Thus BC-SC can support large
number of application classes while achieving real time
classification within only a single clock cycle. However,
we observed that the most important factor determining
the real throughput is the size of the bitmaps used
in the transformation whereas long bit vectors cause
large hardware critical path delay and thus increases
the clock cycle period. This paper hereby concentrates
on this observation and addresses the problem with a
novel traffic classification engine, named as Pipelined

Decision Trees (PDT) architecture. PDT employs
multiple smaller trees having few number of leaf nodes
to set bounds to the growth of bitmap sizes. The
proposed scheme can support any kind of decision
tree structure while providing substantial throughput
improvement and reduced latency regardless of the
number of application classes. The following major
contributions are done in this article:

• We have developed a novel data structure,
named as Pipelined Decision Trees (PDT), as an
alternative multi-level decision tree representation.
The new structure prevents the instability of
classical decision trees in node distributions and
excessive growth in tree sizes due to the potential
increase in the number of application classes
in the short run. Thus, our proposal solves
the most fundamental problems of implementing
decision trees on hardware and facilitates real-time
classification (Section 3.2).

• To construct PDT structure, we propose to aggre-
gate the application classes in groups according to
certain rules and create an individual tree structure
for each group. We propose two alternative novel
clustering algorithms, namely Confusion Matrix-
based Class Aggregation (CMCA) and Leaf Count-
based Class Aggregation (LCCA). A confusion ma-
trix information which summarizes the prediction
results of a classification problem is used to create
groups of classes in CMCA algorithm (Section 4.1).
The groups are organized based on the numbers of
leaf nodes belonging to each class in the original
decision tree in LCCA algorithm (Section 4.2).

• We further proposed 3 different alternative version
of CMCA algorithm; (i) row based (r-CMCA)
(Section 4.1.1), (ii) row/column sum based (s-
CMCA) (Section 4.1.2) and (iii) percentage based
(p-CMCA) (Section 4.1.3).

• We designed scalable, high throughput and
low latency hardware architecture on Field
Programmable Gate Array (FPGA) platform to
support PDT data structure (Section 6). The
proposed architecture with 12 classes reaches
928.88 Gbps (2902.76 MCPS) throughput with the
minimum packet size of 40 Bytes while achieving
an accuracy of 96.04% (Section 7).

We organized the remaining of the paper as follows:
Section 2 presents the background information and
related studies about traffic classification. In Section 3,
PDT data structure is introduced. Class aggregation
algorithms are explained in detail in Section 4. The
hardware implementation issues of PDT is presented
in Section 6. Section 7 demonstrates the performance
evaluation of our proposed algorithms and FPGA-based
designs. Finally, Section 8 concludes the paper.

The Computer Journal, Vol. ??, No. ??, ????

Pipelined Decision Trees for Online Traffic Classification on FPGAs 3

2. BACKGROUND

2.1. Traffic classification overview

Internet traffic classification is the process of separating
Internet Protocol (IP) traffic into predetermined classes
using classical packet-level (source/destination port
numbers, protocol etc.) or flow-level (average packet
size, minimum/maximum packet size, inter-arrival
times etc.) attributes or features in a machine learning
terminology. In traffic classification, a flow is defined as
a series of packets with the same 5-tuple header fields
(Source IP address (SA), Destination IP address (DA),
Source Port Number (SP), Destination Port Number
(DP) and Protocol). Flow-level features are generally
derived from the first R packets of the flow and the R
value is chosen as a number that best represents the
entire flow. Both packet-level and flow-level attributes
are usually used together in different combinations
to achieve high accuracy traffic classification even in
encrypted traffic conditions.

2.2. Machine Learning (ML) based traffic
classification

The use of machine learning techniques in network
traffic control started with the NetMan program
developed in the 1990s for the call completion
maximization in a circuit-switched telecommunications
network [27]. The study in [28], that surveys the
use of artificial intelligence techniques in Intrusion
Detection (ID) systems and presents an example of
network connection classification, forms the basis of
many subsequent papers experimenting ML algorithms
in traffic classification.

Kim et al. evaluate the performance of CoralReef
(ports-based), BLINC (host-behavior-based), and seven
popular ML algorithms (flow-features-based) such as
Naive Bayes (NB), NB classifier using kernel estimation
(NBKE), Bayesian Network (BayesNet), C4.5 decision
tree, k-Nearest Neighbors (k-NN), Artificial Neural
Networks (ANN), Support Vector Machines (SVM)
with anonymized payload traces and conclude that
SVM outperformed all other methods on every trace
over 98% accuracy [23]. In [24], the robustness of the
models created by AdaBoost, SVM, NB, RIPPER and
C4.5 algorithms were investigated for distinguishing
SSH traffic from non-SSH traffic while utilizing from
flow based features from four different network data
sources. The results show that C4.5 based classifier
performs best with 97% detection rate. SVM based
traffic classifier proposed by [29] is experimented with
three sets of traffic traces and over 90% accuracy is
observed in almost all cases. Lim et al. tested the
discriminative power of flow features and the effect
of discretization using the NB, k-NN, SVM and C4.5
algorithms [30]. The results indicate that k-NN and
C4.5 significantly outperform other algorithms with
every sort of flow features used and the entropy-based

discretization substantially improves the classification
accuracies of all algorithms. C4.5 decision-tree is
transformed into multiple compact tables in [31]. The
proposed model employing efficient hashing techniques
to minimize the processing latency achieves 98.15%
classification accuracy with a typical C4.5 tree with 92
leaf nodes and seven flow-level features.

Caicedo-Munoz et al. proposed a process for
VPN and Non-VPN traffic classification and achieved
accuracy ratios over 94.42% using various ML-
based classifiers with time-related features [32]. A
model based on NB was proposed to classify three
applications, that comprises two video services (Netflix
and YouTube) and one file download. The results
proves that the proposed algorithm is much faster
than Gaussian NB in training and classification while
providing average accuracy of 98.88% [33]. A hybrid
model consisting of K-Means and RF classifiers is
proposed to classify the set of five user activities
and achieved an average accuracy of 97.37% [34].
Dong proposed enhanced SVM algorithm, namely
cost-sensitive SVM (CMSVM) that targets to resolve
data instability problems and decrease computational
cost [35]. The algorithm reaches 94.2% and 94.5%
maximum accuracy for the datasets MOORE_SET
(10 applications) and NOC_SET (9 applications)
respectively. The performances of single and ensemble
models including k-NN, Gradient Boosting (GB), RF,
Logistic Regression (LR), NB, MLP, AdaBoost and
Bagging Decision Tree (BDT) were compared under
P2P network traffic condition [36]. The results proved
that ensemble algorithms of RF and BG outperforms
the single algorithms in both VPN and non-VPN
networks. An ensemble model CARD-B proposed
by [37] comprises Capsule Neural Networks, Artificial
Neural Networks (ANN), RF and DT classifiers with
boosting techniques. The proposed design shows an
overall accuracy of 96% with seven classes. Caicedo-
Munoz et al. [38] compared the performance of DT,
RF and 1-D Convolutional Neural Network (CNN) in
classifying Android malware traffic and reported that
RF shows the best performance with 97% recall and
86% F-measure. LR, SVM and ANN models were
implemented in Software-Defined Networking (SDN)
environment to classify seven traffic applications and
the experimental results show that ANN model reaches
the best accuracy of 89% [39].

2.3. FPGA based traffic classification

Luo et al. proposed a method for hardware implemen-
tation of C4.5 tree on FPGAs that substantially re-
duce the worst-case number of memory accesses [40].
An FPGA-based architecture to accelerate k-NN algo-
rithm is proposed in [41]. The design sustains 80 Gbps
throughput with accuracy ratio over 99% to classify
multimedia applications VoIP, Instant Messaging (IM)
and IPTV. Groleat et al. designed a hardware acceler-

The Computer Journal, Vol. ??, No. ??, ????

4

ated SVM classifier on FPGAs that operates in 10 Gbps
speed rate [42]. Monemi et al. proposed a NetFPGA-
based hardware architecture for DT classifier. The de-
sign with several optimizations runs in maximum fre-
quency of 68 MHz [43].

Tong et al. implemented C4.5 tree with two
alternative FPGA-based design where the one utilizes
on-chip distributed RAM and other stores the
classifier in block RAM [10]. The high throughput
architecture sustains a throughput of 550 Gbps
with eight application classes. The C4.5 decision-
tree is transformed into multiple hash tables and
implemented on FPGAs by Gandhi et al [22]. The
designed classification engine achieves a throughput
of 1654 million classifications per second (MCPS)
with a tree consisting of 128 leaves. Tristan et al.
proposed a hardware accelerator for SVM based traffic
classification and achieved 473 Gbps rates with four
class of traffic trace [44]. In [11], the C4.5 decision-
tree is represented by a compact rule set table and
mapped onto an FPGA-based 2-dimensional pipelined
architecture. The post-place-and-route results show
that the designed engine sustains a 645 MCPS
throughput with eight applications. The two distinct
algorithms to accelerate C4.5 tree based classifier are
developed in [45]. The first one optimizes the original
classifier whereas the second employs divide and
conquer approach. Both algorithms are implemented
on FPGAs and 10000+ and 8000+ MCPS throughput
values are observed respectively. Elnawawy et al.
proposed a pipelined architecture to implement random
forest algorithm on FPGAs [13]. The results shows that
an average throughput of 163.24 Gbps and accuracy
of 98.5% are achieved using both packet and flow-level
features with five classes.

Siracusano et al. proposed to use binary neural
networks (BNNs) in IoT traffic classification and the
designed model on NetFPGA that succeeds 40 Gbps
in classifying the network traffic into ten classes
while utilizing 17 flow-level features [46]. Soylu et
al. are the first to adapt the Simple CART (SC)
decision tree algorithm for FPGA-based internet traffic
classification [1]. The proposed pipelined architecture
accomplishes 557 Gbps with the accuracy of 96.8%.
The authors also proposed a novel Simple CART forest
data structure consisting of multiple parallel SC trees
for real-time traffic classification and mapped onto the
FPGA platform [47]. The designed architecture shows
the throughput of 854 Gbps with 96.67% accuracy
ratio. Bit Vector-Coded Simple Cart (BC-SC) as
an alternative representation of a SC decision tree
is introduced in [16]. SC tree is converted into
multiple range trees by utilizing bit vectors. BC-
SC is implemented both in pipelined model and with
discrete parallel range comparator units on state-of-the-
art FPGAs. The designed classification engines sustain
665 and 914 Gbps throughput respectively and reach
96.81% accuracy level with eight application classes.

3. PIPELINED DECISION TREE (PDT)
BASED TRAFFIC CLASSIFICATION

3.1. Motivation

Due to its layered structure, the decision tree is the
most suitable machine learning algorithm for pipelined
hardware implementation [10, 11, 22]. However, we
highlight two major problems with decision trees; (i)
the unbalance of the node distribution and (ii) the
growth of the tree sizes with the increasing number
of application classes. Both of these problems cause
significant difficulties in hardware implementation of
trees. The decision trees are generally implemented
in hardware as a pipeline, where each level of a tree
corresponds to a single pipeline stage. Thus, the depth
of a tree determines the length of the pipeline and
implicitly the search delay. In both of aforementioned
problems, it causes an increase in the depth of the tree,
thus increasing the classification delay which strictly
prevents real-time classification [23, 24].

To solve these problems, we proposed to transform a
decision tree into multiple range trees with the help of
bit vectors in our previous study [16]. As a result, while
the transformed scheme performs the same function
as the original decision tree, with the accuracy value
remaining constant, the range trees have well balanced
structure and their depths are independent of the
number of classes.

3.1.1. Bit vector-coded decision tree (BC-DT)
Figure 1a presents a sample C4.5 decision tree with six
classes ("Services", "P2P", "WWW", "Attack", "VOIP"
and "Chat") and three features (F1, F2 and F3). As can
be seen from the shape, the tree is unbalanced in terms
of the density of the nodes in left and right branches.
The depth of the left and right branches relative to the
root node are 1 and 10 respectively. As the number
of classes increases, this imbalance may worsen and
depth may increase even more. Figure 1c shows the
corresponding balanced range tree representation with
the help of bit vector transformation tables given in
Figure 1b. Bitmaps are created using unique feature
boundary values that are extracted from the main
decision tree. Let’s take the bitmap tables of F3 in
Figure 1b as an example. The specific ranges of the F3
attribute are (0.5 - 1.5) and (13 - 41) as can be seen in
Figure 1a. The unique boundary values can be sorted
on a number line as (-∞, 0.5, 1.5, 13, 41 and +∞).
Then, all application class names in the leaves of the
original decision tree are listed in a table beginning from
the left ("Services", "P2P", "WWW" etc.). A bitmap
for any range in columns is then constructed in such a
way that a particular bit in a bit vector is set to "1"
if its corresponding class falls in that range (or it is
uncertain whether it falls within the specified range),
and "0" otherwise. Let’s consider the bitmap for the
first range of (-∞, 0.5). The bit vector takes a value

The Computer Journal, Vol. ??, No. ??, ????

Pipelined Decision Trees for Online Traffic Classification on FPGAs 5

a) Decision Tree

b) Bitmap representation of Decision Tree

 d) DPRC-based BC-DT

66.5 96.5 124 27339-

F1

0

0

1

1

0

1

0

0

Services

P2P

WWW

Attack

Attack

Attack

P2P

WWW

Bit Vectors

427 477 1435.5 2747.5 7540.5 8424.5 22301.5 59758.5 +

VOIP

Services

Chat

VOIP

Chat

VOIP

P2P

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

1

0

0

0

0

0

1

0

0

1

1

0

0

0

1

1

1

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

1

0

0

0

0

0

1

0

0

1

1

0

0

0

1

1

0

0

1

0

0

0

0

0

1

1

0

0

0

1

1

0

0

0

0

0

1

0

0

1

1

0

0

0

1

1

0

1

0

0

0

0

0

0

1

1

0

0

1

0

0

0

0

0

0

0

1

0

0

1

1

0

0

0

1

1

0

0

0

0

0

1

0

0

1

1

0

0

0

1

1

0

0

0

0

0

1

0

0

1

1

0

0

0

1

1

0

0

0

0

1

0

0

1

0

1

0

0

0

1

1

0

0

0

0

0

1

90.5 98.5 105.5 148.571-

F2

0

0

0

0

1

1

1

0

Services

P2P

WWW

Attack

Attack

Attack

P2P

WWW

+

VOIP

Services

Chat

VOIP

Chat

VOIP

P2P

1

1

1

0

1

1

1

1

0

0

0

1

1

1

0

1

1

1

1

0

1

1

1

0

0

0

1

1

1

0

1

1

1

0

1

1

1

1

0

0

0

1

1

1

1

0

1

1

0

1

1

1

1

1

1

0

1

1

1

0

1

1

1

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1.5 13 41 + 0.5-

F3

1

1

1

0

1

1

0

0

Services

P2P

WWW

Attack

Attack

Attack

P2P

WWW

VOIP

Services

Chat

VOIP

Chat

VOIP

P2P

0

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

1

1

0

0

0

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

0

0

0

0

0

0

1

1

1

0

1

1

0

0

0

1

1

1

1

1

1

F1
(39-66.5)

F2
(148.5-inf)

F1
(8422.5-22301.5)

F3
(0.5-1.5)

F1
(124-273)

F1
(-inf-39)

F3
(13-41)

F1
(2747.5-7540.5)

F1
(96.5-124)

F2
(98.5-105.5)

F1
(1435.5-2747.5)

F1
(427-477)

F1
(22301.5-59758.5)

F2
(71-90.5)

P2P WWW Attack

Attack

P2P

VOIPWWW

Attack

Services

Chat

VOIP Chat VOIP P2P

Services

Not fall in the range(s)Fall in the range(s)

&

0 0 0 0 0 0 0 0

S
e
rv

ic
es

P
2
P

W
W

W

A
tt

a
ck

A
tt

a
ck

A
tt

a
ck

W
W

W

P
2
P

AND Bitwise

01 0 0 0 0 0

V
O

IP

S
e
rv

ic
es

C
h
a
t

V
O

IP

C
h
a
t

V
O

IP

P
2
P

 c) BC-DT structure

427-477

001100011001000

66.5-96.5

001100011000001

7540.5-8424.5

001100011000001

39-66.5

100000000000000

22301.5-59758.5

001100011000010

124-273

001110000000000

1435.5-2747.5

001100011010000

- -39

001101000000000

96.5-124

001100011100000

273-427

001100011000001

477-1435.5

001100011000001

2747.5-7540.5

001100100000001

8424.5-22301.5

010100011000001

59758.5-

001100011000001

001100011000010

F
1

 T
r
e
e

F
3

 T
r
e
e

1.5-13

111011000111111

0.5-1.5

111100000000000

13-41

111011111000000

- -0.5

111011000111111

41-

111011000111111

111011111000000

98.5-105.5

100011110110111

71-90.5

100011101111011

105.5-148.5

111011101110111

- -71

000011101110111

148.5-

111000000000000

90.5-98.5

100011101110111

000011101110111

F
2

 T
r
e
e

Incoming Flow InfoF2=14 F3=18F1=33879

1.5-13

111011000111111

0.5-1.5

111100000000000

13-41

111011111000000

- -0.5

111011000111111

41-

111011000111111

F
3

 T
r
e
e

1.5 13 410.5-

111011000111111 111100000000000 111011000111111 111011000111111

+

111011111000000

RC1 RC2 RC3 RC4 RC5RC:Range Comparator

FIGURE 1. a) Simple Decision Tree (DT) b) Bitmap representation of DT c) Bit vector coded-DT (BC-DT) structure d)
DPRC-based implementation of BC-DT

of 1 for "Services", "P2P" and "WWW" because it is
unclear whether these classes fall within this range.
However, since it is certain that the next "Attack"
class does not fall within this range (it falls within the
range of (0.5, 1.5)), the corresponding bitmap value
is 0. Similarly, when this scan is performed for all
the classes, a bit vector value of "111011000111111" is
obtained. After the bitmaps are created for all features,
they are stored in the binary range tree data structure,
as shown in Figure 1c. A single range tree is created
for each feature (separate F1, F2 and F3 trees for the
corresponding features F1, F2 and F3). Due to the lack
of space in the figure, we could not line up the trees
side by side, but these trees are parallel to each other.
Furthermore, as seen in the Figure 1c, all these trees
are balanced and the depth of the largest tree is only
3 (whereas the main decision tree depth is 10). These
range trees are constructed using the range values on
the number line. First, the middle range interval is
chosen as the root (the interval (1.5 - 13) for F3 tree as
an example), and then the right and left subtrees are

created iteratively. The range values of all nodes to the
left of any node in the range tree are less than or equal
to the lower bound value of this node. Similarly, the
range limit values on all nodes to its right are greater
than or equal to the upper range value on this node.
Each node in a tree stores lower/upper range boundary
values, left/right child pointers and the corresponding
bitmap. Figure 1c also demonstrates sample search for
incoming flow information F1=33879, F2=14, F3=18.
Each attribute value is searched independently in its
corresponding tree and an individual bitmap output
(colored in orange in the figure) is obtained. Finally, the
sample flow class is assigned (VOIP in our example) by
combining the search results from three separate range
trees with bitwise AND operation.

3.1.2. Hardware implementation of BC-DT
By taking advantage of the fact that the nodes of a
range tree are disjoint, we can implement a tree in
the form of a fully parallel search architecture with
the help of range comparator (RC) units instead of the

The Computer Journal, Vol. ??, No. ??, ????

6

pipeline structure in hardware (Discrete Parallel Range
Comparators (DPRC)-based architecture in [16]). In
this way, the latency depending on the number of
stages in the usual pipeline search is reduced to a
one-step range comparison delay with the feasibility of
parallel simultaneous search of all distinct tree nodes.
Figure 1d represents DPRC implementation of F3 Tree
only where each node in a tree corresponds to a RC
unit in the architecture. In this structure, since the
intervals are discrete from each other, there is no need
to store pointers as in tree nodes, that provides a
memory advantage. Furthermore, the most critical
benefit is that the nodes searched consecutively in
the tree are searched simultaneously in parallel in
DPRC. The incoming feature value is given as input
to all comparator units, but only matches one of them
and outputs the registered bitmap value. Normally,
multiple sequential comparisons are performed when
searching on the tree, a single step comparison is
made by parallel search units. However, the time
elapsed in a single-step range search, i.e. clock period,
that determines the search throughput is also a major
metric in hardware implementations besides the latency
criterion. A clock period here is defined as the time it
takes to perform one-step range comparison plus the
time needed for merging the individual search results
where there are as many intermediate result as the
number of features. Although the range comparison
process needs a constant duration, the time it takes to
combine the search results increases due to the length
of the bit vectors stored in the nodes in hardware.
Note that, the bit vectors are created from leaves of
the original decision tree and therefore their size is
equal to the number of leaves in that tree (the bitmap
length is 15 for the sample tree in Figure 1a). From
this observation, we conclude that while the number
of leaves in the original tree increases due the growth
of the number of application classes, the throughput
of the DPRC-based hardware architecture gets worse
relatively.

3.2. Pipelined Decision Trees (PDT)

In this paper, we propose a new scalable model
to considerably control the classification throughput
besides the delay while eliminating the negative impact
of likely increase in the number of traffic application
classes in the future. Our approach is based on the
fact that, instead of creating a single decision tree and
representing it with larger bit vectors, we propose to
create multiple small decision trees at the beginning and
thus control the size of requiring bit vectors to adapt
to the growth of internet applications in terms of the
throughput. The way to build a small decision tree
is simply to reduce the number of classes that can be
achieved by grouping or merging multiple classes. In
this paper, we propose to distribute application classes
into separated groups and construct smaller decision

DT0

CA,CB

DT2

CB1,CB2,CB3

DT3

C1,C2

DT4

C3,C4

DT5

C5,C6

DT6

C7,C8

DT7

C9,C10

DT8

C11,C12

Stage 1

Stage 2

Stage 3CAA: Class Aggregation Algorithm DT:Decision Tree

C1C2C3C4C5C6

C1 C2 C3 C4 C5 C6

CA1 CA2 CA3

CAA

C1C2C3C4C5C6C7C8C9C10C11C12

C1C2C3C4C5C6C7C8C9C10C11C12

CA CB

CAA

CB3

C7 C8 C9 C10 C11 C12

CB2CB1

C7 C8 C9 C10 C11 C12

CAA

DT1

CA1,CA2,CA3

FIGURE 2. Pipelined Decision Trees (PDT) structure

trees with less number of classes. The process of
reducing the number of classes by grouping is called
clustering or aggregating interchangeably in the rest of
the article. We also named the algorithms that perform
clustering operations as class aggregation algorithms
(CAA).

In accordance with the output of clustering algo-
rithms, we construct sequentially arranged multi-tree
data structure, namely Pipelined Decision Trees (PDT),
which is a layered structure and each layer contains one
or more small decision trees as demonstrated in Fig-
ure 2. PDT consists of n+1 stages and each stage con-
tains one or more decision trees where the parameter n
represents the number of times the clustering algorithm
is executed. The number of decision trees in any Stage
k is determined by the number of groups created as the
output of aggregation algorithm executed in Stage k-1.

Figure 2 represents 3-stage (n=2) PDT structure
comprising the number of 1, 2 and 6 individual decision
trees organized in pipelined fashion in Stage 1, 2 and
3 respectively. Let’s consider a 12-class classification
problem where class symbol Ci (1 ≤ i ≤ 12) stands
for each class. When we apply the class aggregation
algorithm for the first time in Stage 1, lets assume
the algorithm combines the classes into two new
classes as CA and CB , here CA={C1,C2,C3,C4,C5,C6}
and CB={C7,C8,C9,C10,C11,C12}. In this case, the
decision tree in Stage 1 is constructed by only
two classes CA and CB as shown in Figure 2.
Once again we apply the aggregation algorithm
for each group iteratively, let’s assume that the
groups CA1, CA2 and CA3 are formed for the CA,
and CB1, CB2 and CB3 are created for the CB

(where CA1={C1,C2}, CA2={C3,C4}, CA3={C5,C6},
CB1={C7,C8}, CB2={C9,C10}, CB3={C11,C12}). In
this case, each of the decision tree in Stage 2 comprises
only three classes. Finally, since each CAi (CBi) has
only two classes, the number of six decision trees each
with 2 classes will take place in the last stage and the
algorithm does not need to be executed again. As a
result, instead of a single DT with large number of

The Computer Journal, Vol. ??, No. ??, ????

Pipelined Decision Trees for Online Traffic Classification on FPGAs 7

leaves, a new structure with nine trees, each with a
much lower number of leaves, is constructed.

In PDT structure, the search progresses by pipeline
fashion starting from the root decision tree at the first
stage to the specific tree at the last stage. According to
the output of each stage search, which tree to traverse in
the next stage is determined. For instance if the search
result of Stage 1 in our example is found as class CA

in the root DT, then the tree on the left classifying
CA1, CA2 and CA3 is visited in Stage 2. The final
classification result is obtained by the last searched DT.
Each trees is searched by comparing the related feature
input value with the values recorded in the nodes and
the path is determined as the right or left accordingly.
The search ends once a leaf node is reached.

4. CLASS AGGREGATION ALGORITHMS

We propose two new alternative clustering algo-
rithms, namely confusion matrix-based class aggrega-
tion (CMCA) and leaf count-based class aggregation
(LCCA) to group application classes based on pre-
defined rules. In CMCA, a confusion matrix that sum-
marizes the estimation results of classification problem
is used to define the grouping strategy. We further pro-
posed the three versions of CMCA algorithm; (i) row
based (r-CMCA), (ii) row/column sum based (s-CMCA)
and (iii) percentage based (p-CMCA). In LCCA, groups
are formed according to the number of leaf nodes be-
longing to each class in the original decision tree. Note
that, the choice of the best algorithm to use, the num-
ber of execution repetitions (n) that defines the number
of stages and the determination of the number of groups
in each stage are the optimization metrics to be decided
for maximizing the classification accuracy particularly
depending on the data.

4.1. Confusion matrix-based class aggregation
algorithm (CMCA)

A confusion matrix presents the summary of the predic-
tion results pertaining to a classification problem [48].
A two-dimensional confusion matrix displays the test
set results in a row and column for each class. Fig-
ure 3 demonstrates a confusion matrix for four-class
classification problem. Each element Pij represents the
number of test instances where the actual class Ci and
the predicted class Cj are given in the row and column
respectively. The diagonal elements Pii in the matrix
show the number of correctly predicted samples. TRowi

shows the total number samples belonging to class Ci

in a test set and TColi represents the total number of
test examples predicted as Ci by the classifier. The
sum of all Pij elements is equal to the number of sam-
ples in the test set. The large numbers on the main
diagonal and small numbers (ideally zero) correspond-
ing to off-diagonal elements indicate good classification
results. We have developed three alternatives of confu-
sion matrix-based class aggregation algorithm (CMCA)

A
c
t
u
a
l

C
l
a
s
s

Predicted Class

C1

C2

C3

C4

Total

C1

P11
P21
P31
P41
TCol1

C2

P12
P22
P32
P42
TCol2

C3

P13
P23
P33
P43
TCol3

C4

P14
P24
P34
P44
TCol4

Total

TRow1

TRow2

TRow3

TRow4

FIGURE 3. Confusion matrix for four-class classification
problem

that use the matrix information in different ways to
form the groups of classes as described in the following
sub-sections.

4.1.1. Row based (r-CMCA)
In row based (r-CMCA) algorithm, classes are initially
ranked by looking at the Pij values (i ̸=j) in the
confusion matrix while the most frequently confused
classes (having the largest Pij values) are at the top
of the list, and this order is taken into account when
creating the groups. Initially, the maximum Pij value
is found by comparing the all Pij values (i̸=j) in
the corresponding row and column of class Ci of the
confusion matrix and this value is assigned to class
Ci as the confusion strength value (CSV (Ci)). All
the classes are then sorted from largest to smallest
according to their CSV values. Finally all the classes
are distributed into groups one by one while considering
this sorted array. Note that, each group must have at
least two classes and the number of groups is given to
the algorithm as an input parameter. Algorithm 1 gives
the pseudo code of proposed r-CMCA algorithm where
the lines 1 to 22 sort classes based on their calculated
CSV values and lines 23 to 33 distribute those classes
in the sorted list into the groups.

Figure 4a shows the output confusion matrix of C4.5
decision tree given in Figure 1a which is created by
training a real traffic data set (50 samples from each
class and 300 samples in total) with 6 classes (Attack,
Chat, P2P, Services, Voip and www). Figure 4b
demonstrates the sorted list of classes with r-CMCA
algorithm based on their CSV values. Figure 4c and
d show the two alternative class distribution for the
number of 2 and 3 groups respectively.

4.1.2. Row/column sum based (s-CMCA)
In row/column sum based (s-CMCA) algorithm,
confusion strength value of a class Ci is determined by
using the sum of Pij and Pji values in the corresponding
row and column of a confusion matrix. The algorithm
moves along the row of the class Ci and assigns the
largest sum of Pij and Pji value (i ̸=j) as the confusion
strength value of that class (CSV (Ci)). Next, the
classes are sorted from largest to smallest according
to their CSV values and distributed into groups one

The Computer Journal, Vol. ??, No. ??, ????

8
P

2P

C
H

A
T

A
T

T
A

C
K

W
W

W

V
O

IP

S
E

R
V

IC
E

S

P2P

CHAT

ATTACK

WWW

VOIP

SERVICES

2000048

1121450

3304220

0043070

2460200

4610210

P2P

CHAT

SERVICES

ATTACK

WWW

VOIP

7

7

3

3

3

2

P2P

SERVICES

GROUP 1

VOIP

CHAT

GROUP 2

WWW ATTACK

VOIP

SERVICES

GROUP 1

WWW

CHAT

GROUP 2

ATTACK

P2P

GROUP 3

(a)

(b)

P2P

CHAT

SERVICES

ATTACK

WWW

VOIP

9

9

5

5

5

2

WWW

VOIP

ATTACK

P2P

SERVICES

CHAT

0.96

0.92

0.92

0.90

0.86

0.84

(c)

(d)

(e) (f) (g)

VOIP

ATTACK

P2P

CHAT

SERVICES

WWW

3

3

3

2

2

2

FIGURE 4. a) Confusion matrix b) Sorted class list (r-
CMCA) c) Class distribution for 2-groups (r-CMCA) d)
Class distribution for 3-groups (r-CMCA) e) Sorted class
list (s-CMCA) f) Sorted class list (p-CMCA) f) Sorted class
list (LCCA)

by one, starting from the top as similar to r-CMCA
algorithm. Note that, if the CSV values of multiple
classes are the same, they will rank consecutively in the
list and the class with the largest index will come first.
The pseudo code of s-CMCA algorithm is the same with
r-CMCA algorithm given in Algorithm 1 except the
P [i][j] values in lines 9, 10, 13 and 14, which calculate
the CSV values, will be replaced by P [i][j]+P [j][i] here.
Figure 4e shows the sorted list of classes with s-CMCA
algorithm according to their CSV values obtained from
the confusion matrix given in Figure 4a.

4.1.3. Percentage based (p-CMCA)
In percentage based (p-CMCA) algorithm, confusion
strength value of a class Ci is calculated by the ratio
of the Pii value, which gives the number of correct
predictions, to the sum of all Pij values in the entire
row. All the next steps including CSV based sorting
and the grouping are the same as in the previous
algorithms described above. The pseudo code of p-
CMCA algorithm is given in Algorithm 2. Figure 4f
gives the sorted class list output of p-CMCA algorithm
for the confusion matrix given in Figure 4a.

In CMCA algorithms, if the number of class metric
(n) cannot be exactly divided by the number of groups
(G) value given as an external input parameter, the
number of classes in some groups may be unbalanced.
For this reason, it is recommended to determine the
number of groups according to the number of classes
for an even distribution. For example, if the number of
groups is chosen as 2 or 3 for the number of classes 6,
the sizes of the groups will be equal.

Algorithm 1 r-CMCA algorithm
Input: Confusion matrix file for n classes (CM_F ile)
Input: Number of groups (G)
Output: Created groups (Groups[])
1: Read from CM_file to confusion matrix (P [n][n]) and

classes names (C_Name[n])
2: i = 1
3: C[n].CSV = { 0 }
4: C[n].Name = { ’ ’ }
5: while i ≤ n do
6: j = 1
7: while j ≤ n do
8: if (i ̸= j) then
9: if (C[i].CSV < P [i][j]) then

10: C[i].CSV = P [i][j]
11: C[i].Name = C_Name[i]
12: end if
13: if (C[j].CSV < P [i][j]) then
14: C[j].CSV = P [i][j]
15: C[j].Name = C_Name[j]
16: end if
17: end if
18: j = j + 1
19: end while
20: i = i + 1
21: end while
22: Sort C[n] array by CSV field
23: Groups[G].CSV = { 0 }
24: Groups[G].Name = { ’ ’ }
25: i = 1
26: while i ≤ n do
27: j = 1
28: while j ≤ G do
29: Groups[j] = C[i]
30: i = i + 1
31: j = j + 1
32: end while
33: end while
34: return Groups[]

4.2. Leaf count-based class aggregation algo-
rithm (LCCA)

In a decision tree, non-leaf nodes test for a particular
feature while comparing an attribute value with a
constant whereas leaf-nodes outputs the classification
result. Once a leaf node is reached during the search,
the sample input is classified according to the class
assigned to that leaf. The number of leaf-nodes in
the decision tree and the specific class assigned to
each are determined by the decision tree algorithm
used. In leaf count-based class aggregation algorithm
(LCCA), the number of all leaves belonging to a specific
class Ci in the decision tree is determined as the leaf
count value (LCV) of that class and demonstrated as
(LCV (Ci)). As in other algorithms, all classes are
ordered according to their LCV values, and classes
are distributed one by one into the group buckets in
this order. Even though we do not initially know for
sure what the node distribution of the newly created
trees will be for each group, we expect the groups
to be balanced considering the original tree leaf node
distribution. The pseudo code of LCCA algorithm is
shown in Algorithm 3. The sorted list of classes with

The Computer Journal, Vol. ??, No. ??, ????

Pipelined Decision Trees for Online Traffic Classification on FPGAs 9

their LCV values obtained from the decision tree in
Figure 1a by using LCCA algorithm is presented in
Figure 4g. The basic philosophy of all the algorithms
aforementioned above is to sort the classes according
to a certain parameter (CSV or LCV values) and then
distribute the classes to the groups in a balanced way
by using this order.

5. OPTIMIZATION

In PDT construction, choosing the appropriate
algorithm that provides the best throughput and
accuracy results, determining the number of groups
(or decision trees) at each stage and deciding on
the number of repetitions of the algorithm executions
(fixing the levels of PDT) are all optimization issues
particularly depending on the data set. We will share
our observations in our studies that can help to fix those
optimization parameters.

The two important performance criteria, throughput
and accuracy, guide us when making our choices.
In hardware implementations, the throughput is
determined by the system’s clock or more specifically
the number of classifications performed during a single
clock period. The whole search in a PDT is performed
within a single clock cycle in parallel once implemented
with range comparators by taking advantage of the tree

Algorithm 2 p-CMCA algorithm
Input: Confusion matrix file for n classes (CM_F ile)
Input: Number of groups (G)
Output: Created groups (Groups[])
1: Read from CM_file to confusion matrix (P [n][n]) and

classes names (C_Name[n])
2: i = 1
3: Ratio = 0
4: C[n].CSV = { 0 }
5: C[n].Name = { ’ ’ }
6: while i ≤ n do
7: j = 1
8: Trow = 0
9: while j ≤ n do

10: Trow = Trow + P [i][j]
11: j = j + 1
12: end while
13: Ratio = P [i][i]/Trow ∗ 100
14: C[i].CSV = Ratio
15: C[i].Name = C_Name[i]
16: i = i + 1
17: end while
18: Sort C[n] array by CSV field
19: Groups[G].CSV = { 0 }
20: Groups[G].Name = { ’ ’ }
21: i = 1
22: while i ≤ n do
23: j = 1
24: while j ≤ G do
25: Groups[j] = C[i]
26: i = i + 1
27: j = j + 1
28: end while
29: end while
30: return Groups[]

Algorithm 3 LCCA algorithm
Input: n class Decision Tree (DT _F ile)
Input: Number of groups (G)
Output: Created groups (Groups[])
1: Create Decision Tree from DT _F ile and get classes names

(C_Name[n])
2: C[n].LCV = { 0 }
3: C[n].Name = { ’ ’ }
4: T ravelsalDT _BF S(DT reeRoot, C[])
5: Sort C[n] array by LCV field
6: Groups[G].LCV = { 0 }
7: Groups[G].Name = { ’ ’ }
8: i = 1
9: while i ≤ n do

10: j = 1
11: while j ≤ G do
12: Groups[j] = C[i]
13: i = i + 1
14: j = j + 1
15: end while
16: end while
17: return Groups[]
18:
19: T ravelsalDT _BF S(Root, C[])
20: if (Root ! = NULL) then
21: if (Root.Left == NULLδδRoot.Right == NULL) then
22: C[Root.Classindex].LCV =

C[Root.Classindex].LCV + 1
23: end if
24: T ravelsalDT _BF S(Root.Right, C[])
25: T ravelsalDT _BF S(Root.Left, C[])
26: end if
27: return C[]

nodes being disjoint as similar to the case demonstrated
in Figure 1d (DPRC based implementation). The
length of the bit vectors that are determined by the
leaf nodes of associated trees dramatically affects the
clock period. In PDT architecture design, the overall
throughput depends on the individual tree having the
largest leaf count value among all the trees in the
hierarchical structure. Therefore, the largest leaf count
(LLC) value to be obtained by grouping is our first
observation parameter. As the number of levels of the
PDT structure increases, it is obvious that the accuracy
value gradually decreases and the loss will be higher
compared to the original decision tree. From this point
of view, our goal is to achieve real-time classification
with high throughput and low delay by accepting a
small loss from the original accuracy as the second
observation criteria.

Table 1 shows the classification results obtained from
2-level PDT (separately for 2 (G#2) or 3 (G#3) groups
at the Stage 2) created with the grouping algorithms
described above using the example decision tree given in
Figure 1a and the confusion matrix given in Figure 4a.
The leaf count and accuracy values of each tree at each
stage are given separately. Furthermore, the LLC value
and the overall accuracy, which are critical metrics to
choose the suitable algorithm for the PDT structure
are demonstrated separately for each algorithm. In the
last row, the results of the original decision tree given

The Computer Journal, Vol. ??, No. ??, ????

10

TABLE 1. Comparison of class aggregation algorithms
using the example decision tree given in Figure 1a and the
confusion matrix given in Figure 4a.

CAA Stage / Group
Leaf

Count
Accuracy

%
G

#2
G

#3
G

#2
G

#3

r-CMCA

Stage 1 5 12 88.67 87.33

Stage 2
Group A 3 4 94.67 94.00
Group B 6 3 96.67 98.00
Group C 3 99.00

Overall 6 12 84.83 84.71

s-CMCA

Stage 1 5 8 85.67 92.67

Stage 2
Group A 5 3 94.00 85.00
Group B 9 2 96.00 95.00
Group C 3 99.00

Overall 9 8 81.38 86.18

p-CMCA

Stage 1 Stage 1 7 12 95.67 87.33

Stage 2
Group A 6 3 90.67 99.00
Group B 5 4 94.00 94.00
Group C 3 98.00

Overall 7 12 88.33 84.71

LCCA

Stage 1 Stage 1 5 10 86.33 93.33

Stage 2
Group A 5 3 94.00 94.00
Group B 9 5 94.67 94.00
Group C 2 99.00

Overall 9 10 81.44 89.29
Original C4.5 DT 15 90.00

in Figure 1a are also demonstrated. Once the scores
for our simple example were examined, the minimum
LLC value (6) was observed in the PDT (G#2) created
by r-CMCA, while the highest accuracy (89.29%) was
achieved for the PDT (G#3) constructed using LCCA.
However, a PDT (G#2) created with p-CMCA, whose
accuracy (88.33%) is the second closest to the original
tree (90.00%) and has a lower LLC value (7) than
LCCA (10), can also be preferred as one of the most
suitable alternative. Figure 5 presents the final 2-level
PDT data structure with 2-groups (G#2) created by
p-CMCA algorithm and bit vector representations of
trees. The tree in Stage 1 is a decision tree that
distinguishes the two classes Group A (WWW, P2P,
Attack) and Group B (Services, VOIP, Attack). The
bitmap transformations of unique ranges of F1, F2 and
F3 attributes are also shown in Stage 1 on the right.
In Stage 2, Group A and B decision trees, each of
which has 3 classes, and the bitmap transformations
of these trees are shown separately. Once compared
to Bit vector coded-DT in Figure 1c, we see that the
bitmap length has decreased from 15 to 7 (less than
half for the largest tree in Stage 1) while the total
number of bitmaps has increased from 25 to 30. The
increase in the number of bitmaps corresponds to the
increase in the number of parallel comparator units
in hardware, but the bit vector length retained in
each comparator unit is considerably shortened while
providing considerable throughput advantage. The
figure also shows the classification steps for example
incoming flow information (F1=33879, F2=14, F3=18).

The range searches in Stage 1 output 0000001 (bitwise
AND of F1 (1001101), F2 (0111011) and F3 (1110111)
bitmaps) that selects Group B (corresponds to the
rightmost leaf node of root DT). The search of Group B
in Stage 2 produces 01000 (bitwise AND of F1 (01000)
and F3 (11010) bitmaps) that matches VOIP as the
final classification result.

6. ARCHITECTURE AND IMPLEMENTA-
TION ON FPGAS

The structure of PDT (the number of stages and
trees in each level) depends on the CAA algorithms
and the optimization processes which are expected
to give the best throughput and accuracy on the
specific data set to be used. The resulting PDT data
structure is then embedded in the hardware. We
propose Discrete Parallel Range Comparators (DPRC)
based architecture to support PDT data structure
(DPRC-PDT). Figure 6 presents the 2-stage DPRC-
PDT architecture with 2-groups in Stage 2.

Flow level feature values of the traffic flow are
given at the input of the classifier and the application
class of the flow is determined at the output. Note
that we assume that a preceding system that we call
header extracter calculates the flow level feature values
and feeds them to the classifier as in similar studies
[10, 45]. Feature values obtained by header extracter
are searched in corresponding Feature Tree (FTi) blocks
at each stage. The number of FTi units in each block
depends on the number of attributes in a corresponding
decision tree. Here, each FTi unit representing a
feature tree stores the discrete range values of a specific
feature i in its parallel range comparator units. A
single output is obtained by bitwise AND operation of
FTi outputs specific to each block and those output
bitmaps are then combined with a multiplexer to obtain
the final classification result. Note that the search
operations in FTi blocks in Stage 1 and Stage 2 are
performed simultaneously in parallel within a single
clock cycle. Figure 7 shows the internal structure of
a single FTi unit that comprises register pairs to store
lower (RLOW _i) and upper (RHIGH_i) boundary values
for each disjoint interval, a bit vector register and range
comparator units. The incoming search key is compared
with the boundary values stored in the registers and the
outputs "0" or "1" (falls in a range). Accordingly, the bit
vector of matching range is transferred to the output.

We implement DPRC-based PDT architecture on
FPGAs platform by utilizing its great ability to run
multiple hardware units in parallel. Current FPGA
architectures that run pipeline structures generally use
Block RAMs (BRAMs) but these units substantially
increase clock period due to memory I/O latency.
However, in our DPRC-based architecture we only use
registers instead of BRAMs, therefore the clock period
is much shorter and thus PDT design is proportionally
much faster than the classical pipeline architectures.

The Computer Journal, Vol. ??, No. ??, ????

Pipelined Decision Trees for Online Traffic Classification on FPGAs 11

Stage 2

Stage 1

Group BGroup A

F2
(148.5-inf)

F1
(4146.5-22301.5)

F1
(inf-39)

F3
(1176.5-1485.5)

F2
(105.5-133)

F1
(59758.5-inf)

GroupA

GroupA

GroupA

GroupA

Not fall in the range(s)Fall in the range(s)

GroupA

GroupA GroupB

F1
(52.5-107.5)

F3
(20-1276.5)

F3
(1989.5-92399)

F3
(-inf-0.5)P2P

P2P

WWW

WWW

F1
(427-477)

Attack

P2P

F1
(-inf-278)

F1
(14795.5-inf)

F2
(71-95.5)

F2
(-inf-16)

Services

VOIP

VOIP

VOIP Chat

4146.5 22301.5 59758.5 ∞ 39-∞

F1

1
0
1
0
0
0
0

GroupA
GroupA
GroupA
GroupA
GroupA
GroupA
GroupB

1
0
0
1
1
0
1

1
1
0
0
0
0
0

1
0
0
1
1
0
1

1
0
0
1
1
1
0

133 148.5 ∞ 105.5-∞

F2

0
1
1
1
0
1
1

GroupA
GroupA
GroupA
GroupA
GroupA
GroupA
GroupB

0
1
1
1
1
0
0

0
1
1
1
0
1
1

1
0
0
0
0
0
0

1485.5 ∞ 1176.5-∞

F3

1
1
1
0
1
1
1

GroupA
GroupA
GroupA
GroupA
GroupA
GroupA
GroupB

1
1
1
1
0
0
0

1
1
1
0
1
1
1

4146.5 22301.5 59758.539-∞

1010000

+∞

0 0 0 1 0

1100000 10011101001101 1001101

1001101 & 1110111

1485.5 +∞ 1176.5-∞

1110111

1 0 0

11101111111000

&

133 148.5 +∞ 105.5-∞

0111011

1 0 0 0

01110110111100 1000000

0111011

107.5 427 477 ∞ 52.5-∞

F1

0
0
1
1
1
1

WWW
WWW

P2P
P2P
P2P

Attack

1
0
0
0
0
0

0
0
1
1
1
1

0
1
0
1
1
1

0
0
1
1
1
1

107.5 427 47752.5-∞

001111

+∞

0 0 0 0 1

001111 001111100000 010111

001111

20 1276.5 1989.50.5-∞

F3

1
0
0
0
1
0

WWW
WWW

P2P
P2P
P2P

Attack

1
0
0
0
0
1

1
1
1
0
0
0

1
0
0
0
0
1

1
0
0
1
0
0

∞ 92399

1
0
0
0
0
1

20 1276.5 1989.50.5-∞

100010

+∞

0 1 0 0 0

111000 100100100001 100001

100001

92399

0

100001

14795.5 ∞278-∞

F1

1
0
0
0
0

Services
VOIP
VOIP
VOIP
Chat

0
0
1
1
1

0
1
0
0
0

01000

14795.5 +∞ 278-∞

10000

0 0 1

0100000111

7116-∞

F2

1
1
0
1
0

Services
VOIP
VOIP
VOIP
Chat

1
1
0
0
1

1
1
1
0
0

95.5 ∞

1
1
0
0
1

71 95.5 +∞ 16-∞

11010

1 0 0 0

1110011001 11001

11010
&

000001

&

010002x1 MUX

01000

Se
rv

ic
es

V
O

IP
V

O
IP

V
O

IP
C

ha
t

W
W

W
W

W
W

P2
P

P2
P

P2
P

A
tta

ck

GroupA
GroupB

V
O

IP

Incoming Flow InfoF2=14 F3=18F1=33879

Pipelined Decision Tree (PDT)

0000001

FIGURE 5. 2-level PDT data structure with 2-groups (G#2) created by p-CMCA algorithm

Incoming
Packets

Class_ID

FT_nFT_3FT_2FT_1

Bitwise_AND

Class_ID

FT_nFT_3FT_2FT_1

Bitwise_AND

H e a d e r E x t r a c t

F1 F2 F3 Fn

Class_ID

FT_nFT_3FT_2FT_1

Bitwise_AND

Stage_1 Stage_2

GroupA GroupB

2x1
MUX

Class_ID

FIGURE 6. 2-stage DPRC-PDT architecture with 2-
groups in Stage 2

1-bit

n-bit

n-bit

R LOW_1

ENB

Register

Q

R HIGH_1/LOW_2

ENB

Register

Q

COMP COMP

r-bit
r-bit

r-bit

1-bit

R HIGH_2/LOW_3

ENB

Register

Q

COMP COMP

r-bit
r-bit

r-bit

1-bit

R HIGH_3

ENB

Register

Q

COMP COMP

r-bit
r-bit

r-bit

Search Key

Bitvector_1

ENB

Register

Q

MUX

n-bit

Bitvector_2

ENB

Register

Q

MUX

n-bit

Bitvector_3

ENB

Register

Q

MUX

n-bit

n-bit n-bit

FTi

FIGURE 7. A single F Ti unit

7. PERFORMANCE EVALUATION

7.1. Experimental Setup

A traffic flow dataset from [49] comprising 12
application classes with 12 selected features were used
in our experiments. Tables 2 and 3 list the application
classes and feature set definitions, respectively. Data
preparation steps such as feature extraction and
selection processes are not covered here because they
are beyond the scope of the article. WEKA tool [50],
Python and C programming languages were used to
preprocess the data and simulate the proposed data
structures. Furthermore, Entropy-MDL discretization
algorithm [51] is used to convert continuous attribute
values to discrete ones.

7.2. Performance Comparison of ML Algo-
rithms

We initially test the performance of popular machine
learning algorithms with the data set shown in Table 2.
The comparison results in terms of the statistical
metrics Accuracy (Columns 3), Kappa (Columns 4)
and F-Measure (Columns 5) values are demonstrated
in Table 4. The accuracy rate, which shows the ratio of
correctly classified data to all data, is the most preferred
criterion to measure the success of the ML model.
Kappa test, on the other hand, is a statistical method

The Computer Journal, Vol. ??, No. ??, ????

12

TABLE 2. Application classes

Class Application # flows
ATTACK Port scans, worms, viruses 750
BULK FTP, wget 750
DATABASE MySQL, dbase, Oracle 750
INTERACTIVE SSH, TELNET, VNC, GotoMyPC 750
MAIL IMAP, POP, SMTP 750
P2P Napster, Kazaa, Gnutella, eDonkey 750
SERVICES X11, DNS, IDENT, LDAP, NTP 750
VOIP Skype 750
WWW Web browsers, web applications 750
CHAT MSN Messenger, Yahoo IM, Jabber 500
MULTIMEDIA Windows Media Player, Real, iTunes 500
GAMES Microsoft Direct Play 150

Total 7900

TABLE 3. Candidate Feature List

Feature Description

push_pkts_serv Count of all packets with push bit set
in TCP header (server to client)

init_win_bytes_clnt The total number of bytes sent in initial
window (client to server&server to client)

init_win_bytes_serv The total number of bytes sent in initial
window (client to server&server to client)

avg_seg_size_serv Average segment size: data bytes divided
by # packets (server to client)

IP_bytes_med_clnt Median of total bytes in IP packet
(client to server)

act_data_pkt_clnt Count of packets with at least 1 byte of
TCP data payload (client to server)

data_bytes_var_serv Variance of total bytes in packets
(server to client)

min_seg_size_clnt Minimum segment size observed
(client to server)

RTT_samples_clnt Total numbers of RTT samples found
(client to server)

push_pkts_clnt Count of all packets with push bit set in
TCP header (client to server)

serv_port Server port
clnt_port Client port

to measure the reliability of agreement between two
or more observers (inter-rater reliability). The Kappa
coefficient ranges from −1 to +1. If the consistency of
the observed values is greater than or equal to those
by chance, then K ≥ 0, otherwise K < 0. If the
Kappa value is between 0 and +1, it can be interpreted
correctly, but negative (K < 0) values are meaningless
for reliability. The F score, also known as the F1
score, is a measure of the accuracy of the model in a
data set and ranges from 0.0 (worst) to 1.0 (perfect).
The performance of the decision tree-based algorithms
are also evaluated in terms of tree depth (Column 6),
number of leaf nodes (Column 7) and total number of
nodes (Column 8).

Once we examine the results, we see that decision
tree-based ML algorithms exhibit better accuracy
performance with higher Kappa and F-Measure values.
In fact, the most critical advantage of decision tree-
based algorithms is that the hardware implementations
of these structures are feasible and more effective

than the other algorithms due to pipeline mapping.
However, the main problems with tree structures
are their longer tree depths translating into longer
delays due to unbalanced node distribution and the
excessive growth of tree sizes with the increase in the
number of application classes that cause substantial
performance degradation in the hardware as stated
earlier. We overcome this issue and provide scalability
against the expected fast growth of the number of
applications while sacrificing some loss of accuracy
due to the multiple classification stages. However,
alternative optimizations together with the appropriate
CAA algorithms are possible to minimize the loss in
accuracy.

7.3. Performance analysis of CAA algorithms

We test the performance of our proposed PDT
architecture in terms of throuhput and accuracy, using
CAA algorithms with the data set summarized in
Tables 2. Accuracy value mainly depends on the
chosen machine learning algorithm. In all analyzes in
this study, C4.5 Decision Tree algorithm, which gives
the highest accuracy score according to the results in
Table 4 were used. PDT is a multi-level data structure
consisting of one or more small C4.5 decision trees at
each stage as shown in Figure 2. The fact is that, if
we increase the number of stages in the PDT structure,
the size of the trees at each level decrease relatively.
Therefore, as the number of application classes increases
in the future, the need to increase the number of stages
will be inevitable in order not to experience throughput
loss due to higher leaf count values. On the other
hand, once the number of levels in PDT increases,
we lose from accuracy as the misclassifications spread
to the trees below. Therefore, we need to consider
the trade off between accuracy and throughput when
determining the number of stages. Since the number
of application classes in our dataset is relatively low
(only 12 classes), we performed our analyzes on the 2-
stage PDT structure. Another important criterion is
the number of groups (or trees) at each level, and this
value is given as an input parameter to CAA algorithms.
The leaf count (LC) values of the trees for the various
options of 2, 3, 4, 5 and 6 groups (in Stage-2) created
with each CAA algorithm and the overall accuracy
values of the resulting PDT structure are presented in
Table 5.

We know that the LLC value in the PDT structure
determines the clock time or implicitly the throughput.
According to the Table 5, we see that LLC value in
all algorithms is determined by the root decision tree
in Stage-1 (Column 3), but this may not always be
the case. We also observed that the leaf count value
generally increases (despite some exceptions such as
r-CMCA and s-CMCA Group 5) as the number of
groups increased. Therefore, we may conclude that
more balanced trees can be obtained by increasing the

The Computer Journal, Vol. ??, No. ??, ????

Pipelined Decision Trees for Online Traffic Classification on FPGAs 13

TABLE 4. Performance Comparison of Machine Learning Algorithms

Algorithm Type Accuracy (%) Kappa F-Measure Tree Depth # of leaf nodes Total # of nodes
C4.5 [53] Decision Tree 97.0100 0.959 0.962 37 164 327
SimpleCART [26] Decision Tree 96.4810 0.961 0.965 17 106 211
BF Tree [52] Decision Tree 96.4937 0.962 0.965 17 88 175
RIPPER [57] Rule-Based 96.0380 0.957 0.960 NA NA NA
k-NN [54] Distance-based 95.1772 0.947 0.952 NA NA NA
BayesNET [55] Statistical 92.6835 0.920 0.927 NA NA NA
Naive Bayes [56] Statistical 92.2152 0.915 0.923 NA NA NA
ANN [58] Function-Based 79.5949 0.776 0.797 NA NA NA

TABLE 5. Performance Analysis of CAA algorithms
(LC:Leaf Count, St.:Stage)

CAA Group St.1
(LC)

St.2 (LC) Acc.
%A B C D E F

r-CMCA

2 71 39 36 95.71
3 107 5 26 12 95.64
4 113 3 9 16 11 96.42
5 109 2 3 12 13 4 95.75
6 122 2 3 5 6 4 4 95.96

s-CMCA

2 60 41 32 96.04
3 80 19 13 17 96.11
4 128 11 6 7 17 95.54
5 98 11 6 4 4 4 96.08
6 131 5 2 4 4 4 3 95.91

p-CMCA

2 58 46 44 95.23
3 83 11 27 18 96.20
4 80 3 9 10 17 95.98
5 108 7 3 4 10 5 96.28
6 120 2 3 4 4 5 2 96.46

LCCA

2 66 47 43 95.98
3 98 25 13 13 95.54
4 100 6 17 8 9 96.04
5 111 2 9 5 10 16 96.24
6 123 2 3 2 2 4 7 96.34

Original DT 164 97.01

number of levels rather than increasing the number of
groups. As seen in the table, the best LLC value (58)
which is almost one third of the leaf count value of the
original C4.5 decision tree (164) is reached by p-CMCA
algorithm for 2-groups but the accuracy value decreased
from 97.01% in the original tree to 95.23%. On the
other hand, with LLC value (60) very close to p-CMCA,
higher accuracy 96.04% is achieved by the s-CMCA
algorithm as can be seen in the last column of Table 5.
As a result, s-CMCA algorithm with group number 2
is preferred for the memory and throughput analysis of
PDT architecture in the following sub-sections.

7.4. Memory Requirement

PDT data structure is a set of decision trees at multiple
levels. Each decision tree consists of multiple feature
trees (FTi) representing separate attributes of that tree.
There are as many FTi as the number of attributes
in the tree. Each node of an FTi tree stores disjoint
feature interval values and bit vectors. As stated before,
we implement FTi trees with parallel range comparator
units in hardware (DPRC-PDT). The range boundary

values are kept in registers and the number of registers
for each FTi is equal to the number of intervals (or
the number of nodes) in that tree. The first row of
Table 6 gives the required register size, in bits, to store
the largest interval boundary value for each attribute Fk

(1 ≤ k ≤ 12). This values are specific to each attribute.
For example, the largest value that can be stored in
the 16-bit length register of F1 attribute is 65535 but
this value is 3 for 2-bit length register assigned for F3.
An additional register is needed to store the bit vector
value and the length of bit vector register is equal to the
leaf count value of the corresponding tree. In Table 6,
the leaf count values of each distinct tree structures
are given for 2-stage PDT architecture with 2-groups
in Stage 2 (Stage-2A and 2B) and the single stage
bit vector coded decision tree (BC-DT) as a baseline
model separately. The memory requirement of the
PDT structure is simply calculated by multiplying the
number of registers used and their sizes. The number of
registers recording the boundary values are also given
in Table 6 separately for each attribute Fk. Similarly,
the size of the registers that store the bit vectors is
determined with the leaf count value given for each tree.
As a result, the total memory requirement of the PDT
and BC-DT architectures are given in the last column
of Table 6 for comparison purposes. Note also that
DPRC-based implementations save more memory than
pipeline implementations because of the elimination of
pointer fields in tree nodes. Finally, we conclude that
the memory requirement of the PDT architecture is
almost half of the BC-DT where both architectures are
implemented with parallel range comparator units.

7.5. Throughput

We implemented the proposed PDT architecture on
Field Programmable Gate Arrays (FPGAs) using
Verilog on the Xilinx Vivado 2020.2 platform. Xilinx
Virtex-Ultra XCVU440FLGA2892 with speed range of
−3 were chosen as the target device. Figure 8 represents
the clock period change of the BC-DT and PDT
architectures with respect to the increasing number of
classes. From the graph, we see that the clock period
of the BC-DT architecture increases very rapidly as
the number of application classes increases, but the
PDT architecture exhibits a very slight increase in the
same scenario. We conclude that PDT architecture

The Computer Journal, Vol. ??, No. ??, ????

14

TABLE 6. Memory Requirement of PDT structure

Feature Set
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Leaf

Count
Memory
(Bytes)Architecture Size (Bits) 16 16 2 2 2 11 11 12 12 2 10 10

BC-DT Single Stage Number
of Range
Intervals

56 28 3 3 3 50 49 53 50 3 17 62 164 8288.88

PDT
Stage-1 30 21 2 2 2 23 31 23 25 2 9 19 60

4193.50Stage-2A 31 26 3 3 3 27 22 28 24 2 12 32 41
Stage-2B 25 22 3 3 3 25 25 27 25 3 8 29 32

TABLE 7. Implementation Results

Architecture Throughput Throughput Clock Frequency Number of Number of
(Gbps) (MCPS) (ns) (MHz) LUTs / Total FFs / Total

BC-DT 721.70 2255.30 4.43 225.53 5530 / 2532960 (0.2183%) 2376 / 5065920 (0.0469%)
PDT 928.88 2902.76 3.45 290.28 7982 / 2532960 (0.3151%) 1880 / 5065920 (0.0371%)

2

3

4

5

4 5 6 7 8 9 10 11 12

C
lo

ck
 p

er
io

d
(n

s)

Number of Application Classes

BC-DT
PDT

FIGURE 8. Clock period change of PDT architecture
depending on the number of classes

emerges as a scalable solution against the expected fast
growth of the number of classes in the future. Table 7
presents the Place and Route FPGA implementation
results of the BC-DT and proposed PDT architectures
with 12 application classes. In the throughput results
(Gbps), the packet size is considered as the minimum
value of 40 Bytes (or 320 bits). The results confirm
that the throughput rate of PDT scheme (2902.76
million classifications per second (MCPS)) is about 29%
higher than that of baseline BC-DT architecture (2255.3
MCPS). On the other hand, we can also state absolutely
that as the number of classes increases, the gap between
the throughput performances of the those architectures
will get larger even more.

Additionally, Figure 9 shows the throughput perfor-
mance (in Gbps) comparison of ML-based popular traf-
fic classification architectures in the literature. To be
fair in the comparison, the number of classes in PDT
and BC-DT architectures were balanced with those
given in the existing studies, and thus the additional re-
sults for the case of 3/4 and 8 classes are also included in
the figure. The results prove that PDT scheme outper-
forms of all the related studies in all cases. Furthermore,
the range merging optimization process as we employed
in our previous study (DPRC-based BC−SCopt in [16])
is skipped here and not included within our results for
simplicity. Note also that, the range merge optimized
performance result of the architecture proposed in [16]
is given in the figure, even the PDT without optimiza-

8
80 80

163.24

473

1191.04
1263.68

246.40

529 550 557.12

914.24
856.64

938.56

400

721.60

928.96

0

200

400

600

800

1000

1200

M
on

em
i

[4
3]

Ji
an

g
[4

1]

G
ro

le
at

[4
2]

E
ln

aw
aw

y
[1

3]

G
ro

le
at

[4
4]

B
C

-D
T

PD
T

 Q
u

[3
1]

G
an

dh
i

[2
2] T
on

g
[1

0]

So
yl

u
[1

]

So
yl

u
[1

6]

B
C

-D
T

[4
7] PD

T

Si
ra

cu
sa

no
[4

6]

B
C

-D
T

PD
T

3/4/5 Classes 8 Classes 10/12 Classes

T
hr

ou
gh

pu
t (

G
bp

s)

FIGURE 9. Throughput comparison of ML-based traffic
classification engines implemented on FPGAs

tion performs better than this classifier. It is clear that
if the same optimization process were added to the PDT
structure, the improvement would be much more.

8. CONCLUSION

The design of high speed traffic classifiers that can
handle packet processing in link rates has been a
major challenge and requires intensive investigations
from the researchers to be able to cope with the
rapid growth of the Internet as well as advances in
optical networking technology. In this paper, a novel
and scalable PDT traffic classification engine and class
aggregation approaches (LCCA and CMCA with its
variants) that can handle all the negative impacts of
application class increase on the throughput and latency
performance of decision tree based hardware classifiers
are proposed. We developed an adaptive multi-level
data structure consisting of multiple decision trees at
each stage where the number of stages and also the
size of those trees can be optimized to achieve the best
scores in throughput and accuracy metrics. We further
transform multi-trees into bit vectors and map onto
FPGA-based hardware utilizing from parallel range
comparator units. Experimental results confirm that
the PDT engine outperforms all relevant designs and
the improvements will be much larger over competitors

The Computer Journal, Vol. ??, No. ??, ????

Pipelined Decision Trees for Online Traffic Classification on FPGAs 15

as the number of classes increases in forthcoming
periods. As a future work, we aim to develop an
optimization model that can estimate the number
of stages and also the number of trees in PDT at
the beginning to ensure the better management of
performance aspect in all various circumstances.

DATA AVAILABILITY STATEMENT

The datasets provided by [49] are available at
http://www.cl.cam.ac.uk/research/srg/netos/brasil/.

REFERENCES
[1] Soylu, T., Erdem, O., Carus, A. and Güner, E.S. (2017)

Simple CART based real-time traffic classification
engine on FPGAs. Proceedings of ReConFig 17,
Cancun, Mexico, 04-06 December, pp. 1-8. IEEE, New
York.

[2] Karagiannis, T., Broido, A., Brownlee, N. and Claffy,
K. (2004) Is P2P dying or just hiding?. Proceedings
of Globecom 04, Dallas, TX, USA, 29 November-03
December, pp. 1532-1538. IEEE, New York.

[3] Harthi, A.F.A. (2015) Designing an accurate and
efficient classification approach for network traffic
monitoring (Doctor of Philosophy), RMIT University,
Melbourne, Australia

[4] Hubballi, N., Swarnkar, M., and Conti, M. (2020)
BitProb: Probabilistic Bit Signatures for Accurate
Application Identification. IEEE Transactions on
Network and Service Management, 17, 1730-1741.

[5] Hubballi, N. and Khandait, P. (2022) KeyClass: Ef-
ficient keyword matching for network traffic classifica-
tion. Computer Communications, 185, 79-91.

[6] Bu, Z., Zhou, B., Cheng, P., Zhang, K. and Ling, Z.H.
(2020) Encrypted network traffic classification using
deep and parallel network-in-network models. IEEE
Access, 8, 132950-132959.

[7] Zhao, J., Jing, X., Yan, Z. and Pedrycz, W. (2021)
Network traffic classification for data fusion: A survey.
Information Fusion, 72, 22-47.

[8] Shen, M., Ye, K., Liu, X., Zhu, L., Kang, J., Yu, S.,
Li, Q., and Xu, K. (2022) Machine Learning-Powered
Encrypted Network Traffic Analysis: A Comprehensive
Survey. IEEE Com. Surveys and Tutorials, doi:
10.1109/COMST.2022.3208196.

[9] Nguyen, T.T. and Armitage, G. (2008) A survey
of techniques for internet traffic Classification using
machine learning. IEEE Com. Surveys and Tutorials,
10, 56-76.

[10] Tong, D., Sun, L., Matam, K. and Prasanna, V.K.
(2013) High throughput and programmable online
traffic classifier on FPGA. Proceedings of FPGA 13,
Monterey, California, USA, 11-13 February pp. 255-
264. ACM, New York.

[11] Qu, Y.R. and Prasanna, V.K. (2015) Enabling high
throughput and virtualization for traffic classification
on FPGA. Proceedings of FCCM 15, Vancouver, BC,
Canada, 2-6 May, pp. 44-51. IEEE, New York.

[12] Pacheco, F., Exposito, E., Gineste, M., Baudoin,
C., and Aguilar, J. (2019) Towards the Deployment
of Machine Learning Solutions in Network Traffic

Classification: A Systematic Survey. IEEE Com.
Surveys and Tutorials, 21, 1988-2014.

[13] Elnawawy, M., Sagahyroon, A. and Shanableh, T.
(2020) FPGA-based network traffic classification using
machine learning. IEEE Access, 8, 175637-175650.

[14] Salman, O., Elhajj, I. H., Kayssi, A. and Chehab,
A. (2020) A review on machine learning-based
approaches for Internet traffic classification. Annals of
Telecommunications, 75, 673-710.

[15] Chen, J., Breen, J., Phillips, J.M. and Merwe,
J.V. (2022) Practical and configurable network traffic
classification using probabilistic machine learning.
Cluster Computing, 25, 2839-2853.

[16] Soylu, T., Erdem, O. and Carus, A. (2020) Bit vector-
coded simple CART structure for low latency traffic
classification on FPGAs. Computer Networks, 167,
106977.

[17] Khatouni, A. S., Seddigh, N., Nandy, B. and Heywood,
N. Z. (2021) Machine Learning Based Classification
Accuracy of Encrypted Service Channels: Analysis
of Various Factors. Journal of Network and Systems
Management, 29, 8.

[18] Tahaei, H., Afifi, F., Asemi, A., Zaki, F. and Anuar,
N. B. (2020) The rise of traffic classification in IoT
networks: A survey. Journal of Network and Computer
Applications, 154, 102538.

[19] Kornaros, G. (2022) Hardware-Assisted Machine
Learning in Resource-Constrained IoT Environments
for Security: Review and Future Prospective. IEEE
Access, 10, 58603-58622.

[20] Bout, E., Loscri, V., and Gallais, A. (2022) How
Machine Learning Changes the Nature of Cyberattacks
on IoT Networks: A Survey. IEEE Com. Surveys and
Tutorials, 24, 248-279.

[21] Wang, H., Qu, Z., Zhou, Q., Zhang, H., Luo, B., Xu,
W., Guo, S., and Li, R. (2022) A Comprehensive Survey
on Training Acceleration for Large Machine Learning
Models in IoT. IEEE Internet of Things Journal, 9,
939-963.

[22] Gandhi, V.R., Qu, Y.R. and Prasanna, V.K. (2014)
High-throughput hash-based online traffic classification
engines on FPGA. Proceedings of ReConFig 14,
Cancun, Mexico, 8-10 December pp. 1-6. IEEE, New
York.

[23] Kim, H., Claffy, K., Fomenkov, M., Barman, D.,
Faloutsos, M. and Lee, K. (2008) Internet traffic
classification demystified: Myths, caveats, and the best
practices. Proceedings of ACM CoNEXT 08, Madrid,
SPAIN, 10-12 December, pp. 1-11. ACM, New York.

[24] Alshammari, R. and Zincir-Heywood, A.N. (2009)
Machine learning based encrypted traffic classification:
Identifying ssh and Skype. Proceedings of IEEE CISDA
09, Ottawa, ON, Canada, 08-10 July, pp. 289-296.
IEEE, New York.

[25] Monemi, A., Zarei, R. and Marsono, M. N. (2013)
Online NetFPGA decision tree statistical traffic
classifier. Computer Communications, 36, 1329-1340.

[26] Breiman, L., Friedman, J.H., Olshen, R.A. and
Stone, C.J. (1984) Classification and regression trees.
Wadsworth Publishing Co.. Chapman and Hall/CRC,
Florida, ABD.

The Computer Journal, Vol. ??, No. ??, ????

user
Highlight

16

[27] Silver, B. (1990) Netman: A learning network traffic
controller. Proceedings of IEA/AIE 90, Charleston
South Carolina, USA, pp. 923-931. ACM, New York.

[28] Frank, J. (1994) Artificial Intelligence and intrusion
detection: Current and future directions. Proceedings
of the 17th Computer Security Conference, Maryland,
Washington, D.C., USA, 11-14 October, pp. 923-931.
NIST, Gaithersburg.

[29] Este, A., Gringoli, F. and Salgarelli, L. (2009)
Support vector machines for TCP traffic Classification.
Computer Networks, 53, 2476-2490.

[30] Lim, Y.S., Kim, H.C., Jeong, J., Kim, C.K.,
Kwon, T.T. and Choi, Y. (2010) Internet traffic
classification demystified: On the sources of the
discriminative power. Proceedings of ACM Co-NEXT
10, Philadelphia, USA, 30 Nov.-3 Dec pp. 1-12. ACM,
New York.

[31] Qu, Y.R. and Prasanna, V.K. (2014) Compact hash
tables for high-performance traffic classification on
multi-core processors. Proceedings of SBAC-PAD 26,
Paris, France, 04 December, pp. 17-24. IEEE, New
York.

[32] Caicedo-Munoz, J.A., Espino, A.L., Corrales, J.C.
and Rendn, A. (2018) Qos-classifier for vpn and non-
vpn traffic based on time-related features. Computer
Networks, 144, 271-279.

[33] Dias, K. L., Pongelupe, M. A., Caminhas, W. M. and
Errico, L. (2019) An innovative approach for real-time
network traffic classification. Computer Networks, 158,
143-157.

[34] Labayen, V., Magana, E., Morato D. and Izal,
M. (2020) Online classification of user activities
using machine learning on network traffic. Computer
Networks, 181, 107557.

[35] Dong, S. (2021) Multi class SVM algorithm with
active learning for network traffic classification. Expert
Systems with Applications, 176, 114885.

[36] Afuwape, A. A., Xu, Y., Anajemba, J. H. and
Srivastava, G. (2021) Performance evaluation of secured
network traffic classification using a machine learning
approach. Computer Standards and Interfaces, 78,
103545.

[37] Obasi, T. and Shafiq, M. O. (2022) CARD-B: A
stacked ensemble learning technique for classification of
encrypted network traffic. Computer Communications,
190, 110-125.

[38] Bovenzi, G., Cerasuolo, F., Montieri, A., Nascita, A.,
Persico, V. and Pescape, A. (2022) A Comparison of
Machine and Deep Learning Models for Detection and
Classification of Android Malware Traffic. Proceedings
of ISCC 22, Rhodes, Greece, 30 June - 3 July, pp. 1-6.
IEEE, New York.

[39] Nsaif, M., Kovasznai, G., Abboosh, M., Malik, A.
and Frein, R. D. (2022) ML-Based Online Traffic
Classification for SDNs. Proceedings of CITDS 22,
Debrecen, Hungary, 16 - 18 May, pp. 217-222. IEEE,
New York.

[40] Luo, Y., Xiang, K. and Li, S. (2008) Acceleration
of decision tree searching for IP traffic classification.
Proceedings of ANCS 08, San Jose California, USA, 6 -
7 November, pp. 40-49. ACM, New York.

[41] Jiang, W. and Gokhale, M. (2010) Real-time classifi-
cation of multimedia traffic using FPGA. Proceedings
of FPL 10, Milan, Italy, 31 August-02 September, pp.
56-63. IEEE, New York.

[42] Groleat, T., Arzel, M. and Vaton, S. , (2012) Hardware
acceleration of SVM based traffic classification on
FPGA. Proceedings of IWCMC, Limassol, Cyprus, 27-
31 August, pp. 443-449. IEEE, New York.

[43] Monemi, A., Zarei, R., Marsono, M. and Khalil-Hani,
M. (2013) Parameterizable decision tree classifier on
NetFPGA. Intelligent Informatics, 182, 119-128.

[44] Groleat, T., Arzel, M., and Vaton, S. (2014) Stretching
the Edges of SVM Traffic Classification With FPGA
Acceleration IEEE Transactions on Network and
Service Management, 11, 278-291.

[45] Tong, D., Qu, Y.R. and Prasanna, V.K. (2017)
Accelerating decision tree based traffic classification on
FPGA and multicore platforms. IEEE Transactions on
Parallel and Distributed Systems, 28, 3046-3059.

[46] Siracusano, G., Galea, S., Sanvito, D., Malekzadeh,
M., Antichi, G., Costa, P., Haddadi, H. and Bifulco,
R. (2022) Re-architecting Traffic Analysis with Neural
Network Interface Cards. Proceedings of NSDI 2022,
Renton, WA, USA, 4-6 April, pp. 513-533. USENIX
Association.

[47] Soylu, T., Erdem, O., Carus, A. and Güner, E.S.
(2018) Real-Time Traffic classification using simple
CART forest on FPGAs. Proceedings of HPSR 2018,
Bucharest, Romania,18-20 June, pp. 1-8. IEEE, New
York.

[48] Witten, I.H., Frank, E., Hall, M.A. and Pal, C.J. (2017)
Data mining practical machine learning tools and
techniques. The Morgan Kaufmann, Massachusetts,
USA.

[49] Li, W., Canini, M., Moore, A. W., Bolla, R. (2009)
Efficient application identification and the temporal
and spatial stability of classification schema. Computer
Networks. 53, 790-809.

[50] Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P. and Witten, I.H. (2009) The Weka data
mining software: an Update. SIGKDD Explor. Newsl.,
11, 10-18.

[51] Fayyad, U.M. and Irani, K.B. (1991) Multi-interval dis-
cretization of continuous valued attributes for classifica-
tion learning. Proceedings of IJCAI, Chambery, France,
28 August-3 September, pp. 1022-1027. The Morgan
Kaufmann, Massachusetts, USA.

[52] Haijian, S. (2007) Best-first decision tree learning.
Master thesis in University of Waikato, Hamilton, New
Zeland.

[53] Quinlan, J.R. (1993) C4.5:Programs for machine
learning.The Morgan Kaufmann, Massachusetts, USA.

[54] Aha, D. and Kibler, D. (1991) Instance-based learning
algorithms. Machine Learning, 6, 37-66.

[55] Heckerman, D., Mamdani, A. and Wellman, M.F.
(1995) Real-world applications of Bayesian Networks.
Communications of the ACM, 38, 24-68.

[56] John, G.H. and Langley, P. (1995) Estimating contin-
uous distributions in Bayesian Classifiers. Proceedings
of UAI, Montreal Que, Canada, 18-20 August, pp. 338-
345. San Francisco, CA, USA.

The Computer Journal, Vol. ??, No. ??, ????

Pipelined Decision Trees for Online Traffic Classification on FPGAs 17

[57] William, W.C. (1995) Fast effective rule induction.
Proc. Machine Learning Proceedings 1995, Tahoe
City, California, 9-12 July, pp. 115-123. The Morgan
Kaufmann, Massachusetts, USA.

[58] Hopfield, J.J. (1982) Neural networks and physical sys-
tems with emergent collective computational abilities
National Academy of Sciences of the USA, 79, 2554-
2558.

The Computer Journal, Vol. ??, No. ??, ????

	Introduction
	Background
	Traffic classification overview
	Machine Learning (ML) based traffic classification
	FPGA based traffic classification

	Pipelined Decision Tree (PDT) Based Traffic Classification
	Motivation
	Pipelined Decision Trees (PDT)

	Class Aggregation Algorithms
	Confusion matrix-based class aggregation algorithm (CMCA)
	Leaf count-based class aggregation algorithm (LCCA)

	Optimization
	Architecture and Implementation on FPGAs
	Performance Evaluation
	Experimental Setup
	Performance Comparison of ML Algorithms
	Performance analysis of CAA algorithms
	Memory Requirement
	Throughput

	Conclusion

