
1

BioC: A Minimalist Approach to
Interoperability for Biomedical Text
Processing
Donald C. Comeau1, Rezarta Islamaj Doğan1, Paolo Ciccarese2,3, Kevin Bretonnel Cohen4, Martin

Krallinger5, Florian Leitner5, Zhiyong Lu1, Yifan Peng6, Fabio Rinaldi7, Manabu Torii6, Alfonso Valencia5,

Karin Verspoor8, Thomas C. Wiegers9, Cathy H. Wu6, and W. John Wilbur1

1National Center for Biotechnology Information, 2Massachusetts General Hospital , 3Harvard Medical

School, 4University of Colorado School of Medicine, 5Spanish National Cancer Research Centre,
6University of Delaware Center for Bioinformatics & Computational Biology, 7University of Zurich,

8National ICT Australia, 9Department of Biology at North Carolina State University

Supplementary material

Introduction
This is an accompanying document to the main manuscript of BioC: A Minimalist Approach to

Interoperability for Biomedical Text Processing. BioC is an XML format and accompanying software to

ease sharing of text corpora, data annotations, and NLP processing tools. Reading this document should

follow the perusal of the main manuscript as the sections and details described here are closely related

to the details described there. This document includes:

 Implementation and data classes

 Sample program

 Discussion

 Additional key file examples

 An additional relation example

Implementations
For this proposal to be practical there should be implementations in multiple languages.

Implementations are now available in C++ and Java. These are two of the most commonly used

languages for natural language processing.

Our goal with these implementations is that programmers can think of the data as existing solely in

memory. Input connector classes make the data appear in internal data structures. Output connector

classes take data out of internal data structures. While the data will be read from and written to XML

files or network streams for portability to other languages and environments, ideally a programmer can

2

ignore XML while writing their program to process or prepare the data. This implementation aims to

provide such functionality.

Simple classes store the collection and document information. Figure 1 and Figure 2 give skeletons of

the BioC C++ and Java data classes. (Differences from the real code include: multiple public Java classes

appear to be in the same file, accessors and comments are missing, etc.) These classes easily provide

information for further processing. These classes are also easy to populate for exporting information.

Because an XML library provides the processing, the programmer using BioC can ignore the quoting and

other cautions that usually have to be considered when producing XML.

An important point regarding the data classes is that names of the data elements in the classes are the

same as, or very similar to, the elements in the DTD that correspond to them. We believe this is

important in reducing the cognitive burden in using this approach and should be followed as far as

possible for other languages. (The Java classes begin with BioC because Collection and Document are

common Java class names.)

In addition to a language, an XML parser has to be selected for an implementation. Several options are

available. We chose libxml (http://www.xmlsoft.org/) for our C++ implementation because it is already

available on many Unix machines and binaries are available for Windows. We use the C interface instead

of the C++ interface because of a dependency on Gnome in the latter.

Libxml provides validation via an external program xmllint. This allows one to determine whether an

XML file is valid for a DTD while still allowing the use of invalid files if they can be handled by a program.

Most libraries that provide runtime validation have an option to determine whether or not validation

should be performed.

We provide two complementary approaches to reading and writing data. For simplicity, we provide a set

of methods that assumes an entire XML file can fit into memory at once. There the information is readily

available for any analysis or processing needs. If information needs to be saved as XML, it should be

organized using the same classes. Then it is converted to XML by the system and written out. On the

other hand, for large collections it is unreasonable to hold the entire collection in memory. Most XML

parsers have a serial interface that only requires a modest amount of information from the XML file to

be in memory at one time. We also provide a set of methods that allow reading or writing a collection

XML file one document at a time. This feature is important for large corpora.

For many XML parsers, the serial parser is implemented with either call backs or with a handler object.

While this option is also offered by libxml, we use the interface that allows more natural IO under the

direct control of the main program. In Java this is referred to as a Streaming API for XML (StAX)

interface. At this time, we do not provide an interface using callbacks or handlers.

3

Figure 1 Data members in BioC C++ classes.

class Node {

 string refid; // id of Relation or Annotation

 string role;

};

class Relation {

 string id;

 map<string,string> infons;

 vector<Node> nodes;

};

class Location {

 int offset;

 int length;

};

class Annotation {

 string id;

 map<string,string> infons;

 vector<Location> locations;

 string text;

};

class Sentence {

 map<string,string> infons;

 int offset;

 string text;

 vector<Annotation> annotations;

 vector<Relation> relations;

};

class Passage {

 map<string,string> infons;

 int offset;

 string text;

 vector<Sentence> sentences;

 vector<Annotation> annotations;

 vector<Relation> relations;

};

class Document {

 map<string,string> infons;

 string id;

 vector<Passage> passages;

};

class Collection {

 string source;

 string date;

 string key;

 map<string,string> infons;

 vector<Document> documents;

};

4

public class BioCNode {

 protected String refid; // id of Relation or Annotation

 protected String role;

}

public class BioCRelation {

 protected String id;

 protected Map<String,String> infons;

 protected List<BioCNode> nodes;

}

public class BioCLocation {

 protected int offset;

 protected int length;

}

public class BioCAnnotation {

 protected String id;

 protected Map<String,String> infons;

 protected List<BioCLocation> locations;

 protected String text;

}

public class BioCSentence {

 protected Map<String,String> infons;

 protected int offset;

 protected String text;

 protected List<BioCAnnotation> annotations;

 protected List<BioCRelation> relations;

}

public class BioCPassage {

 protected Map<String,String> infons;

 protected int offset;

 protected String text;

 protected List<BioCSentence> sentences;

 protected List<BioCAnnotation> annotations;

 protected List<BioCRelation> relations;

}

public class BioCDocument {

 protected String id;

 protected Map<String,String> infons;

 protected List<BioCPassage> passages;

}

public class BioCCollection {

 protected String source;

 protected String date;

 protected String key;

 protected Map<String,String> infons;

 protected List<BioCDocument> documents;

}

Figure 2 Data members in BioC Java classes.

5

Figure 3 Sample C++ main program.

Sample Program
A sample program appears in Figure 3. Note that it includes a header for the BioC data classes and a

header for an XML connector class. Data objects are declared both for input and output. In addition to

the Collection objects for overall information, Document objects were used because the program uses

document-at-a-time IO. Connectors for both input and output were declared so information for both the

input and output XML files could be maintained. The data is processed by an overloaded method of a

class. It could be handled by arbitrary code. In fact, the data could be read at the beginning of a pipeline,

passed through many stages in an internal format and the desired information written by a final

program.

There are two Java BioC implementations. One uses the standard XML processor and the other uses he

WoodStox XML processor (http://woodstox.codehaus.org/). Both use a StAX interface so flow control is

conventional. Both implement whole file and document at a time IO.

The clear division between the classes that enclose our XML text data, the code that interacts with the

XML parser, and our application code is an important feature of our sample program. Changing the data

#include <iostream>

#include "BioC.hpp" // BioC data

#include "BioC_libxml.hpp" // BioC libxml connector

#include “BioC_util.hpp” // convenience base class for Sentence_Segmenter

using namespace std;

int main(int argc, char **argv) {

 if (argc != 3) {

 cerr << "Usage: " << argv[0] << " docname outname\n";

 return -1;

 }

 char * docname = argv[1];

 char * outname = argv[2];

 Collection collection; // input data

 Connector_libxml xml; // input connector

 xml.start_read(docname, collection);

 Sentence_Segmenter segmenter; // process data

 Collection sentenceCollection; // output data

 segmenter.convert(collection, sentenceCollection);

 sentenceCollection.key = "sentence.key";

 Connector_libxml xml_writer; // output connector

 xml_writer.start_write(outname, sentenceCollection);

 Document document;

 while (xml.read_next(document)) {

 Document sentenceDocument;

 segmenter.convert(document, sentenceDocument); // program processing

 xml_writer.write_next(sentenceDocument);

 }

 xml_writer.end_write();

 return 0;

}

6

processing code is sufficient to create a new application. Using a different XML parser would only

require changing the XML connector class. This ensures the code would easily fit into any environment.

This arrangement was depicted earlier in Figure 1 in the manuscript. The connectors, the data classes,

and the data processing are important parts of the program or pipeline. Yet they can be changed or

modified without disrupting the overall flow. This allows great flexibility so a program can do what is

needed. Yet the program will be able to work with a standard format and share the results in a standard

manner.

The BioC XML files only include data, not processing instructions or directions. As in our example, we

expect that to be provided via another channel to the data processing module of a program or system.

Adequately describing and encapsulating the data is challenge enough. We do not expect to be able to

describe all the creative uses for that data.

Discussion
The BioC XML format is not intended as a replacement for the internal data structures of any research

group. Internal methods and pipelines allow internal optimization of the processing. BioC ensures data

exchange and interoperability, by allowing data to flow easily between different systems, platforms and

software arrangements.

We recommend separate files for a collection and annotations based on that data. If annotations of

different entity types were obtained from different sources, this would be expected. Keeping the

original text document separate from the annotation files would make it easier to verify that

annotations correspond to the same base text. However, the BioC DTD is flexible and allows text and

annotations to be combined in the same file if necessary.

When using separate text and annotation files, information linking the annotations with the original text

document file should be included in the annotation key file. There are varying ways of connecting

documents and annotations. For example, files could be allocated in the same directory or webpage

location, etc.

Since XML is an easily comprehended format, it is often expected that XML files are formatted to

increase human readability. When text contains nested elements, this formatting can change the

meaning of the file because of the added whitespace. While the current BioC data model does not

contain such nested elements, current BioC XML tools do not format their output to avoid potential

problems. XML formatters and editors can produce a more readable XML file, as displayed in the

examples in the main manuscript.

The character set is Unicode. Unicode allows the explicit and unambiguous inclusion of national

character sets, mathematical symbols, and many other glyphs that appear in published material. UTF-8

is the most convenient encoding. It is the same as ASCII for 7 bit characters. This is one of the encodings

required to be implemented by XML tools and is portable between big-endian and little-endian

machines. Code points beyond 127 may be expressed directly in UTF-8 or indirectly using numeric

entities.

7

While Unicode is growing in use and application, many natural language tasks are still performed in

ASCII. For such tasks there is no value spending the extra resources or effort on the additional

complexity of Unicode. Converting English text from Unicode to ASCII should be a standard operation

with well-defined translation tables. The conversion program we have implemented uses an internal

library method and internal data. There could be standard, public tables and a simple program to apply

these translations even though such a program would be less efficient. The collection key file should

state the text encoding.

While our attention is on Unicode, there exist myriad other encodings and useful text corpora expressed

using these other encodings. These corpora might become more popular if converted into Unicode. In

the meantime, they can be expressed directly in the BioC framework, but, the accompanying key file

should explicitly state the used encoding.

Offset specification is important for linking textual annotations to their original locations in the text. The

offset of the annotated string in the original text string is dependent on the encoding of that text string.

For ASCII and/or UTF-8 encodings byte offsets provide a logical approach. More generally, with a known

encoding, the number of code points preceding a given point in the text provides an unambiguous

reference to that point in the text and could be used to indicate the offset. These specifications must be

clearly stated in the accompanying key file.

Key file examples

This key file describes the contents of the BioC XML file exampleCollection.xml.

collection: 10 arbitrary PubMed documents in Unicode

 source: PubMed

 date: yyyymmdd. Date documents downloaded from PubMed

 key: this file

 document: Title and abstract (if available) from a PubMed reference

 id: PubMed id

 passage: Either title or abstract

 infon type: "title" or "abstract"

 offset: PubMed is extracted from an XML file, so literal offsets would not be

useful. Title has an offset of zero, while the abstract is assumed to

begin after the title and one space. These offsets at least sequence

the abstract after the title.

 text: The original Unicode text as obtained from the PubMed XML

Figure 4 The exampleCollection.key file describing basic elements such as collection, document and passage.

8

Figure 6 The asciiSentence.key file describing basic elements such as collection, document, passage and sentence.

This key file describes the contents of the BioC XML file asciiSentence.xml.

collection: 10 arbitrary PubMed documents with all text ASCII split into sentences

by the MedPost sentence segmenter

 source: asciiCollection.xml

 date: yyyymmdd. Date documents downloaded from PubMed

 key: this file

 document: Title and abstract (if available) from a PubMed reference

 id: PubMed id

 passage: Either title or abstract

 infon type: "title" or "abstract"

 offset: The original Unicode byte offsets were retained.

 sentence: One sentence of the passage as determined by the MedPost sentence

splitter

 offset: A document offset to where the sentence begins.

 text: The ASCII text of the sentence.

This key file describes the contents of the BioC XML file asciiCollection.xml.

collection: 10 arbitrary PubMed documents with all text ASCII

 source: PubMed

 date: yyyymmdd. Date documents downloaded from PubMed

 key: this file

 document: Title and abstract (if available) from a PubMed reference

 id: PubMed id

 passage: Either title or abstract

 infon type: "title" or "abstract"

 offset: The original Unicode byte offsets were retained.

 text: The original Unicode text converted to ASCII using the IRET Unicode to

ASCII conversion.

Figure 5 The asciiCollection.key file describing the same basic elements of collection, document and passage, after
Unicode text conversion to ASCII

9

Figure 7 The abbreviationExample.key file illustrating annotations and relations in a passage.

This key file describes the contents of the BioC XML file abbrv.xml.

collection: 10 arbitrary PubMed documents with all text ASCII split into

sentences by the MedPost sentence segmenter

 source: asciiCollection.xml

 date: yyyymmdd. Date documents downloaded from PubMed

 key: this file

 document: Title and abstract (if available) from a PubMed reference

 id: PubMed id

 passage: Either title or abstract

 infon type: "title" or "abstract"

 offset: The original Unicode byte offsets were retained.

 annotation: Abbreviations

 id: sequential integers from 0 within each passage

 infon type: "Long Form" or "Short Form"

 location offset: A document offset to where the short form or long form begins.

 location length: The length of the short form or long form.

 text: Original text of the short form or long form.

 relation: Long form / short form pair

 id: Relation identification string, R[\d]+, where R stands for

Relation and the number counts from zero within a passage

 infon type: "abbreviation"

 node role: "Short Form" or "Long Form"

 node ref_id: id of the Short Form or Long Form annotation as appropriate

10

Relation examples

Figure 8 Sentence excerpt from a PubMed abstract illustrating nested protein-protein interaction events.

Figure 8 shows a short sentence from a PubMed article which includes three nested events. Notice the

annotations of two different entity types: gene names and trigger words. These could potentially come

from different annotation projects. The events are represented as relations in BioC and involve both

entity types. The annotations require unique reference id’s to permit correct referencing by nodes

participating in a relation. Relations will usually contain multiple nodes, and any relation with an id may

be a participant in other relations. Here we illustrate how the entities and events of Figure 8 are

expressed as annotations and relations in BioC:

<annotation id =”G0”>
 <infon key=”type”>Gene_name</infon>
 <location offset=”0” length=”3” />
 <text>Tat</text>
</annotation>
<annotation id =”G1”>
 <infon key=”type”>Gene_name</infon>
 <location offset=”25” length=”10” />
 <text>MIP-1alpha</text>

11

</annotation>
<annotation id =”G2”>
 <infon key=”type”>Gene_name</infon>
 <location offset=”52” length=”3” />
 <text>p65</text>

</annotation>

<annotation id =”T0”>
 <infon key=”trigger”>Positive_regulation</infon>
 <location offset=”11” length=”9” />
 <text>activated</text>
</annotation>
<annotation id =”T1”>
 <infon key=”trigger”>Gene_expression</infon>
 <location offset=”36” length=”10” />
 <text>expresison</text>
</annotation>
<annotation id =”T2”>
 <infon key=”trigger”>Positive_regulation </infon>
 <location offset=”55” length=”10” />
 <text>-dependent</text>
</annotation>

<relation id="R0">
 <infon key =”event-type”>Gene_expression</infon>
 <node refid="G1" role="Theme"/>
 <node refid="T1" role="Trigger"/>
 </relation>
<relation id="R1">
 <infon key =”event-type”>Positive_regulation</infon>
 <node refid="R0" role="Theme"/>
 <node refid="T0" role="Trigger"/>
 <node refid="G0" role="Cause"/>
 </relation>
<relation id="R2">
 <infon key =”event-type”>Positive_regulation</infon>
 <node refid="R1" role="Theme"/>
 <node refid="T2" role="Trigger"/>
 <node refid="G2" role="Cause"/>
 </relation>

