Supplementary information: ChemProt-3.0: A global chemical-biology diseases mapping

Jens Kringelum, Sonny Kim Kjærulff, Tudor I. Oprea, Søren Brunak, Ole Lund and Olivier Taboureau.

Training of QSAR models

Dataset used for prediction

The ChemProt-3.0 dataset was used for generating QSAR models with the goal of creating accurate models capable of predicting interaction between novel chemical entities and proteins. The following activity types were used for training the models: IC₅₀, EC₅₀, Potency, AC₅₀, pIC₅₀, Log K_i, pK_i, pEC₅₀, K_d, K_i. The activity types not already converted were converted to –log10 values before used for prediction. If more than one value were present for a given chemical-protein pair the mean was used for model development. Proteins with less than 20 chemical interactions were excluded from the study. In total QSAR models for 2140 proteins were developed.

Generation of ensemble QSAR models

QSAR models were generated using a "one framework fits them all" approach to systematically perform QSAR models for all proteins included in ChemProt. To accommodate differences in the training datasets, a "wisdom of the crowd" framework using generic fingerprints and variable thresholds for classifying binders versus nonbinder were adopted. QSAR models using classifiers were preferred over regression models, as classification tends to be more flexible and successful in prediction. To include a regression like scoring scheme the data was split in positives and negatives using 3 different –log10 values values; 4, 5 and 6, equivalent to 100 uM, 10 uM and 1 uM binding affinity. Classification models were trained on datasets split by each of the 3 thresholds.

The Naïve Bayes classifier was employed to relate chemical features (see below) to the measured activity class (positive or negative). It was found that, on a dataset of hERG binders/non binders (see below), that the Naïve Bayes classifier performed better or equal to other tested learning methods (i.e. Support Vector Machine (SVM) -Gaussian kernel, SVM -linear Kernel and Logistic Regression (LR) classifiers). Figure S1 outlines

the procedure used for training the QSAR models. One QSAR model will be trained for each combination of classification algorithms and chemical descriptor. In total 15 different QSAR models will be produced (5 descriptors types * 1 algorithms * 3 cutoffs for splitting data) for each protein in the dataset. The performance of each model was estimated in a 5-fold cross-validation scheme as outline in Figure S1, and used for weighting the prediction of each model when calculating the "wisdom of the crowd" score. Each dataset were balanced i.e. the same number of positive and negative (binders/non-binders) compounds were included in each dataset, by sampling the number of negative data points from the negative dataset corresponding to the number of positive data points present in the dataset. If not enough negative data were available random chemicals from ChemProt3.0 were included as negative data. Note that the final models used for prediction are trained on all data available.

Figure S1. Outline of describe method. First, a 5-fold cross-validation scheme applied on the training data is used to determine the unbiased performance of each QSAR model. Next, all training data are used to generate QSAR models used for prediction of potency of new chemicals. Each prediction score (for each QSAR model) are weighted according to the model performance estimated in the 5-fold cross-validation scheme.

All models were trained using the scikit-learn software packages with a python wrapper (http://scikit-learn.org/stable/).

As the features space used to describe chemical structures is large compared to the available data, a features selection algorithm was employed to select a subset of features for model generation. A random forest approach, using the scikit-learn ExtraTreesClassifier with 100 trees, provided a consistence selection of features in a 5-fold cross-validation scheme on the hERG dataset. 100 trees were chosen to reduce running time as 15*6=90 feature selections have to be completed for each protein. Features were selected based on their average Gini-importance using the mean average Gini-importance as cutoff. The features selection are applied only to the training dataset in the cross-validation scheme, thus no bias is introduced towards descriptors general applicable to the dataset are introduced.

Performance measure

The accuracy score was used as measure of model performance for each of the 15 models generated for each dataset of interest (Figure S1). It converges to the Jaccard similarity score when the output is binary (classification) and gives the ratio between correctly classified instances and, correct + non-correct classification (total number of data points). Hence a complete random model will take the value of ACC = 0.5. As the dataset used are totally balanced the accuracy gives a reasonable estimation of the model performance and do not suffer from over-optimistic results biased against either negative or positive instances, as when applied to non-balanced datasets.

Predicting the potency of novel chemicals - "Wisdom of the crowd framework"

The scores were weighted based on model performance relative to the performance of a dummy model always outputting the average of training activity scores. As the dataset was balanced the model performance of the dummy model is always ACC = 0.5:

wm=ACCm-ACCdum=ACCm-0.5

The overall score was then calculated by weighting the predicted scores by the cross-validated performance as described in equation 2:

score=w1*S1+w2*S2+...+wm*Smw1+w2+...+wm

where w_m is the cross-validated performance (see Figure S1) and S_m is the predicted score (0 or 1) for each model:

Chemical Descriptors

As the chemical space are multi-dimensional and infinitely large, directly using chemical structures to build predictive models are not feasible. Instead descriptors are used that describe different features of the molecules, thereby transforming the structure into

features space. Multiple types of descriptors exist describing different molecular features. Here, the focus is on topological fingerprints (Daylight like fingerprints)[1] and Morgan fingerprints (also called circular fingerprints) [2].

Topological fingerprint will be called "daylight". Morgan fingerprint will be called ECFP and FCFP for the atom and feature based version respectively to emphasize that the fingerprints utilize atom invariants connectivity information similar to those used for the well known ECFP family of fingerprints and feature-based invariants, similar to those used for the FCFP fingerprints.

It was chosen not to include pharmacophore fingerprints and 1D and 2D physical/chemical descriptors to keep the number of generated models at a reasonable level. Furthermore, the feature based Morgan fingerprint included is somewhat related to the 2D pharmacophore features as these describe the pharmacophore features around each atom in the chemical. All fingerprints were calculated using RDkit (www.rdkit.org) implemented in python. Figure S2 gives and overview of the chemical descriptors used in the presented work.

Figure S2. Chemical descriptors. In total 5 different chemical descriptors are used to generate QSAR models.

Prediction of the hERG-binders

To evaluate different settings such as the choice of prediction algorithm, number of bits in fingerprints and the added values of an ensemble approach, the hERG dataset obtains from [3] was used. A 5-fold cross-validation scheme was considered to estimate the

performance by splitting the dataset randomly into 5 different partitions and iteratively using 4 partitions for training and 1 for evaluation until all data points have been evaluated once (not to be confused with the cross-validation performed when training the ensemble models). The described ensemble approach was applied to each training partition i.e. training and evaluation dataset are kept totally separated during the training and evaluation. Thus no bias towards descriptors, classifier algorithms or training datapoints has been introduced, hence allowing selection of the best settings (classifier and number of bits) based on the cross-validated performance.

The IC50 (uM units) values used in the study were multiplied by -1 to reverse the scale and the cutoff -100, -10 and -1 uM were considered as the low, medium and high binder threshold respectively, except for single models – here -40 uM were used in agreement with the original study. Chemicals with an IC50 value below 40 uM were considered binders whereas chemicals with an affinity value above were considered non-binders. Some of the included performance measures require a binary classification, thus predicted value above 0.6 was regarded as binders for calculation of these performance measures.

Several different combinations of fingerprints types and lengths (number of bits) were tested as described in table S2. Using only a single fingerprint type reduces the performance of the model, however the FCFP and daylight fingerprints using 2048 bits still show reasonable performances. The length of the fingerprints (512, 1024 or 2048 bit) seems to influence performance slightly, whereas using a single fingerprint type consistently reduces the performance. However, inclusion of models trained using different classification algorithms (separately), boost performance (to a minor degree) with the non-linear algorithms performing the best (setting 16-19 in Table S2). Thus, choosing a single algorithm might be sufficient as long as it enables higher order correlations. Comparing the single models (setting 20-39) to the ensemble reveals that using an ensemble approach significantly enhanced prediction power. All ensemble models have improved prediction statistics compared to models only containing a single classification model (one single descriptor, one threshold and one classifier algorithm), even though the threshold used for splitting the training dataset into binders/non-binders for single models are the same used for the evaluation.

	Descriptors	Methods	Cutoffs	Roc	PCC	MCC	Sens	Spec	SCC
2	daylight_b1024								
	daylight_b2048	NaiveBayes							
	ECFP_b1024_r2	SVMlinear	-100						
	ECFP_b1024_r3	LogisticRegressio	-10	0.849	0.602	0.481	0.634	0.841	0.607
	FCFP_b1024_r2	n	-1						
	FCFP_b1024_r3	SVMGuassian							
	ECFP_b2048_r2								

	Descriptors	Methods	Cutoffs	Roc	PCC	MCC	Sens	Spec	SCC
	ECFP_b2048_r3								
	FCFP_b2048_r2								
3	FCFP_D2048_F3 davlight b1024	NaiveBaves							
5	daylight b2048	SVMlinear	-100						
	, , , ,	LogisticRegressio	-10	0.820	0.560	0.486	0.723	0.778	0.546
		n	-1						
4	ECED b1024 r2	SVMGuassian							
4	ECFP b1024_12 ECFP b1024 r3	N							
	FCFP_b1024_r2	NaiveBayes	-100						
	FCFP_b1024_r3	LogisticRegressio	-100	0.844	0.586	0.497	0.660	0.835	0.606
	ECFP_b2048_r2 ECFP_b2048_r3	n	-1						
	FCFP_b2048_r2	SVMGuassian							
	FCFP_b2048_r3								
5	daylight_b512	NaiveBayes							
	ECFP_b512_r2	SVMlinear	-100	0.041	0 502	0 500	0 (0 1	0.020	0 504
	ECFP_D512_r3 FCFP h512 r2	n	-10 -1	0.841	0.582	0.509	0.681	0.830	0.594
	FCFP_b512_r3	SVMGuassian	-						
6	daylight_b1024	NaiveBayes							
1	ECFP_b1024_r2	SVMlinear LogisticPograssic	-100 -10	0.045	0 502	0 101	0 6 6 0	0.824	0.600
	FCFP b1024_13	n	-10	0.045	0.393	0.404	0.000	0.024	0.000
	FCFP_b1024_r3	SVMGuassian							
7	daylight_b2048	NaiveBayes	100						
	ECFP_b2048_r2 ECFP_b2048_r3	SVMlinear LogisticPogrossio	-100	0.850	0 596	0 485	0.649	0.832	0.611
	FCFP_b2048_r2	n	-10	0.050	0.390	0.405	0.049	0.032	0.011
	FCFP_b2048_r3	SVMGuassian							
8	daylight_b2048	NaiveBayes							
		SVMlinear LogisticRegrossio	-100	0.026	0 5 7 2	0.496	0 7 2 2	0 770	0 5 6 2
		n	-10	0.020	0.372	0.400	0.723	0.778	0.302
		SVMGuassian	_						
9	ECFP_b2048_r2	NaiveBayes							
		SVMImear LogisticRegressio	-100	0.802	0 5 2 3	0 480	0 644	0.832	0 545
		n	-1	0.002	0.525	0.400	0.044	0.032	0.545
		SVMGuassian							
10	ECFP_b2048_r3	NaiveBayes	100						
		SVMIInear LogisticRegressio	-100 -10	0.813	0 559	0 4 4 4	0.618	0.822	0 569
		n	-1	0.015	0.007	0.111	0.010	0.022	0.007
		SVMGuassian							
11	FCFP_b2048_r2	NaiveBayes	100						
		LogisticRegressio	-100	0.837	0.570	0.470	0.691	0.789	0.601
		n	-1						
40		SVMGuassian							
12	FCFP_b2048_r3	NaiveBayes SVMlinear	-100						
		LogisticRegressio	-10	0.824	0.532	0.458	0.670	0.795	0.581
		n	-1						
	1 1	SVMGuassian							
13	daylight_b2048	NaiveBayes SVMlinear							
1	ECFP_b2048_r3	LogisticRegressio	-100	0.833	0.630	0.496	0.743	0.770	0.602
	FCFP_b2048_r2	n						,	
	FCFP_b2048_r3	SVMGuassian							
14	daylight_b2048 ECFP b2048 r2	NaiveBayes SVMlinear							
	ECFP_b2048_r3	LogisticRegressio	-10	0.837	0.563	0.489	0.681	0.814	0.588
1	FCFP_b2048_r2	n							
1 -	FCFP_b2048_r3	SVMGuassian							
15	ECFP b2048 r2	svMlinear			0 = 1 =	0.105	0.00	0.0.1	0
	ECFP_b2048_r3	LogisticRegressio	-1	0.820	0.512	0.488	0.634	0.846	0.561
	FCFP_b2048_r2	n							

	Descriptors	Methods	Cutoffs	Roc	PCC	MCC	Sens	Spec	SCC
	FCFP_b2048_r3	SVMGuassian							
16	daylight_b2048								
	ECFP_b2048_r2	NaivoBavos	-100						
	ECFP_b2048_r3	NaiveDayes	-10	0.843	0.574	0.513	0.634	0.865	0.608
	FCFP_b2048_r2		-1						
17	FCFP_b2048_r3								
1/	ECEP b2048 r2		-100						
	ECFP b2048 r3	SVMlinear	-10	0.838	0.568	0.500	0.670	0.830	0.595
	FCFP_b2048_r2		-1						
	FCFP_b2048_r3								
18	daylight_b2048								
	ECFP_b2048_r2	LogisticRegressio	-100	0.020	0 502	0.460	0.660	0.011	0.000
	ECFP_02048_r3	n	-10	0.838	0.592	0.468	0.660	0.811	0.606
	FCFP b2048_12		-1						
19	davlight b2048								
	ECFP_b2048_r2		-100						
	ECFP_b2048_r3	SVMGuassian	-10	0.845	0.604	0.498	0.702	0.805	0.619
	FCFP_b2048_r2		-1						
	FCFP_b2048_r3								
20	daylight_b2048	NaiveBayes	-40	0.687	0.398	0.355	0.717	0.657	0.364
21	daylight_b2048	LogisticPogrossio	-40	0.685	0.431	0.352	0.733	0.638	0.414
22	uaylight_02048	n	-40	0.713	0.472	0.404	0.770	0.657	0.472
23	daylight_b2048	SVMGuassian	-40	0.743	0.519	0.460	0.796	0.689	0.518
24	ECFP_b2048_r2	NaiveBayes	-40	0.727	0.452	0.445	0.670	0.784	0.463
25	ECFP_b2048_r2	SVMlinear	-40	0.706	0.439	0.392	0.723	0.689	0.431
26	ECFP_b2048_r2	LogisticRegressio n	-40	0.674	0.356	0.330	0.707	0.641	0.353
27	ECFP_b2048_r2	SVMGuassian	-40	0.750	0.555	0.475	0.780	0.719	0.541
28	ECFP_b2048_r3	NaiveBayes	-40	0.752	0.502	0.494	0.707	0.797	0.503
29	ECFP_b2048_r3	SVMlinear	-40	0.703	0.431	0.388	0.712	0.695	0.425
30	ECFP_b2048_r3	LogisticRegressio	-40	0.720	0.440	0.419	0.749	0.692	0.457
31	ECFP_b2048_r3	SVMGuassian	-40	0.728	0.501	0.434	0.764	0.692	0.492
32	FCFP b2048 r2	NaiveBayes	-40	0.770	0.514	0.518	0.775	0.765	0.526
33	FCFP_b2048_r2	SVMlinear	-40	0.744	0.492	0.462	0.812	0.676	0.509
34	FCFP_b2048_r2	LogisticRegressio n	-40	0.737	0.477	0.449	0.806	0.668	0.480
35	FCFP_b2048_r2	SVMGuassian	-40	0.737	0.483	0.450	0.791	0.684	0.494
36	FCFP_b2048_r3	NaiveBayes	-40	0.753	0.505	0.487	0.743	0.762	0.510
37	FCFP_b2048_r3	SVMlinear	-40	0.720	0.445	0.419	0.749	0.692	0.433
38	FCFP_b2048_r3	LogisticRegressio n	-40	0.721	0.422	0.421	0.759	0.684	0.436
39	FCFP_b2048_r3	SVMGuassian	-40	0.744	0.522	0.462	0.801	0.686	0.518
40	daylight_b1024								
	ECFP_b1024_r2		-100						
	ECFP_b1024_r3	NaiveBayes	-10	0.827	0.562	0.488	0.649	0.835	0.579
	FCFP_b1024_r2		-1						
1	rufp D1024 r3								

Table S2. Cross-validated performance on the hERG binders. "daylight" denominates the topological fingerprint implemented in RDkit (essentially the same as daylight fps) and "_bXXXX" the number of bits used in the fingerprint. ECFP and FCFP is the Morgan circular atom and feature based fingerprints, the "_bXXXX" the number of bits used and "rX" the radius used in the circular fingerprint. Note that the performance values reported here are from the external cross-validation and not the cross-validation performed when training the ensemble of predictors described in Figure S1.

Comparison to the Similarity Ensemble Approach

The other prediction method implemented in ChemProt3.0 is the similarity ensemble approach (SEA) [4]. To compare the "new" QSAR implementation a dataset of 179 proteins of particular interest when investigating off-target effects were compiled (see Table S2). 143 of these had sufficient data available in ChemProt3.0 to train QSAR models and were used as the basis for comparing performance of the QSAR models to the SEA implementation. The dataset for the 143 proteins were spitted in 5-partition and a 5-fold cross-validation scheme were used to assess performances by using 4 partitions for training using the ensemble approach explained above and 1 partition for validation at a time. The partitions were spitted randomly.

For both, the ensemble QSAR model and SEA outputs float values spearman correlation coefficient (SCC) was used to compare performances. SCC is a parameter free coefficient (essential the PCC of ranked-values), which ensure a reasonable comparison even though the two methods output is on different scales. A SCC = 1 reflects perfect ranked-correlation between predicted and true values, 0 is random and -1 reflects an inverse correlation. Table S2 list the performances for the 143 proteins for both the ensemble QSAR predictive models and the SEA. Using a one-sided paired T-test and the null-hypothesis that the SCC_{QSAR} == SCC_{SEA} and the alternative hypothesis that SCC_{QSAR} > SCC_{SEA} the null-hypothesis could be rejected with a p-value of: 2.2e-16.

Uniprot id	Chemicals in dataset	Chemicals with aff < 100 uM	QSAR (MCC)	QSAR (SCC)	SEA (MCC)	SEA (SCC)
000408	378	151	0.402451	0.50955	0.344713	0.43096
014920	1478	659	0.321934	0.29005	-0.115163	-0.02482
015111	740	586	0.339904	0.45846	0.045515	0.21119
043193	346	185	0.445334	0.53197	0.029565	0.16587
075469	401	183	0.134628	0.24651	0.486237	0.30118
076074	1743	1220	0.369423	0.63437	0.173358	0.38443
P00533	6586	2971	0.208118	0.38331	0.068014	0.06649
P00918	5018	3130	0.306994	0.46368	0.233406	0.28322
P02708	173	82	0.322966	0.62251	0.443893	0.39995
P03372	4297	1910	0.063377	0.22351	0.058304	0.16055
P04035	399	327	0.544005	0.70464	0.463210	0.68764
P04054	715	411	0.202269	0.49507	0.012021	0.20465
P04150	3274	1358	0.222967	0.23143	-0.068802	0.02704
P04626	2835	1599	0.108386	0.16946	-0.108666	0.02532
P06213	1621	1333	0.219724	0.36826	0.151912	0.26055
P06239	3195	1750	0.228244	0.44590	-0.015748	0.09585
P06241	1160	981	0.052337	0.33172	0.064492	0.25434
P06276	1971	1076	0.356766	0.54489	0.406799	0.48597
P06401	2293	1018	0.486285	0.46309	0.260734	0.10618
P07099	223	152	0.461661	0.58652	-0.091246	0.46050
P07550	3543	2648	-0.209885	0.17583	-0.226525	0.12659
P08172	2577	1561	0.292175	0.47802	0.165528	0.27537
P08173	1475	918	0.247376	0.44268	0.266942	0.30187
P08575	446	203	0.630478	0.57311	0.513371	0.56767
P08581	2932	1561	0.434303	0.51074	0.103754	0.22970
P08588	2200	1174	0.365329	0.50309	-0.030187	0.18570
P08908	4490	3067	0.022687	0.29823	-0.104358	0.14712
P08912	1430	892	0.256736	0.44981	0.177523	0.30587

Uniprot	Chemicals	Chemicals	OSAR	OSAR		
id	in dataset	with aff $<$	(MCC)	(SCC)	SEA (MCC)	SEA (SCC)
P08913	1294	100 <i>Ш</i> М 751	0 242146	0 36677	0 107570	0 19707
P09917	2601	1099	0.401746	0.52336	0.406465	0.48313
P10275	3035	1392	0.198764	0.21697	0.030498	0.05820
P10827	574	282	0.110227	0.40767	0.291984	0.41157
P10828	6206	4347	0.123454	0.24354	0.038989	0.09952
P11229	3014	1802	0.289656	0.48636	0.180651	0.32294
P11362	2147	1276	0.502790	0.55929	-0.051391	0.06563
P13945	2051	943	0.356619	0.36245	0.113241	0.10493
P14416	6410	3965	0.251122	0.38451	0.130472	0.12944
P15121 P16050	947	548	0.009572	0.47176	0.289074	0.49439
P16499	183	134	0.749976	0.03329	-0.054047	0.61923
P17252	1516	1032	0.256953	0.50621	0.063484	0.28475
P18031	3551	1557	0.227949	0.47487	0.335162	0.46771
P18089	864	452	0.328513	0.42126	0.092870	0.14488
P18505	392	318	0.563026	0.64087	0.521634	0.40597
P18825	969	532	0.084991	0.25204	0.092869	0.09428
P20309	2653	1853	0.360480	0.54712	0.260827	0.30244
P21397	1730	839	0.366523	0.58194	0.260285	0.30957
P21452	1305	875	0.246526	0.42711	0.214622	0.36293
P21554	4940	2876	0.329321	0.45572	0.147328	0.20142
P21/28 P21721	1842	1091	0.088460	0.10742	0.064882	0.00330
P21802	306	189	0.222717	0.31389	0.390391	0.33403
P21964	28	20	0.918937	0.89737	0.825000	0.86275
P22303	4355	2044	0.265054	0.40367	0.298574	0.35173
P22460	723	417	0.544674	0.69627	0.321845	0.57291
P23219	2668	989	0.359692	0.45535	0.147578	0.31174
P24385	1027	820	0.436124	0.72183	0.156489	0.36897
P24530	1590	558	0.404737	0.41847	0.177662	0.22722
P24557	1582	1074	0.089215	0.27134	0.073330	0.20824
P25021	636	Z/4 F11	0.469123	0.47821	-0.204846	-0.26305
P25025	1794	1195	0.400073	0.01709	0.454560	0.34200
P25100	1935	879	0.330927	0.41738	0.222528	0.24149
P25103	3413	2102	0.296388	0.43976	0.177474	0.18279
P25105	1237	934	0.477019	0.60049	0.296159	0.31329
P25929	1583	1030	0.187363	0.48556	0.165193	0.38825
P27338	2023	1118	0.254571	0.40981	0.224359	0.18113
P27361	245	176	0.249885	0.45123	0.251427	0.46807
P28222	1499	847	0.335536	0.44544	-0.022992	0.03809
P28223	3680	2300	0.343386	0.46190	0.261365	0.38010
P28335	3074	1/170	0.299806	0.43336	0.105002	0.30390
P29274	5283	3632	0.020024	0.00093	0.108488	0.02782
P29275	2963	1711	0.354750	0.45160	0.064439	-0.03379
P29371	745	451	0.474674	0.65848	-0.053988	0.27722
P29474	1220	567	0.148588	0.15770	0.353697	0.42580
P29475	1365	722	0.416119	0.54403	0.359333	0.51998
P30411	965	539	0.426062	0.46409	0.165504	0.26372
P30518	845	404	0.579142	0.53601	-0.005806	0.06917
P30542	4538	3120	0.243275	0.39789	0.132323	0.05837
P30556	<u>2524</u> 68	1958	0.251064	0.54028	0.32/653	0.38584
P32238	1151	687	0.232714	0.57820	0.369426	0.40397
P32239	2212	1235	0.302717	0.41464	0.050701	0.10753
P32245	3679	2051	0.047348	0.26047	-0.177301	0.02098
P32246	927	379	0.532506	0.53562	0.122358	0.28447
P33032	924	423	0.054168	0.15490	0.110814	-0.05439
P33765	4561	2739	0.185105	0.29956	0.119639	0.22110
P34969	1466	961	0.305742	0.41693	0.027804	0.11401
P34972	5105	2738	0.253248	0.40855	0.210059	0.22529

Uniprot id	Chemicals in dataset	Chemicals with aff < 100 uM	QSAR (MCC)	QSAR (SCC)	SEA (MCC)	SEA (SCC)
P35228	1442	627	0.058933	0.09462	0.311075	0.33049
P35348	2207	1585	0.146633	0.36896	0.045436	0.13576
P35354	4199	1412	0.371908	0.41271	0.236921	0.22501
P35367	1807	1185	0.398152	0.56299	0.144463	0.28502
P35368	1998	1352	0.259582	0.44336	0.013839	0.20686
P35372	5842	3664	0.083636	0.30849	0.046352	0.19291
P35408	608	269	0.155132	0.30774	0.229855	0.25671
P35462	3776	2445	0.266060	0.41319	0.205926	0.26541
P37231	6072	2731	0.231398	0.39802	0.196543	0.29719
P37288	1144	766	0.419669	0.60248	0.104096	0.34641
P41143	5198	3272	0.108138	0.32721	0.149444	0.27068
P41145	5129	2909	0.290397	0.44092	0.267565	0.31076
P41146	1689	953	0.315774	0.43619	0.171341	0.26996
P41595	1787	1062	0.519684	0.54552	0.256756	0.35715
P41597	2093	914	0.466944	0.38929	0.133443	0.17903
P41968	1204	513	-0.020704	0.09257	0.030656	-0.05593
P43116	388	215	0.351130	0.47270	0.206393	0.16583
P43403	385	173	0.272454	0.63681	-0.001962	0.16855
P43681	1146	735	0.310845	0.43393	0.191214	0.19464
P46098	1013	729	0.228653	0.50812	0.065614	0.23347
P46663	912	554	0.484398	0.56007	0.218681	0.1/882
P47898	000	510	0.078604	0.52912	-0.156730	0.00525
P47901	1106	679	0.266601	0.45760	-0.200390	0.12016
P40039	1044	740	0.040629	0.43334	0.033309	0.12010
P50052	987	740	0.040028	0.41230	0.101308	0.05307
P50406	2873	1766	0.239402	0.45010	0.135775	0.03307
P50416	2073	18	0.531085	0.56292	0.531085	0.32708
P51679	469	194	0.479826	0.43999	0.089631	0.33168
P51681	2857	1490	0.376459	0.45977	0.071800	0.09679
P51955	1109	961	0.178774	0.25443	0.099588	0.15846
P54646	166	123	0.413034	0.26751	0.279528	0.29725
P83111	84	24	0.419573	0.42666	0.133888	0.09205
Q02763	938	422	0.319639	0.43962	0.192030	0.34124
Q08209	63	48	0.625000	0.84545	0.199506	0.77218
Q12809	8181	4618	0.132471	0.25025	0.097760	0.12055
Q13557	907	806	0.175817	0.26655	0.154404	0.23731
Q13639	531	300	0.315139	0.46681	-0.046590	0.08110
Q13936	210	182	0.029951	0.54607	0.154091	0.45260
Q14432	1554	900	0.257560	0.44158	0.213886	0.21794
Q14524	514	284	0.568815	0.62064	0.524820	0.54123
Q16539	4970	2176	0.170355	0.29343	0.076182	0.11701
Q8IW41	641	568	0.097564	0.10988	0.185319	0.17787
Q8NER1	2503	1372	0.399808	0.49937	0.238143	0.36299
Q92731	3327	1280	0.363634	0.38105	0.295168	0.39229
Q92847	1660	825	0.509777	0.56865	0.323313	0.46232
Q96EB6	452	129	0.112290	0.31815	0.507464	0.46742
Q96PF2	519	510	-0.031213	-0.04255	-0.002228	-0.07087
Q96RR4	115	73	-0.160339	0.02679	-0.134806	0.21833
Q9BZL6	814	751	0.153985	0.18084	0.105034	0.18078
Q9H2X6	755	695	0.141024	0.35707	0.152371	0.32470
Q9Y233	923	603	0.528370	0.70836	0.076559	0.30252
Q9Y5N1	3474	2806	0.189611	0.39185	0.166854	0.24938
All	2090	1268	0.288056	0.42782	0.151965	0.24415

Table S2. Cross-validated performance of the selected off-target dataset. SCC is the spearman correlation coefficient; MCC is the Matthews correlation coefficient. MCC values were calculated by using a 100 uM threshold for true binders, 0.6 for QSAR models and 10⁻² for the SEA model.

References

- 1. Ivanciuc O (2013) Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships. Curr Comput Aided Drug Des 9: 153–163.
- 2. Rogers D et al. (2010) Extended-connectivity fingerprints. J Chem Inf Model 50: 742–754.
- 3. Li Q et al. (2008) hERG classification model based on acombination of support vector machine method and GRIND descriptors. Mol. Pharm. 5: 117-127.
- 4. Keiser MJ et al. (2007) Relating protein pharmacology by ligand chemistry. Nat. Biotechnol, 25: 197-206.