
Supplementary Material 

 

Abbreviations Used:  

SFLD – Structure-Function Linkage Database; MSA – multiple sequence alignment; HMM –

Hidden Markov Model; SSN – sequence similarity network; SF – superfamily. 

 

1. Choosing the representative dataset for building MSAs 

 

Automated processes remove sequences according to three criteria: 1) those with artefacts, 

such as fragments, 2) non-natural sequences with mutations or other alterations for use in 

crystallographic characterization, such as those with an “X” character, 3) highly similar 

sequences. For the third criterion, CD-HIT [1] is used to cluster the sequences. The clustering 

process starts with a 95 % identity threshold and decreases the identity threshold in 5 % 

increments until the desired number of sequences is identified (< 250) or a 50 % identity 

threshold is reached. CD-HIT generates many clusters of sequences, each containing 

sequences sharing identity higher than the defined threshold, with the representative sequence 

from each of these clusters being collected as described in Figure S1. 

  

 

Figure S1: Flowchart showing how representative sequences utilised in Figure 6 for 

generating the MSAs are chosen using CD-HIT. MAFFT [2] is used to perform the initial 



alignment of each CD-HIT cluster. All the sequences in the cluster are then searched against 

the cluster HMM and the highest scoring sequence is selected as the CD-HIT representative.  

 

Although the resulting seed dataset could be any size, we have chosen 250 sequences as 

ideal, based on previously published work [3]. If there are more than 250 sequences when the 

sampling has been performed to 50 % identity, then the 50 % set are used along with methods 

such as structure-guided alignments to generate the best alignment achievable. 

 

A final MSA is computed from the seed set that results from this protocol. Most of the MSAs 

in the SFLD have been created using Clustal Omega [4], but other algorithms are used as 

pertinent, such as MAFFT [2], T-Coffee [5], and promals3d [6]. The reason for this is that 

there are sometimes quite significant differences in the output of the alignment software. 

Manual evaluation of MSAs by curators may indicate that MAFFT produces better MSAs 

than Clustal Omega (and vice versa).  

 

2. Creating SSNs in the SFLD 

 

For the SFLD, SSNs are created from all-by-all pairwise comparisons of all the members of a 

target SF using BLAST [7] using either E-values as scores or bit scores to define similarity 

edges between pairs of sequences. This results in an n-dimensional set of edges that link each 

pair of sequences for which the BLAST score has an E-value of at least 1e-2. This threshold 

is used only to identify a full set of homologs, even including some that score in the noise and 

that may be false positives. From these data, networks are explored by curators at much more 

statistically significant E-value cut-off thresholds (typically E less than 1e-10).  

 



As a first step in curation, relationships are visualised across large SFs using “representative” 

networks [8]. This is necessary because visualisation of SSNs using Cytoscape [9] is limited 

by the user’s hardware, with most modern computers unable to process networks of more 

than about half a million edges. Representative networks are computed from representative 

nodes, generated by binning into one node all of sequences that share a pairwise sequence 

identity greater than a chosen cut-off, set no lower than 40 % identity. Comprising one to 

many sequences, the similarity between a pair of representative nodes is typically defined as 

the median of the E-value scores between all the sequences in each node. These 

representative networks can be explored and analysed to guide grouping of the large sets of 

SF sequences into major subgroups in which all of the member sequences are more similar to 

each other than to any other sequence(s) in the set. Further subgrouping of level 1 subgroups 

into additional levels defined at successively high levels of similarity provides a flexible way 

to handle the idiosyncratic nature of different SFs. 

 

For any sequence set that has less than 500,000 edges at an E-value cut-off of E ≤ 1e-5, 

networks can be generated in which each node contains a single sequence. These networks 

can typically be computed for isofunctional families and smaller subgroups, and provides the 

maximum level of detail possible to which functional feature mapping can be applied.  
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